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—— Abstract

Interactive Markov chains (IMC) are compositional behavioral models extending both labeled
transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed
to compositionality properties - with effective verification algorithms and tools - owed to Markov
properties. Thus far however, IMC verification did not consider compositionality properties, but
considered closed systems. This paper discusses the evaluation of IMC in an open and thus

compositional interpretation. For this we embed the IMC into a game that is played with the
environment. We devise algorithms that enable us to derive bounds on reachability probabilities
that are assured to hold in any composition context.
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1 Introduction

With the increasing complexity of systems and software reuse, component based develop-
ment concepts gain more and more attention. In this setting developers are often facing the
need to develop a component with only partial information about the surrounding compon-
ents at hand, especially when relying on third-party components to be inter-operated with.
This motivates verification approaches that ensure the functionality of a component in an
environment whose behavior is unknown or only partially known. Compositional verification
approaches aim at methods to prove guarantees on isolated components in such a way that
when put together, the entire system’s behavior has the desired properties based on the
individual guarantees.

The assurance of reliable functioning of a system relates not only to its correctness, but
also to its performance and dependability. This is a major concern especially in embed-
ded system design. A natural instantiation of the general component-based approach in the
continuous-time setting are interactive Markov chains [24]. Interactive Markov chains (IMC)
are equipped with a sound compositional theory. IMC arise from classical labeled transition
systems by incorporating the possibility to change state according to a random delay gov-
erned by some negative exponential distribution. This twists the model to one that is running
in continuous real time. State transitions may be triggered by delay expirations, or may be
triggered by the execution of actions. By dropping the new type of transitions, labeled trans-
ition systems are regained in their entirety. By dropping action-labeled transitions instead,
one arrives at one of the simplest but also most widespread class of performance and de-
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pendability models, continuous-time Markov chains (CTMC). IMC have a well-understood
compositional theory, rooted in process algebra [3], and are in use as semantic backbones
for dynamic fault trees [6], architectural description languages [5, 8], generalized stochastic
Petri nets [25] and Statemate [4] extensions, and are applied in a large spectrum of practical
applications, ranging from networked hardware on chips [15] to water treatment facilities [21]
and ultra-modern satellite designs [16].

In recent years, various analysis techniques have been proposed [18, 27, 23, 26, 34, 19]
for IMC. The pivotal verification problem considered is that of time-bounded reachability. It
is the problem to calculate or approximate the probability that a given state (set) is reached
within a given deadline. However, despite the fact that IMC support compositional model
generation and minimization very well, the analysis techniques considered thus far are not
compositional. They are all bound to the assumption that the analyzed IMC is closed,
i.e. does not depend on interaction with the environment. Technically, this is related to
the maximal-progress assumption governing the interplay of delay and action execution of
an IMC component: Internal actions are assumed to happen instantaneously and therefore
take precedence over delay transitions while external actions do not. External actions are
the process algebraic means for interaction with other components. Remarkably, in all the
published IMC verification approaches, all occurring actions are assumed to be internal
(respectively internalized by means of a hiding operator prior to analysis).

In this paper, we instead consider open IMC, where the control over external actions is
in the hands of and possibly delayed by an environment. The environment can be thought
of as summarizing the behavior of one or several interacting components. As a consequence,
we find ourselves in the setting of a timed game, where the environment has the (timed)
control over external actions, while the IMC itself controls choices over internal actions. The
resulting game turns out to be remarkably difficult, owed to the interplay of timed moves
with external and internal moves of both players.

Concretely, assume we are given an IMC C which contains some internal non-determin-
istic transitions and also offers some external actions for synchronization to an unknown
environment. Our goal is to synthesize a scheduler controlling the internal transitions which
maximizes the probability of reaching a set G of goal states, in time 7" no matter what and
when the environment E decides to synchronize with the external actions. The environment
E ranges over all possible IMC able to synchronize with the external actions of C.

To get a principal understanding of the complications faced, we need to consider a
restricted setting, where C does not enable internal and external transitions at the same
state. We provide an algorithm which approximates the probability in question up to a
given precision € > 0 and also computes an e-optimal scheduler. The algorithm consists of
two steps. First, we reduce the problem to a game where the environment is not an IMC
but can decide to execute external actions at non-deterministically chosen time instances.
In a second step, we solve the resulting game on C using discretization. Our discretization is
based on the same approach as the algorithm of [34]. However, the algorithm as well as its
proof of correctness is considerably more complicated due to presence of non-deterministic
choices of the player controlling the environment. We finally discuss what happens if we
allow internal and external transitions to be enabled at the same time.

Example. To illustrate the concepts by an example
application, we can consider a variant of the fault-tolerant
workstation cluster [22] depicted on the right. The over-

switch

all system consists of two sub-clusters connected via a
backbone; each of them contains N workstations. Any
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component can fail and then needs to be repaired to become operational again. There is a
single repair unit (not depicted) which must take decisions what to repair next when mul-
tiple components are failed. The entire system can be modelled using the IMC composition
operators [22], but we are now also in the position to study a partial model, where some
components, such as one of the switches, are left unspecified. We seek for the optimal repair
schedule regardless of how the unknown components are implemented. We can answer ques-
tions such as: “What is the worst case probability to hit a state in which premium service is
not guaranteed within T time units?” with premium service only being guaranteed if there
are at least N operational workstations connected to each other via operational switches.

Our contribution. We investigate the problem of compositionally verifying open IMC.
In particular, we introduce the problem of synthesizing optimal control for time-bounded
reachability in an IMC interacting in an unknown environment, provided no state enables
internal and external transition. Thereafter, we solve the problem of finding e-optimal
schedulers using the established method of discretization, give bounds on the size of the
game to be solved for a given € and thus establish upper complexity bound for the problem.
Complete proofs and further relevant details can be found in the full version [10].

Related work. Model checking of open systems has been proposed in [28]. The synthesis
problem is often stated as a game where the first player controls a component and the
second player simulates an environment [31]. There is a large body of literature on games
in verification, including recent surveys [1, 13]. Stochastic games have been applied to
e.g. concurrent program synthesis [33] and for collaboration strategies among compositional
stochastic systems [14]. Although most papers deal with discrete time games, lately games
with stochastic continuous-time have gained attention [7, 30, 9, 11]. Some of the games
we consider in the present paper exploit special cases of the games considered in [7, 11].
However, both papers prove decidability only for qualitative reachability problems and do
not discuss compositionality issues. Further, while systems of [30, 9] are very similar to ours,
the structure of the environment is fixed there and the verification is thus not compositional.
The same holds for [32, 20], where time is under the control of the components.

The time-bounded reachability problem for closed IMC has been studied in [23, 34] and
compositional abstraction techniques to compute it are developed in [26]. In the closed
interpretation, IMC have some similarities with continuous-time Markov decision processes,
CTMDP. Algorithms for time-bounded reachability in CTMDP and corresponding games
are developed in [2, 9, 30]. A numerically stable algorithm for time-bounded properties for
CTMDP is developed in [12].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together with the
standard way to compose them. After giving the operational interpretation for closed sys-
tems, we define the fundamental problem of our interest, namely we define the value of
time-bounded reachability and introduce the studied problems.

We denote by N, Ny, Ry, and R>( the sets of natural numbers, natural numbers with
zero, positive real numbers and non-negative real numbers, respectively.

» Definition 1 (IMC). An interactive Markov chain (IMC) is a tuple C = (S, Act”, <, ~~, s¢)
where S is a finite set of states, Act” is a finite set of actions containing a designated internal
action T, sg € S is an initial state,

— C S x Act™ x S is an interactive transition relation, and

~» C S X Ryg x S is a Markovian transition relation.
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Elements of Act := Act™ \ {7} are called external actions. We write s<%t whenever
(s,a,t) € <, and further succ.(s) = {t € S| Ja € Act : st} and succ,(s) = {t € S |
s<»t}. Similarly, we write 55t whenever (s,\,t) € ~» where A is called a rate of the
transition, and succp(s) = {t € S | A : s<5¢}. We assume w.lo.g. that for each pair
of states s and t, there is at most one Markovian transition from s to ¢t. We say that an
external, or internal, or Markovian transition is available in s if succ, (s) # 0, or succ,(s) # 0,
or succys(s) # 0, respectively.

We also define a total exit rate function E : S — R>o which assigns to each state the
sum of rates of all outgoing Markovian transitions, i.e. E(s) = ZS A, A where the sum is
zero if succys(s) is empty. Furthermore, we define a probability matrix P(s,t) = A/E(s) if
s v’\»t; and P(s,t) = 0, otherwise.

IMC are well suited for compositional modeling, where systems are built out of smaller
ones using composition operators. Parallel composition and hiding operators are central to
the modeling style, where parallel components synchronize using shared action, and further
synchronization can be prohibited by hiding (i.e. internalizing) some actions. IMC employ
the maximal progress assumption: Internal actions take precedence over the advance of
time [24].

» Definition 2 (Parallel composition). For IMC C; = (S1, Act],<>1,~1,801) and Cy =
(S2, Actl, <9, ~~2, 802) and a synchronization alphabet A C Acty N Actg, the parallel com-
position Cy || C is the IMC C; = (57 x Sa, Act] U Actl, <, ~, (s01, S02)) where < and ~~
are defined as the smallest relations satisfying

s1 <% sy and sp <% sh and a € A implies (s1, s2) <= (87, 55),

s1<% sy and a € A implies (s1,s2) < (8], s2) for each sy € Sa,

sy <% sh and a € A implies (s1,2) < (s1, s4) for each s; € Sy,

s1 2 s} implies (s1, $2) 2 (s, 82) for each sp € Sy, and

S9 2 sh implies (s1, s2) <> (81, 5) for each s1 € 5.

» Definition 3 (Hiding). For an IMC C = (S, Act™, <>, ~»,s¢) and a hidden alphabet A C
Act, the hiding C\ A is the IMC (S, Act™ \ A, <, ~~, s0) where <’ is the smallest relation
satisfying for each s<% s’ that a € A implies s<’s’, and a € A implies s<%'s’.

The analysis of IMC has thus far been restricted to closed IMC [18, 27, 23, 26, 34,
19]. In a closed IMC, external actions do not appear as transition labels (i.e. — C S X
{r} x S). In practice, this is achieved by an outermost hiding operator \ Act closing the
composed system. Non-determinism among internal 7 transitions is resolved using a (history-
dependent) scheduler o [34].

Let us fix a closed IMC C = (S, Act™, <, ~, 59). The IMC C under a scheduler o moves
from state to state, and in every state may wait for a random time. This produces a run
which is an infinite sequence of the form sgtg sy t1 - -+ where s,, is the n-th visited state and
t, is the time spent there. After n steps, the scheduler resolves the non-determinism based
on the history h = sgto- - Sn_1tn_1 Sn as follows.

» Definition 4 (Scheduler). A scheduler! for an IMC C = (S, Act™, <, ~, 8¢) is a measur-
able? function o : (S x R>0)* x S — S such that for each history h = sgtg sy --- s, with
succr (sy,) # 0 we have o(h) € succ,(s,). The set of all schedulers for C is denoted by &(C).

L For the sake of simplicity, we only consider deterministic schedulers in this paper.
2 More precisely, 0~ 1(s) is measurable in the product topology of the discrete topology on S and the
Borel topology on Rxg.
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The decision of the scheduler o(h) determines ¢,, and s, as follows. If succ,(s,) # 0,
then the run proceeds immediately, i.e. in time ¢, := 0, to the state s, 11 := o(h). Otherwise,
if suce,(s,) = 0, then only Markovian transitions are available in s,. In such a case, the
run moves to a randomly chosen next state s, 11 with probability P(s,, $,+1) after waiting
for a random time ¢,, chosen according to the exponential distribution with the rate E(sy,).

One of the fundamental problems in verification and performance analysis of continu-
ous-time stochastic systems is the time-bounded reachability. Given a set of goal states
G C S and a time bound T' € R>q, the value of time-bounded reachability is defined as
Supgea(c) Pé [0=TG] where PZ[0=TG] denotes the probability that a run of C under the
scheduler o visits a state of G before time T". The pivotal problem in the algorithmic analysis
of IMC is to compute this value together with a scheduler that achieves the supremum. As
the value is not rational in most cases, the aim is to provide an efficient approximation
algorithm and compute an e-optimal scheduler. The value of time-bounded reachability can
be approximated up to a given error tolerance £ > 0 in time O(|S|?- (A\T)?/¢) [29], where ) is
the maximal rate of C, and the procedure also yields an e-optimal scheduler. We generalize
both the notion of the value as well as approximation algorithms to the setting of open IMC,
i.e. those that are not closed, and motivate this extension in the next section.

3 Compositional Verification

In this section we turn our attention to the central questions studied in this paper. How
can we decide how well an IMC component C performs (w.r.t. time-bounded reachability)
when acting in parallel with an unknown environment? And how to control the component
to establish a guarantee as high as possible?

Speaking thus far in vague terms, this amounts to finding a scheduler ¢ for C which
maximizes the probability of reaching a target set G before T no matter what environment
FE is composed with C. As we are interested in compositional modeling using IMC, the
environments are supposed to be IMC with the same external actions as C (thus resolving
the external non-determinism of C). We also need to consider all resolutions of the internal
non-determinism of E as well as the non-determinism arising from synchronization of C and
FE using another scheduler 7. So we are interested in the following value:

sup inf P[G is reached in composition of C and E before T using o and =].

c E,m

Now, let us be more formal and fix an IMC C = (S, Act™, <, ~, s9). For a given envir-
onment IMC FE with the same action alphabet Act™, we introduce a composition

C(E) = (C [lact E)\Act

where all open actions are hidden, yielding a closed system. Note that the states of C(E)
are pairs (c,e) where ¢ is a state of C and e is a state of E. We consider a scheduler o of
C and a scheduler 7 of C(FE) respecting o on internal actions of C. We say that 7 respects
o, denoted by m € &(C(E), 0), if for every history h = (co,€0) to - -+ tn—1(cn,en) of C(E) the
scheduler 7 satisfies one of the following conditions:

7T(f)) = (C, e) where ¢, < ¢ and en e (7r resolves synchronization)

W(f)) = (Cn, e) where e, e (7 chooses a move in the environment)

W(h) = (J([’)C)7 en) where he = coto - th_1Cn (71' chooses a move in C according to o).

Given a set of goal states G C S and a time bound T' € R>g, the value of compositional
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time-bounded reachability is defined as

sup inf  Pg [0 G (%)
S EEENV
7€) c&e(E) )
where ENV denotes the set of all IMC with the action alphabet Act”™ and Gg = G xS where
Sk is the set of states of E. As for the closed IMC, our goal is to efficiently approximate this
value together with a maximizing scheduler. Before we present an approximation algorithm

based on discretization, we illustrate some of the effects of the open system perspective.
Example. The figure on the right depicts
an IMC on which we approximate the value () 1

for T = 2 and G = {done}. From the initial *) @
state do, the system may go randomly either > 20 )
to the target done or to fail. Concurrently, the L <— j
external action interrupt may switch the run to Interrupt
the state ?, where the scheduler o chooses between two successors (1) the state fast allowing
fast but risky run to the target and (2) the state fix that guarantees reaching the target but
takes longer time. The value (x) is approximately 0.47 and an optimal scheduler goes to fix
only if there are more than 1.2 minutes left. Note that the probability of reaching the target
in time depends on when the external action interrupt is taken. The most “adversarial”
environment executes interrupt after 0.8 minutes from the start.

Results. We now formulate our main result concerning efficient approximation of the
value of compositional time-bounded reachability. In fact, we provide an approximation
algorithm for a restricted subclass of IMC defined by the following two assumptions:

» Assumption 1. Fach cycle contains a Markovian transition.

This assumption is standard over all analysis techniques published for IMC [18, 27, 23, 26,
34, 19]. Tt implies that the probability of taking infinitely many transitions in finite time,
i.e. of Zeno behavior, is zero. This is a rather natural assumption and does not restrict the
modeling power much, since no real system will be able to take infinitely many transitions
in finite time anyway. Furthermore, the assumed property is a compositional one, i.e. it is
preserved by parallel composition and hiding.

» Assumption 2. Internal and external actions are not enabled at the same time, i.e. for
each state s, either succ,(s) =0 or suce,(s) = 0.

Note that both assumptions are met by the above mentioned example. However, Assump-
tion 2 is not compositional; specifically, it is not preserved by applications of the hiding
operator. A stronger assumption would require the environment not to trigger external
actions in zero time after a state change. This is indeed implied by Assumption 2 which
basically asks internal transitions of the component to be executed before any external ac-
tions are taken into account.? In fact, the reverse precedence cannot be implemented in real
systems, if internal actions are assumed to be executed without delay. Any procedure imple-
mented in C for checking the availability of external actions will involve some non-zero delay
(unless one resorts to quantum effects). From a technical point of view, lifting Assumption 2
makes the studied problems considerably more involved; see Section 6 for further discussion.

3 To see this one can construct a weak simulation relation between a system violating Assumption 2 and
one satisfying it, where any state with both internal and external transitions is split into two: the first
one enabling the internal transitions and a new 7 to the second one only enabling the external ones.
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» Theorem 5. Let ¢ > 0 be an approzimation bound and C = (S, Act™, <, ~>, s9) be an
IMC satisfying Assumptions 1 and 2. Then one can approzimate the value of compositional
time-bounded reachability of C up to € and compute an e-optimal scheduler in time O(|S|? -
(A\T)?/¢), where X is the mazimal rate of C and T is the reachability time-bound.

In the remainder of the paper, we prove this theorem and discuss its restrictions. First, we
introduce a new kind of real-time games, called CE games, that are played on open IMC.
Then we reduce the compositional time-bounded reachability of C to time-bounded reach-
ability objective in the CE game played just on the component C (see Proposition 6). In
Section 5, we show how to reduce, using discretization, the time-bounded reachability in CE
games to step-bounded reachability in discrete-time stochastic games (see Proposition 8),
that in turn can be solved using simple backward propagation. Finally, we show, in Propos-
ition 9, how to transform optimal strategies in the discretized stochastic games to e-optimal
schedulers for C.

4 Game of Controller and Environment

In order to approximate (), the value of compositional time-bounded reachability, we turn
the IMC C into a two-player controller—environment game (CE game) G. The CE game
naturally combines two approaches to real-time systems, namely the stochastic flow of time
as present in CTMC with the non-deterministic flow of time as present in timed automata.
The game G is played on the graph of an IMC C played by two players: con (controlling the
component C) and env (controlling/simulating the environment). In essence, con chooses
in each state with internal transitions one of them, and env chooses in each state with
external (and hence synchronizing) transitions either which of them should be taken, or a
delay t. € Rsg. Note that, due to Assumption 2, the players control the game in disjoint
sets of states, hence G is a turn-based game. The internal and external transitions take zero
time to be executed once chosen. If no zero time transition is chosen, the delay t. determined
by env competes with the Markovian transitions, i.e. with a random time sampled from
the exponential distribution with the rate E(s). We consider time-bounded reachability
objective, so the goal of con is to reach a given subset of states G before a given time T,
and env opposes it.

Formally, let us fix an IMC C = (S, Act™, <>, ~, 59) and thus a CE game G. A run of G is
again an infinite sequence sgtg s1t1 -+ where s, € S is the n-th visited state and ¢,, € R>g
is the time spent there. Based on the history sgtg - - - t,—1 S, went through so far, the players
choose their moves as follows.

If succ, (s,) # 0, the player con chooses a state s, € succ,(sy,).

Otherwise, the player env chooses either a state s, € succe(s,), or a delay t. € Rxg.

(Note that if succe(s,) = 0 only a delay can be chosen.)

Subsequently, Markovian transitions (if available) are resolved by randomly choosing a target
state sy according to the distribution P(s,, ) and randomly sampling a time ¢, according
to the exponential distribution with rate E(s,,). The next waiting time ¢,, and state s,41
are given by the following rules in the order displayed.

If succ, (s,) # 0 and s, was chosen, then ¢, = 0 and s,11 = s;.

If s, was chosen, then ¢, = 0 and s,4+1 = Se.

If ¢, was chosen then:

if suceps(sn) = 0, then t, = t. and sp11 = 8p;
if t. <tu, then t, =t. and s,41 = Sp;
if tpr < te, then t, =ty and sp41 = Spy.
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According to the definition of schedulers in IMC, we formalize the choice of con as a
strategy o : (S X R>g)* x S — S and the choice of env as a strategy 7 : (S x R>g)* x S —
S UR<p. We denote by ¥ and II the sets of all strategies of the players con and env,
respectively. In order to keep CE games out of Zeno behavior, we consider in IT only those
strategies of the player env for which the induced Zeno runs have zero measure, i.e. the sum
of the chosen delays diverges almost surely no matter what con is doing.

Given goal states G C S and a time bound T € R, the value of G is defined as

sup inf Pg’W[OSTG} (%)

cex mell
where ’P_g’ﬂ [OSTG] is the probability of all runs of G induced by ¢ and 7 and reaching
a state of G before time T. We now show that the value of the CE game coincides with the
value of compositional time-bounded reachability. This result is interesting and important
as it allows us to replace unknown probabilistic behaviour with non-deterministic choices.

» Proposition 6. (x) = (xx), i.c.

sup inf P [0STGE| = sup inf PIT[0ST@E
oce(e)  EEENY | el = sup Inf PG (0=" ¢

Proof Idea. We start with the inequality (x) > (xx). Let 0 € ¥ (= &(C)) and let us fix an
environment E together with a scheduler 7 € &(C(F), o). The crucial observation is that
the purpose of the environment E (controlled by ) is to choose delays of external actions
(the delay is determined by a sequence of internal and Markovian actions of E executed
before the external action), which is in fact similar to the role of the player env in the CE
game. The only difference is that the environment E “chooses” the delays randomly as
opposed to deterministic strategies of env. However, using a technically involved argument,
we show how to get rid of this randomization and obtain a strategy ' in the CE game
satisfying 775’”, [OSTG] < g(E) [(}STGE].

Concerning the second inequality (%) < (xx), we show that every strategy of env can
be (approximately) implemented using a suitable environment together with a scheduler
. The idea is to simulate every deterministic delay, say t, chosen by env using a random
delay tightly concentrated around ¢ (roughly corresponding to an Erlang distribution) that
is implemented as an IMC. We show that the imprecision of delays introduced by this
randomization induces only negligible alteration to the value. |

5 Discretization

In this section we show how to approximate the value (xx) of the CE game up to an arbitrarily
small error € > 0 by reduction to a discrete-time (turn-based) stochastic game A.

A stochastic game A is played on a graph (V,—) partitioned into Vo Vo 6 V. A play
starts in the initial vertex vy and forms a run vgv; - - - as follows. For a history vg - - - v;, the
next vertex v;41 satisfying v; — v;41 is determined by a strategy o € ¥ A of player OJ if
v; € Vg and by a strategy m € Il of player ¢ if v; € Vi,. Moreover, v; 1 is chosen randomly
according to a fixed distribution Prob(v;) if v; € V5. For a formal definition, see, e.g., [17].

Let us fix a CE game G and a discretization step 6 > 0 that divides the time bound T into
N € N intervals of equal length (here 6 = T/N). We construct a discrete-time stochastic
game A by substituting each state of G by a gadget of one or two vertices (as illustrated in
Figure 1).# Intuitively, the game A models passing of time as follows. Each discrete step

4 We assume w.l.o.g. that (1) states with internal transitions have no Markovian transitions available and
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Figure 1 Four gadgets for transforming a CE game into a discrete game. The upper part
shows types of states in the original CE game, the lower part shows corresponding gadgets in
the transformed discrete game. In the lower part, the square-shaped, diamond-shaped and circle-
shaped vertices belong to Vo, Vi, and Vo, respectively. Binary branching is displayed only in order
to simplify the figure.

“takes” either time 6 or time 0. Each step from a vertex of V(- takes time J whereas each step
from vertex of VgUV,, takes zero time. The first gadget transforms internal transitions into
edges of player [ taking zero time. The second gadget transforms Markovian transitions
into edges of player () taking time d where the probability p is the probability that any
Markovian transition is taken in G before time §. The third gadget deals with states with
both external and Markovian transitions available where the player ¢ decides in vertex s in
zero time whether an external transition is taken or whether the Markovian transitions are
awaited in § for time §. The fourth gadget is similar, but no Markovian transition can occur
and from s the play returns into s with probability 1.
Similarly to () and (xx), we define the value of the discrete-time game A as

sup inf P [0#0 NG (s %)
gex TEA
where P [0# NG| is the probability of all runs of A induced by ¢ and 7 that reach
G before taking more than N steps from vertices in V5. According to the intuition above,
such a step bound corresponds to a time bound N -§ =T.
We say that a strategy is counting if it only considers the last vertex and the current count
# . of steps taken from vertices in V. We may represent it as a function V' x{0,..., N} =V
since it is irrelevant what it does after more than N steps.

» Lemma 7. There are counting strategies optimal in (xxx). Moreover, they can be computed
together with (x x *) in time O(N|V|?).

We now show that the value (x * *) of the discretized game A approximates the value
(%) of the CE game G and give the corresponding error bound.

(2) every state has at least one outgoing transition.This is no restriction since (1) Markovian transitions
are never taken in such states and (2) any state without transitions can be endowed with a Markovian
self-loop transition without changing the time-bounded reachability.
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» Proposition 8 (Error bound). For every approximation bound ¢ > 0 and discretization
step & < €/(N°T) where A = maxsecs E(s), the value (x % x) induced by § satisfies

(k) < (xx) < (k%) +e.

Proof Idea. The proof is inspired by the techniques for closed IMC [29]. Yet, there are
several new issues to overcome, caused mainly by the fact that the player env in the CE
game may choose an arbitrary real delay t. > 0 (so env has uncountably many choices).
The discretized game A is supposed to simulate the original CE game but restricts possible
behaviors as follows: (1) Only one Markovian transition is allowed in any interval of length
0. (2) The delay t. chosen by player ¢ (which simulates the player env from the CE game)
must be divisible by 6. We show that none of these restrictions affects the value.

ad (1) As pointed out in [29], the probability of two or more Markovian transitions occurring in
an interval [0, §] is bounded by (AJ)?/2 where A = max,cs E(s). Hence, the probability
of multiple Markovian transitions occurring in any of the discrete steps of A is < e.

ad (2) Assuming that at most one Markovian transition is taken in [0,0] in the CE game,
we reduce the decision when to take external transitions to minimization of a linear
function on [0, ¢], which in turn is minimized either in 0, or §. Hence, the optimal choice
for the player env in the CE game is either to take the transitions immediately at the
beginning of the interval (before the potential Markovian transition) or to wait for time
0 (after the potential Markovian transition). <

Finally, we show how to transform an optimal counting strategy o : V. x {0,...,N} =V
in the discretized game A into an e-optimal scheduler @ in the IMC C. For every p =
S0 tO o Sn—1 LLn—l Sn W€ PUt E(IJ) = U(Sn7 |—(t0 +...+ tn—l)/5-|)~

» Proposition 9 (c-optimal scheduler). Let € > 0, A be a corresponding discrete game, and
@ be induced by an optimal counting strategy in /A, then

: T <T
() < it Phe|0%TCE] +
T€6(C(E),7)

This together with the complexity result of Lemma 7 finishes the proof of Theorem 5.

6 Summary, Discussion and Future Work

We discussed the computation of maximal timed bounded reachability for IMC operating in
an unknown IMC environment to synchronize with. All prior analysis approaches considered
closed systems, implicitly assuming that external actions do happen in zero time. Our
analysis for open IMC works essentially with the opposite assumption, which is arguably
more realistic. We have shown that the resulting stochastic two-player game has the same
extremal values as a CE-game, where the player controlling the environment can choose
exact times. The latter is approximated up to a given precision by discretization and the
resulting control strategy translated back to a scheduler of the IMC achieving the bound.

Finally, we argue that lifting Assumption 2 makes a
analysis considerably more involved as the studied game N A ’
may contain imperfect information and concurrent de- 4’@*@\} ™
cisions. Let us illustrate the problems on an example. T *}
Consider an IMC depicted on the right. This IMC vi- ?

olates Assumption 2 in its state no. Let us fix an arbitrary environment E (controlled by

7) and a scheduler o. Since internal transitions of E take zero time, the environment must
spend almost all the time in states without internal transitions. Hence, F is almost surely
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in such a state when ? is entered. Assume FE is in a state with the (external) action a
being available. The scheduler ¢ wins if he chooses the internal transition to yes since the
synchronizing transition a is then taken immediately, and fails if he chooses to proceed to
no, as a (reasonable) scheduler 7 will now force synchronization on action a. If, otherwise,
on entering state 7, F is in a state without the action a being available, the scheduler o
fails if he chooses yes because a (reasonable) environment never synchronizes, and wins if he
chooses no since the environment E cannot immediately synchronize and the 7 transition
is taken. Note that the scheduler o cannot observe whether a is available in the current
state of E. As this is crucial for the further evolution of the game from state 7, the game is
intrinsically of imperfect information.

We conjecture that solving even this special case of imperfect information games is
PSPACE-hard. Yet, the complexity might only increase in the number of internal transitions
that can be taken in a row. For systems, where a bound on the length of internal transition
sequences can be assumed, this problem would then still be feasible.
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