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Jan Křetínský
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Abstract

Interactive Markov chains (IMC) are compositional behavioral models extending

both labeled transition systems and continuous-time Markov chains. IMC pair mod-

eling convenience - owed to compositionality properties - with effective verification

algorithms and tools - owed to Markov properties. Thus far however, IMC verifi-

cation did not consider compositionality properties, but considered closed systems.

This paper discusses the evaluation of IMC in an open and thus compositional in-

terpretation. For this we embed the IMC into a game that is played with the en-
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vironment. We devise algorithms that enable us to derive bounds on reachability

probabilities that are assured to hold in any composition context.

1 Introduction

With the increasing complexity of systems and software reuse, component based de-

velopment concepts gain more and more attention. In this setting developers are often

facing the need to develop a component with only partial information about the sur-

rounding components at hand, especially when relying on third-party components to

be inter-operated with. This motivates verification approaches that ensure the function-

ality of a component in an environment whose behavior is unknown or only partially

known. Compositional verification approaches aim at methods to prove guarantees on

isolated components in such a way that when put together, the entire system’s behavior

has the desired properties based on the individual guarantees.

The assurance of reliable functioning of a system relates not only to its correctness,

but also to its performance and dependability. This is a major concern especially in

embedded system design. A natural instantiation of the general component-based ap-

proach in the continuous-time setting are interactive Markov chains [HK09]. Interactive

Markov chains (IMC) are equipped with a sound compositional theory. IMC arise from

classical labeled transition systems by incorporating the possibility to change state ac-

cording to a random delay governed by some negative exponential distribution. This

twists the model to one that is running in continuous real time. State transitions may

be triggered by delay expirations, or may be triggered by the execution of actions.

By dropping the new type of transitions, labeled transition systems are regained in

their entirety. By dropping action-labeled transitions instead, one arrives at one of

the simplest but also most widespread class of performance and dependability mod-

els, continuous-time Markov chains (CTMC). IMC have a well-understood compositional

theory, rooted in process algebra [BPS01], and are in use as semantic backbones for dy-

namic fault trees [BCS10], architectural description languages [BCH+08, BCK+11], gen-

eralized stochastic Petri nets [HKNZ10] and Statemate [BHH+09] extensions, and are

applied in a large spectrum of practical applications, ranging from networked hardware

on chips [CHLS09] to water treatment facilities [HKR+10] and ultra-modern satellite de-

signs [EKN+12].
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In recent years, various analysis techniques have been proposed [GMLS07, KZH+11,

HJ08, KKN09, ZN10, GHK+12] for IMC. The pivotal verification problem considered is

that of time-bounded reachability. It is the problem to calculate or approximate the prob-

ability that a given state (set) is reached within a given deadline. However, despite the

fact that IMC support compositional model generation and minimization very well, the

analysis techniques considered thus far are not compositional. They are all bound to the

assumption that the analyzed IMC is closed, i.e. does not depend on interaction with the

environment. Technically, this is related to the maximal-progress assumption governing

the interplay of delay and action execution of an IMC component: Internal actions are

assumed to happen instantaneously and therefore take precedence over delay transi-

tions while external actions do not. External actions are the process algebraic means for

interaction with other components. Remarkably, in all the published IMC verification

approaches, all occurring actions are assumed to be internal (respectively internalized

by means of a hiding operator prior to analysis).

In this paper, we instead consider open IMC, where the control over external actions

is in the hands of and possibly delayed by an environment. The environment can be

thought of as summarizing the behavior of one or several interacting components. As a

consequence, we find ourselves in the setting of a timed game, where the environment

has the (timed) control over external actions, while the IMC itself controls choices over

internal actions. The resulting game turns out to be remarkably difficult, owed to the

interplay of timed moves with external and internal moves of both players.

Concretely, assume we are given an IMC C which contains some internal non-

deterministic transitions and also offers some external actions for synchronization to

an unknown environment. Our goal is to synthesize a scheduler controlling the inter-

nal transitions which maximizes the probability of reaching a set G of goal states, in

time T no matter what and when the environment E decides to synchronize with the

external actions. The environment E ranges over all possible IMC able to synchronize

with the external actions of C.

To get a principal understanding of the complications faced, we need to consider a

restricted setting, where C does not enable internal and external transitions at the same

state. We provide an algorithm which approximates the probability in question up to a

given precision ε > 0 and also computes an ε-optimal scheduler. The algorithm consists

of two steps. First, we reduce the problem to a game where the environment is not

an IMC but can decide to execute external actions at non-deterministically chosen time
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instances. In a second step, we solve the resulting game on C using discretization. Our

discretization is based on the same approach as the algorithm of [ZN10]. However, the

algorithm as well as its proof of correctness is considerably more complicated due to

presence of non-deterministic choices of the player controlling the environment. We

finally discuss what happens if we allow internal and external transitions to be enabled

at the same time.

rightbackboneleft

switchswitch
...

2

1

...

2

1

N N

Example. To illustrate the concepts by an example ap-

plication, we can consider a variant of the fault-tolerant

workstation cluster [HJ07] depicted on the right. The over-

all system consists of two sub-clusters connected via a backbone; each of them contains

N workstations. Any component can fail and then needs to be repaired to become op-

erational again. There is a single repair unit (not depicted) which must take decisions

what to repair next when multiple components are failed. The entire system can be

modelled using the IMC composition operators [HJ07], but we are now also in the po-

sition to study a partial model, where some components, such as one of the switches,

are left unspecified. We seek for the optimal repair schedule regardless of how the un-

known components are implemented. We can answer questions such as: “What is the

worst case probability to hit a state in which premium service is not guaranteed within T time

units?” with premium service only being guaranteed if there are at least N operational

workstations connected to each other via operational switches.

Our contribution. We investigate the problem of compositionally verifying open

IMC. In particular, we introduce the problem of synthesizing optimal control for time-

bounded reachability in an IMC interacting in an unknown environment, provided no

state enables internal and external transition. Thereafter, we solve the problem of find-

ing ε-optimal schedulers using the established method of discretization, give bounds

on the size of the game to be solved for a given ε and thus establish upper complexity

bound for the problem. Complete proofs and further relevant details can be found in

the full version [BHK+12].

Related work. Model checking of open systems has been proposed in [KV96]. The

synthesis problem is often stated as a game where the first player controls a component

and the second player simulates an environment [RW89]. There is a large body of litera-

ture on games in verification, including recent surveys [AG11, CH12]. Stochastic games

have been applied to e.g. concurrent program synthesis [vCH+11] and for collaboration

strategies among compositional stochastic systems [CFK+12]. Although most papers
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deal with discrete time games, lately games with stochastic continuous-time have gained

attention [BF09, RS11, BFK+09, BKK+10]. Some of the games we consider in the present

paper exploit special cases of the games considered in [BF09, BKK+10]. However, both

papers prove decidability only for qualitative reachability problems and do not discuss

compositionality issues. Further, while systems of [RS11, BFK+09] are very similar to

ours, the structure of the environment is fixed there and the verification is thus not com-

positional. The same holds for [Spr11, HNP+11], where time is under the control of the

components.

The time-bounded reachability problem for closed IMC has been studied in [HJ08,

ZN10] and compositional abstraction techniques to compute it are developed

in [KKN09]. In the closed interpretation, IMC have some similarities with continuous-

time Markov decision processes, CTMDP. Algorithms for time-bounded reachability

in CTMDP and corresponding games are developed in [BHKH05, BFK+09, RS11]. A

numerically stable algorithm for time-bounded properties for CTMDP is developed

in [BS11].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together with

the standard way to compose them. After giving the operational interpretation for

closed systems, we define the fundamental problem of our interest, namely we define

the value of time-bounded reachability and introduce the studied problems.

We denote by N, N0, R>0, and R≥0 the sets of natural numbers, natural numbers with

zero, positive real numbers and non-negative real numbers, respectively.

Definition 2.1 (IMC). An interactive Markov chain (IMC) is a tuple C = (S,Actτ, ↪→, , s0)
where S is a finite set of states, Actτ is a finite set of actions containing a designated internal

action τ, s0 ∈ S is an initial state,

• ↪→ ⊆ S× Actτ × S is an interactive transition relation, and

•  ⊆ S× R>0 × S is a Markovian transition relation.

Elements of Act := Actτ \ {τ} are called external actions. We write s a↪→ t whenever

(s, a, t) ∈ ↪→, and further succe(s) = {t ∈ S | ∃a ∈ Act : s a↪→ t} and succτ(s) = {t ∈
S | s τ↪→ t}. Similarly, we write s λ t whenever (s, λ, t) ∈  where λ is called a rate of
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the transition, and succM(s) = {t ∈ S | ∃λ : s λ t}. We assume w.l.o.g. that for each

pair of states s and t, there is at most one Markovian transition from s to t. We say

that an external, or internal, or Markovian transition is available in s if succe(s) 6= ∅, or

succτ(s) 6= ∅, or succM(s) 6= ∅, respectively.

We also define a total exit rate function E : S → R≥0 which assigns to each state the

sum of rates of all outgoing Markovian transitions, i.e. E(s) =
∑
s
λ
 t
λ where the sum is

zero if succM(s) is empty. Furthermore, we define a probability matrix P(s, t) = λ/E(s)

if s λ t; and P(s, t) = 0, otherwise.

IMC are well suited for compositional modeling, where systems are built out of

smaller ones using composition operators. Parallel composition and hiding operators

are central to the modeling style, where parallel components synchronize using shared

action, and further synchronization can be prohibited by hiding (i.e. internalizing) some

actions. IMC employ the maximal progress assumption: Internal actions take precedence

over the advance of time [HK09].

Definition 2.2 (Parallel composition). For IMC C1 = (S1,Actτ1, ↪→1, 1, s01) and C2 =

(S2,Actτ2, ↪→2, 2, s02) and a synchronization alphabet A ⊆ Act1 ∩ Act2, the parallel com-

position C1 ‖A C2 is the IMC C1 = (S1 × S2,Actτ1 ∪ Actτ2, ↪→, , (s01, s02)) where ↪→ and 

are defined as the smallest relations satisfying

• s1 a↪→ s ′1 and s2 a↪→ s ′2 and a ∈ A implies (s1, s2)
a↪→ (s ′1, s

′
2),

• s1 a↪→ s ′1 and a 6∈ A implies (s1, s2)
a↪→ (s ′1, s2) for each s2 ∈ S2,

• s2 a↪→ s ′2 and a 6∈ A implies (s1, s2)
a↪→ (s1, s

′
2) for each s1 ∈ S1,

• s1 λ s ′1 implies (s1, s2)
λ (s ′1, s2) for each s2 ∈ S2, and

• s2 λ s ′2 implies (s1, s2)
λ (s1, s

′
2) for each s1 ∈ S1.

Definition 2.3 (Hiding). For an IMC C = (S,Actτ, ↪→, , s0) and a hidden alphabet A ⊆
Act, the hiding C�A is the IMC (S,Actτ \ A, ↪→ ′, , s0) where ↪→ ′ is the smallest relation

satisfying for each s a↪→ s ′ that a ∈ A implies s τ↪→ ′s ′, and a 6∈ A implies s a↪→ ′s ′.

The analysis of IMC has thus far been restricted to closed IMC [GMLS07, KZH+11,

HJ08, KKN09, ZN10, GHK+12]. In a closed IMC, external actions do not appear as

transition labels (i.e. ↪→ ⊆ S × {τ} × S). In practice, this is achieved by an outermost

hiding operator �Act closing the composed system. Non-determinism among internal

τ transitions is resolved using a (history-dependent) scheduler σ [ZN10].
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Let us fix a closed IMC C = (S,Actτ, ↪→, , s0). The IMC C under a scheduler σmoves

from state to state, and in every state may wait for a random time. This produces a run

which is an infinite sequence of the form s0 t0 s1 t1 · · · where sn is the n-th visited state

and tn is the time spent there. After n steps, the scheduler resolves the non-determinism

based on the history h = s0 t0 · · · sn−1 tn−1 sn as follows.

Definition 2.4 (Scheduler). A scheduler1 for an IMC C = (S,Actτ, ↪→, , s0) is a measurable2

function σ : (S×R≥0)∗×S→ S such that for each history h = s0 t0 s1 · · · sn with succτ(sn) 6= ∅
we have σ(h) ∈ succτ(sn). The set of all schedulers for C is denoted by S(C).

The decision of the scheduler σ(h) determines tn and sn+1 as follows. If succτ(sn) 6=
∅, then the run proceeds immediately, i.e. in time tn := 0, to the state sn+1 := σ(h).

Otherwise, if succτ(sn) = ∅, then only Markovian transitions are available in sn. In such

a case, the run moves to a randomly chosen next state sn+1 with probability P(sn, sn+1)

after waiting for a random time tn chosen according to the exponential distribution with

the rate E(sn).

One of the fundamental problems in verification and performance analysis of

continuous-time stochastic systems is the time-bounded reachability. Given a set of

goal states G ⊆ S and a time bound T ∈ R≥0, the value of time-bounded reachability is

defined as supσ∈S(C)P
σ
C
[
♦≤TG

]
where PσC

[
♦≤TG

]
denotes the probability that a run of

C under the scheduler σ visits a state of G before time T . The pivotal problem in the

algorithmic analysis of IMC is to compute this value together with a scheduler that

achieves the supremum. As the value is not rational in most cases, the aim is to provide

an efficient approximation algorithm and compute an ε-optimal scheduler. The value

of time-bounded reachability can be approximated up to a given error tolerance ε > 0

in time O(|S|2 · (λT)2/ε) [M.R10], where λ is the maximal rate of C, and the procedure

also yields an ε-optimal scheduler. We generalize both the notion of the value as well as

approximation algorithms to the setting of open IMC, i.e. those that are not closed, and

motivate this extension in the next section.
1For the sake of simplicity, we only consider deterministic schedulers in this paper.
2More precisely, σ−1(s) is measurable in the product topology of the discrete topology on S and the

Borel topology on R≥0.
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3 Compositional Verification

In this section we turn our attention to the central questions studied in this paper. How

can we decide how well an IMC component C performs (w.r.t. time-bounded reachabil-

ity) when acting in parallel with an unknown environment? And how to control the

component to establish a guarantee as high as possible?

Speaking thus far in vague terms, this amounts to finding a scheduler σ for C which

maximizes the probability of reaching a target set G before T no matter what environ-

ment E is composed with C. As we are interested in compositional modeling using IMC,

the environments are supposed to be IMC with the same external actions as C (thus re-

solving the external non-determinism of C). We also need to consider all resolutions

of the internal non-determinism of E as well as the non-determinism arising from syn-

chronization of C and E using another scheduler π. So we are interested in the following

value:

sup
σ

inf
E,π
P[G is reached in composition of C and E before T using σ and π].

Now, let us be more formal and fix an IMC C = (S,Actτ, ↪→, , s0). For a given

environment IMC Ewith the same action alphabet Actτ, we introduce a composition

C(E) = (C ‖Act E)�Act

where all open actions are hidden, yielding a closed system. Note that the states of C(E)

are pairs (c, e) where c is a state of C and e is a state of E. We consider a scheduler σ of C
and a scheduler π of C(E) respecting σ on internal actions of C. We say that π respects σ,

denoted by π ∈ S(C(E), σ), if for every history h = (c0, e0) t0 · · · tn−1(cn, en) of C(E) the

scheduler π satisfies one of the following conditions:

• π(h) = (c, e) where cn a↪→ c and en a↪→ e (π resolves synchronization)

• π(h) = (cn, e) where en τ↪→ e (π chooses a move in the environment)

• π(h) = (σ(hC), en) where hC = c0t0 · · · tn−1cn (π chooses a move in C according to σ).

Given a set of goal states G ⊆ S and a time bound T ∈ R≥0, the value of compositional

time-bounded reachability is defined as

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
(∗)
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where ENV denotes the set of all IMC with the action alphabet Actτ and GE = G ×
SE where SE is the set of states of E. As for the closed IMC, our goal is to efficiently

approximate this value together with a maximizing scheduler. Before we present an

approximation algorithm based on discretization, we illustrate some of the effects of

the open system perspective.

do

done do’ fix

fail fast

?

1

1 τ

τ

1

20

10

1

interrupt

Example. The figure on the right depicts an

IMC on which we approximate the value (∗) for

T = 2 and G = {done}. From the initial state do,

the system may go randomly either to the target

done or to fail. Concurrently, the external action interrupt may switch the run to the state

?, where the scheduler σ chooses between two successors (1) the state fast allowing fast

but risky run to the target and (2) the state fix that guarantees reaching the target but

takes longer time. The value (∗) is approximately 0.47 and an optimal scheduler goes

to fix only if there are more than 1.2 minutes left. Note that the probability of reaching

the target in time depends on when the external action interrupt is taken. The most

“adversarial” environment executes interrupt after 0.8 minutes from the start.

Results. We now formulate our main result concerning efficient approximation of

the value of compositional time-bounded reachability. In fact, we provide an approxi-

mation algorithm for a restricted subclass of IMC defined by the following two assump-

tions:

Assumption 1. Each cycle contains a Markovian transition.

This assumption is standard over all analysis techniques published for

IMC [GMLS07, KZH+11, HJ08, KKN09, ZN10, GHK+12]. It implies that the probability

of taking infinitely many transitions in finite time, i.e. of Zeno behavior, is zero. This is

a rather natural assumption and does not restrict the modeling power much, since no

real system will be able to take infinitely many transitions in finite time anyway. Fur-

thermore, the assumed property is a compositional one, i.e. it is preserved by parallel

composition and hiding.

Assumption 2. Internal and external actions are not enabled at the same time, i.e. for each state

s, either succe(s) = ∅ or succτ(s) = ∅.

Note that both assumptions are met by the above mentioned example. However, As-

sumption 2 is not compositional; specifically, it is not preserved by applications of the

hiding operator. A stronger assumption would require the environment not to trigger
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external actions in zero time after a state change. This is indeed implied by Assump-

tion 2 which basically asks internal transitions of the component to be executed before

any external actions are taken into account.3 In fact, the reverse precedence cannot be

implemented in real systems, if internal actions are assumed to be executed without

delay. Any procedure implemented in C for checking the availability of external actions

will involve some non-zero delay (unless one resorts to quantum effects). From a techni-

cal point of view, lifting Assumption 2 makes the studied problems considerably more

involved; see Section 6 for further discussion.

Theorem 3.1. Let ε > 0 be an approximation bound and C = (S,Actτ, ↪→, , s0) be an IMC

satisfying Assumptions 1 and 2. Then one can approximate the value of compositional time-

bounded reachability of C up to ε and compute an ε-optimal scheduler in timeO(|S|2 · (λT)2/ε),
where λ is the maximal rate of C and T is the reachability time-bound.

In the remainder of the paper, we prove this theorem and discuss its restrictions.

First, we introduce a new kind of real-time games, called CE games, that are played

on open IMC. Then we reduce the compositional time-bounded reachability of C to

time-bounded reachability objective in the CE game played just on the component C
(see Proposition 4.1). In Section 5, we show how to reduce, using discretization, the

time-bounded reachability in CE games to step-bounded reachability in discrete-time

stochastic games (see Proposition 5.2), that in turn can be solved using simple backward

propagation. Finally, we show, in Proposition 5.3, how to transform optimal strategies

in the discretized stochastic games to ε-optimal schedulers for C.

4 Game of Controller and Environment

In order to approximate (∗), the value of compositional time-bounded reachability, we

turn the IMC C into a two-player controller–environment game (CE game) G. The CE game

naturally combines two approaches to real-time systems, namely the stochastic flow of

time as present in CTMC with the non-deterministic flow of time as present in timed

automata. The game G is played on the graph of an IMC C played by two players:

con (controlling the component C) and env (controlling/simulating the environment).

In essence, con chooses in each state with internal transitions one of them, and env
3To see this one can construct a weak simulation relation between a system violating Assumption 2

and one satisfying it, where any state with both internal and external transitions is split into two: the first

one enabling the internal transitions and a new τ to the second one only enabling the external ones.
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chooses in each state with external (and hence synchronizing) transitions either which

of them should be taken, or a delay te ∈ R>0. Note that, due to Assumption 2, the

players control the game in disjoint sets of states, hence G is a turn-based game. The

internal and external transitions take zero time to be executed once chosen. If no zero

time transition is chosen, the delay te determined by env competes with the Markovian

transitions, i.e. with a random time sampled from the exponential distribution with the

rate E(s). We consider time-bounded reachability objective, so the goal of con is to reach

a given subset of states G before a given time T , and env opposes it.

Formally, let us fix an IMC C = (S,Actτ, ↪→, , s0) and thus a CE game G. A run of

G is again an infinite sequence s0 t0 s1 t1 · · · where sn ∈ S is the n-th visited state and

tn ∈ R≥0 is the time spent there. Based on the history s0 t0 · · · tn−1 sn went through so

far, the players choose their moves as follows.

• If succτ(sn) 6= ∅, the player con chooses a state sτ ∈ succτ(sn).

• Otherwise, the player env chooses either a state se ∈ succe(sn), or a delay te ∈ R>0.
(Note that if succe(sn) = ∅ only a delay can be chosen.)

Subsequently, Markovian transitions (if available) are resolved by randomly choosing a

target state sM according to the distribution P(sn, ·) and randomly sampling a time tM
according to the exponential distribution with rate E(sn). The next waiting time tn and

state sn+1 are given by the following rules in the order displayed.

• If succτ(sn) 6= ∅ and sτ was chosen, then tn = 0 and sn+1 = sτ.

• If se was chosen, then tn = 0 and sn+1 = se.

• If te was chosen then:

– if succM(sn) = ∅, then tn = te and sn+1 = sn;

– if te ≤ tM, then tn = te and sn+1 = sn;

– if tM < te, then tn = tM and sn+1 = sM.

According to the definition of schedulers in IMC, we formalize the choice of con as

a strategy σ : (S×R≥0)∗× S→ S and the choice of env as a strategy π : (S×R≥0)∗× S→
S ∪ R>0. We denote by Σ and Π the sets of all strategies of the players con and env,

respectively. In order to keep CE games out of Zeno behavior, we consider in Π only
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those strategies of the player env for which the induced Zeno runs have zero measure,

i.e. the sum of the chosen delays diverges almost surely no matter what con is doing.

Given goal states G ⊆ S and a time bound T ∈ R≥0, the value of G is defined as

sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
(∗∗)

where Pσ,πG
[
♦≤TG

]
is the probability of all runs of G induced by σ and π and reaching

a state ofG before time T . We now show that the value of the CE game coincides with the

value of compositional time-bounded reachability. This result is interesting and impor-

tant as it allows us to replace unknown probabilistic behaviour with non-deterministic

choices.

Proposition 4.1. (∗) = (∗∗), i.e.

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
= sup

σ∈Σ
inf
π∈Π
Pσ,πG

[
♦≤TG

]
Proof Idea. We start with the inequality (∗) ≥ (∗∗). Let σ ∈ Σ (= S(C)) and let us fix

an environment E together with a scheduler π ∈ S(C(E), σ). The crucial observation is

that the purpose of the environment E (controlled by π) is to choose delays of external

actions (the delay is determined by a sequence of internal and Markovian actions of E

executed before the external action), which is in fact similar to the role of the player env

in the CE game. The only difference is that the environment E “chooses” the delays

randomly as opposed to deterministic strategies of env. However, using a technically

involved argument, we show how to get rid of this randomization and obtain a strategy

π ′ in the CE game satisfying Pσ,π ′G
[
♦≤TG

]
≤ PπC(E)

[
♦≤TGE

]
.

Concerning the second inequality (∗) ≤ (∗∗), we show that every strategy of env can

be (approximately) implemented using a suitable environment together with a sched-

uler π. The idea is to simulate every deterministic delay, say t, chosen by env using

a random delay tightly concentrated around t (roughly corresponding to an Erlang

distribution) that is implemented as an IMC. We show that the imprecision of delays

introduced by this randomization induces only negligible alteration to the value.

5 Discretization

In this section we show how to approximate the value (∗∗) of the CE game up to an

arbitrarily small error ε > 0 by reduction to a discrete-time (turn-based) stochastic game

∆.
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Figure 1: Four gadgets for transforming a CE game into a discrete game. The upper

part shows types of states in the original CE game, the lower part shows correspond-

ing gadgets in the transformed discrete game. In the lower part, the square-shaped,

diamond-shaped and circle-shaped vertices belong to V�, V♦ and V©, respectively. Bi-

nary branching is displayed only in order to simplify the figure.

A stochastic game∆ is played on a graph (V, 7→) partitioned into V�]V♦]V©. A play

starts in the initial vertex v0 and forms a run v0v1 · · · as follows. For a history v0 · · · vi,
the next vertex vi+1 satisfying vi 7→ vi+1 is determined by a strategy σ ∈ Σ∆ of player

� if vi ∈ V� and by a strategy π ∈ Π∆ of player ♦ if vi ∈ V♦. Moreover, vi+1 is chosen

randomly according to a fixed distribution Prob(vi) if vi ∈ V©. For a formal definition,

see, e.g., [FV96].

Let us fix a CE game G and a discretization step δ > 0 that divides the time bound

T into N ∈ N intervals of equal length (here δ = T/N). We construct a discrete-time

stochastic game ∆ by substituting each state of G by a gadget of one or two vertices (as

illustrated in Figure 1).4 Intuitively, the game ∆models passing of time as follows. Each

discrete step “takes” either time δ or time 0. Each step from a vertex of V© takes time δ

whereas each step from vertex of V� ∪ V♦ takes zero time. The first gadget transforms

internal transitions into edges of player � taking zero time. The second gadget trans-

forms Markovian transitions into edges of player© taking time δwhere the probability

4We assume w.l.o.g. that (1) states with internal transitions have no Markovian transitions available

and (2) every state has at least one outgoing transition.This is no restriction since (1) Markovian transi-

tions are never taken in such states and (2) any state without transitions can be endowed with a Marko-

vian self-loop transition without changing the time-bounded reachability.
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p is the probability that any Markovian transition is taken in G before time δ. The third

gadget deals with states with both external and Markovian transitions available where

the player ♦ decides in vertex s in zero time whether an external transition is taken or

whether the Markovian transitions are awaited in s for time δ. The fourth gadget is

similar, but no Markovian transition can occur and from s the play returns into s with

probability 1.

Similarly to (∗) and (∗∗), we define the value of the discrete-time game ∆ as

sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆
[
♦#b≤NG] (∗ ∗ ∗)

where Pσ,π∆
[
♦#b≤NG] is the probability of all runs of ∆ induced by σ and π that reach

G before taking more thanN steps from vertices in V©. According to the intuition above,

such a step bound corresponds to a time bound N · δ = T .

We say that a strategy is counting if it only considers the last vertex and the current

count #b of steps taken from vertices in V©. We may represent it as a function V ×
{0, . . . ,N}→ V since it is irrelevant what it does after more than N steps.

Lemma 5.1. There are counting strategies optimal in (∗ ∗ ∗). Moreover, they can be computed

together with (∗ ∗ ∗) in time O(N|V |2).

We now show that the value (∗∗∗) of the discretized game ∆ approximates the value

(∗∗) of the CE game G and give the corresponding error bound.

Proposition 5.2 (Error bound). For every approximation bound ε > 0 and discretization step

δ ≤ ε/(λ2T) where λ = maxs∈S E(s), the value (∗ ∗ ∗) induced by δ satisfies

(∗ ∗ ∗) ≤ (∗∗) ≤ (∗ ∗ ∗) + ε.

Proof Idea. The proof is inspired by the techniques for closed IMC [M.R10]. Yet, there are

several new issues to overcome, caused mainly by the fact that the player env in the CE

game may choose an arbitrary real delay te > 0 (so env has uncountably many choices).

The discretized game ∆ is supposed to simulate the original CE game but restricts pos-

sible behaviors as follows: (1) Only one Markovian transition is allowed in any interval

of length δ. (2) The delay te chosen by player ♦ (which simulates the player env from

the CE game) must be divisible by δ. We show that none of these restrictions affects the

value.
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ad (1) As pointed out in [M.R10], the probability of two or more Markovian transitions

occurring in an interval [0, δ] is bounded by (λδ)2/2where λ = maxs∈S E(s). Hence,

the probability of multiple Markovian transitions occurring in any of the discrete

steps of ∆ is ≤ ε.

ad (2) Assuming that at most one Markovian transition is taken in [0, δ] in the CE game,

we reduce the decision when to take external transitions to minimization of a lin-

ear function on [0, δ], which in turn is minimized either in 0, or δ. Hence, the

optimal choice for the player env in the CE game is either to take the transitions

immediately at the beginning of the interval (before the potential Markovian tran-

sition) or to wait for time δ (after the potential Markovian transition).

Finally, we show how to transform an optimal counting strategy σ : V× {0, . . . ,N}→
V in the discretized game ∆ into an ε-optimal scheduler σ in the IMC C. For every

p = s0 t0 · · · sn−1 tn−1 sn we put σ(p) = σ(sn, d(t0 + . . .+ tn−1)/δe).

Proposition 5.3 (ε-optimal scheduler). Let ε > 0, ∆ be a corresponding discrete game, and σ

be induced by an optimal counting strategy in ∆, then

(∗) ≤ inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
+ ε

This together with the complexity result of Lemma 5.1 finishes the proof of Theo-

rem 3.1.

6 Discussion and Future Work

In this subsection we argue that lifting Assumption 2 makes analysis considerably more

involved as the studied game may contain imperfect information and concurrent deci-

sions. Let us illustrate the problems on an example.

i ?

yes

no

win

fail
λ

a

τ

τ

τ

a

Consider an IMC depicted on the right hand side.

This IMC violates Assumption 2 in its state no. Let us

fix an arbitrary environment E (controlled by π) and a

scheduler σ. Since internal transitions of E take zero

time, the environment must spend almost all the time in states without internal tran-

sitions. Hence, E is almost surely in such a state when ? is entered. Assume E is in a

state with the (external) action a being available. The scheduler σwins if he chooses the

15



internal transition to yes since the synchronizing transition a is then taken immediately,

and fails if he chooses to proceed to no, as a (reasonable) scheduler π will now force

synchronization on action a. If, otherwise, on entering state ?, E is in a state without the

action a being available, the scheduler σ fails if he chooses yes because a (reasonable)

environment never synchronizes, and wins if he chooses no since the environment E

cannot immediately synchronize and the τ transition is taken. Note that the scheduler

σ cannot observe whether a is available in the current state of E. As this is crucial for

the further evolution of the game from state ?, the game is intrinsically of imperfect

information.

We conjecture that solving even this special case of imperfect information games

is PSPACE-hard. Yet, the complexity might only increase in the number of internal

transitions that can be taken in a row. For systems, where a bound on the length of

internal transition sequences can be assumed, this problem would then still be feasible.

Another possibility of dealing with this issue (that is also interesting on its own) is to

limit the knowledge and power of the environment. In our approach, the environment

knows the scheduler and the current state of the component and, moreover, can choose

whether a synchronizing transition, an internal transition in E, or an internal transition

in C is taken. One could consider giving some of this power either to the scheduler σ

or to a third player resolving the synchronization of C and E who is either random or

non-deterministic.

7 Summary

This paper has discussed the computation of maximal timed bounded reachability for

IMC operating in an unknown IMC environment to synchronize with. All prior analy-

sis approaches considered closed systems, implicitly assuming that external actions do

happen in zero time. Our analysis for open IMC works essentially with the opposite as-

sumption, which is arguably more realistic. We have shown that the resulting stochastic

two-player game has the same extremal values as a CE-game, where the player control-

ling the environment can choose exact times. The latter is approximated up to a given

precision by a discretization approach. The resulting control strategy can be translated

back to a scheduler of the IMC achieving the bound.
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A Proofs

A.1 Notation and preliminaries

For the whole appendix, we fix a IMC C = (S,Actτ, ↪→, , s0) satisfying Assumptions 2

and 1, a set of goal states G, and a time bound T . Without loss of generality, we assume

that the goal states are absorbing, i.e. G ⊆ SM and for every s ∈ G we have P(s, s ′) > 0

only if s ′ ∈ G. We further assume, that there are no Markovian self-loop transition. This

is w.l.o.g. since to any IMC C we can construct an equivalent IMC where intuitively

each state is duplicated and the Markovian self-loops are converted into a pair of tran-

sitions going from a state s into its duplicate s ′ and back from s ′ into s. Formally, C ′ =
(S ′,Actτ, ↪→ ′, ′, s0) where S ′ = S ∪ {s ′ | s ∈ S}, ↪→ ′ = ↪→ ∪ {(s ′, a, s ′′) | (s, a, s ′′) ∈ ↪→},

and ′ = {(s1, r, s2), (s
′
1, r, s2) | (s1, r, s2) ∈ , s1 6= s2}∪ {(s, r, s ′), (s ′, r, s) | (s, r, s) ∈ }.

We denote by Sτ, Se, SM the set of states with only internal, external, and Markovian

transitions available, respectively. By Se+M we denote the set of states with both exter-

nal and Markovian transitions available. From Assumption 2 and from the maximal

progress assumption, we have S = Sτ ] Se ] SM ] Se+M. Furthermore, by λ we denote

the maximal rate of a state in C, i.e. λ = maxs∈S E(s). For the sake of readability, we

will consistently use the notions histories and strategies in the context of CE games and

the notions paths (instead of histories) and schedulers in the context of IMC. The set of

all paths of a IMC C is denoted by Paths(C), the set of all histories of a CE game G is

denoted by Histories(G). For a history h = s0t0s1t1 . . . tn−1sn, we denote by
∑

h the

total time of the history, i.e.
∑n−1
i=0 ti.

Let A be a finite or countably infinite set. A probability distribution on A is a function

f : A → R≥0 such that
∑
a∈A f(a) = 1. The set of all distributions on A is denoted by

D(A). A σ-field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under com-

plement and countable union. A measurable space is a pair (Ω,F) whereΩ is a set called

sample space and F is a σ-field over Ω whose elements are called measurable sets. Given

a measurable space (Ω,F), we say that a function f : Ω→ R is a random variable if the

inverse image of any real interval is a measurable set. A probability measure over a mea-

surable space (Ω,F) is a function P : F → R≥0 such that, for each countable collection

{Xi}i∈I of pairwise disjoint elements of F , we have P
[⋃

i∈I Xi
]

=
∑
i∈IP [Xi] and, more-

over, P [Ω] = 1. A probability space is a triple (Ω,F ,P), where (Ω,F) is a measurable

space and P is a probability measure over (Ω,F). All integrals in the following text

should be understood as Lebesgue integral even when we use Riemann-like notation.
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A.2 Semantics of CE games

Let us formally define the semantics of the CE game G induced by C. We define the σ-

field over the set of histories byF = σ(
⋃∞
n=0 2

S
0⊗B≥00 ⊗· · ·⊗B≥0n−1⊗2Sn) where σ(X) is the

σ-field generated from the set X, the operator ⊗ denotes product σ-field, B≥0 denotes

the Borel σ-field over the set R≥0.
A (randomizing) strategy σ of the controller is a measurable function σ :

Histories(G) → D(S) such that for each history h = s0t0 · · · tn−1sn with succτ(sn) 6= ∅
we have for each s ∈ S that σ(h)(s) > 0 implies s ∈ succτ(sn), i.e. σ can assign posi-

tive probability only to the internal successors of sn. A (randomizing) strategy π of the

environment is a measurable function that assigns to each history a probability mea-

sure over the measurable space (S ∪ R>0, σ(2S ∪ B>0). Furthermore, for each history

h = s0t0 · · · tn−1sn with succe(sn) 6= ∅ it must hold for each s ∈ S that π(h)({s}) > 0

implies s ∈ succe(sn).

We say that a strategy σ ∈ Σ is deterministic if for any history h it holds σ(h)(s) = 1

for some s ∈ S. Similarly, we say that a strategy π ∈ Π is deterministic if for any history

h it either holds π(h)(s) = 1 for some state s ∈ S or it holds π(h)(w) = 1 for some

w ∈ R>0.
For a pair of strategies σ and π and a starting history h0 we define a Markov chain

as follows.

• The state space is the set Histories with its σ-field F ;

• the chain starts in the history h0, i.e. the initial measure µ0 satisfies µ0(A) = 1 if

h0 ∈ A and µ0(A) = 0, otherwise;

• the chain moves according to the following rules expressed by a transition kernel

Pσ,πh0
. Let h = s0t0 · · · tn−1sn be a history. If sn ∈ Sτ, we have for any sn+1 ∈

succτ(sn)

Pσ,πh0
(h, {h0sn+1}) = σ(h)(sn+1)

If s ∈ Se, only the environment chooses the waiting time, for any A ⊆ R>0 it holds

Pσ,πh0
(h, {hwsn | w ∈ A}) = π(h)(A),

and for any sn+1 ∈ succesn it holds

Pσ,πh0
(h, {h 0 sn+1}) = π(h)({sn+1}).
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If s ∈ SM, we have for each sn+1 ∈ S

Pσ,πh0
(h, {hwsn+1 | w ∈ [a, b]}) =

∫b
a

E(sn) · e−E(sn)·x · P(sn, sn+1)dx.

Finally, if s ∈ Se+M, the chain either takes the external transition

Pσ,πh0
(h, {h 0 sn+1}) = π(h)({sn+1}),

or it stays in the same state if the delay picked by the player envoccurs sooner

than any Markovian transition

Pσ,πh0
(h, {hwsn | w ∈ [a, b]}) =

∫
x∈[a,b]

e−E(sn)·xdπ(h),

or it takes a Markovian transition into sn+1 with probability that it occurs sooner

than the delay of the player env

Pσ,πh0
(h, {hwsn+1 | w ∈ [a, b]}) =

∫b
a

E(sn)e
−E(sn)·x · P(sn, sn+1) · π(h)((x,∞))dx.

By Pσ,πG,h0 we denote the probability measure on the set of runs of the Markov chain

defined above. Furthermore, by Pσ,πG we denote the probability measure of the Markov

chain that starts in the initial state s0, i.e. Pσ,πG,s0 .

A.3 Value in the CE game

Some parts of proofs in this section are inspired by [M.R10]. Let ♦≤TG denote the set of

runs that reach the set of goal statesG in time T , i.e. that have a prefix h = s0t0 · · · tn−1sn

such that sn ∈ G and
∑

h ≤ T . Similarly, let ♦≤T≤kG denote the set of runs that reach the

set of goal states in time T and in at most k non-self-loop transitions, i.e. that have a prefix

h = s0t0 · · · tn−1sn such that sn ∈ G,
∑

h ≤ T , and |{i | 0 ≤ i < n, si 6= si+1}| ≤ k. Let

v(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦≤T−tG]

vk(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦

≤T−t
≤k G]

denote the respective values when starting in state swith remaining time T − t.
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We define a higher-order operator Ω : (S × R≥0 → [0, 1]) → (S × R≥0 → [0, 1]) that

characterizes the functions v and vk:

Ω(F)(s, t) =



0 if t > T or s ∈ Se \G

1 if t ≤ T and s ∈ G,

max
s ′∈succτ(s)

F(s ′, t) if t ≤ T and s ∈ Sτ \G,

A(T − t) if t ≤ T and s ∈ SM \G,

min
w≥0,

s ′∈succe(s)

(e−µw · F(s ′, t+w) +A(w))} if t ≤ T and s ∈ Se+M \G,

where µ = E(s) andA(u) =
∫u
0
µe−µx ·

∑
s ′′∈S P(s, s ′′) · F(s ′′, t+ x)dx. Furthermore, let us

denote by f0 : S× R≥0 → [0, 1] a constant zero function.

Lemma A.1 (k-step value). For any k ∈ N0 we have Ωk+1(f0) = vk and vk(s, ·) is a measur-

able function that is continuous on [0, T ].

Proof. By induction on k. For k = 0 the zero-step value v0 is obviously 1 for s ∈ G and

t ≤ T and 0 elsewhere; hence, v0 = f0 and v0 is measurable and continuous on [0, T ].

Let k > 0 and let s ∈ S and t ∈ R≥0. If t > T , then vk(s, t) = 0 because for any σ ∈ Σ
and π ∈ Π the measure of the set ♦≤T−tG is zero For the following we assume that t ≤ T .

• If s ∈ Se \ G, then also vk(s, t) = 0 because for any σ ∈ Σ and a strategy π that

starts by waiting T − t+ 1 the measure of the set ♦≤T−tG is again zero.

• If s ∈ G, then obviously vk(s, t) = 1.

• If s ∈ Sτ \G, we have

vk(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦

≤T−t
≤k G]

= sup
σ∈Σ

inf
π∈Π

∑
s ′∈succτ(s)

σ(s)(s ′) · Pσ,πG,s 0s ′ [♦
≤T−t
≤k−1G]

= sup
ρ∈D(succτ(s))

∑
s ′∈succτ(s)

ρ(s ′) · sup
σ∈Σρ

inf
π∈Π
Pσ,πG,s 0s ′ [♦

≤T−t
≤k−1G],

where Σρ denotes the set of strategies that choose ρ for history s. The linear com-

bination is maximized by giving weight 1 to any maximal element, i.e.

= max
s ′∈succτ(s)

sup
σ∈Σ1s ′

inf
π∈Π
Pσ,πG,s 0s ′ [♦

≤T−t
≤k−1G],
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where 1s ′ is the Dirac distribution that assigns probability 1 to s ′. By Markov

property,

= max
s ′∈succτ(s)

sup
σ∈Σ1s ′

inf
π∈Π
Pσ[s 0],π[s 0]
G,s ′ [♦≤T−t

≤k−1G],

where σ[s 0](h) := σ(s 0 h) behaves in s ′ as σ behaves in s 0 s ′ and similarly for π.

Finally,

= max
s ′∈succτ(s)

sup
σ∈Σ

inf
π∈Π
Pσ,πG,s ′ [♦

≤T−t
≤k−1G],

= max
s ′∈succτ(s)

vk−1(s ′, t) = Ω(vk−1)(s, t) = Ωk+1(f0)(s, t)

The function vk is obviously measurable and continuous on [0, T ].

• If s ∈ SM, we have from the definition of the Markov chain and by the same

arguments as above

vk(s, t) = sup
σ∈Σ

inf
π∈Π

∫∞
0

µ · e−µx ·
∑

s ′∈succM(s)

P(s, s ′) · Pσ,πG,s x s ′ [♦
≤T−t−x
≤k−1 G]dx,

=

∫∞
0

µ · e−µx ·
∑

s ′∈succM(s)

P(s, s ′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s ′ [♦

≤T−t−x
≤k−1 G]dx,

=

∫∞
0

µ · e−µx ·
∑

s ′∈succM(s)

P(s, s ′) · vk−1(s ′, t+ x)dx,

=

∫ T−t

0

µ · e−µx ·
∑

s ′∈succM(s)

P(s, s ′) · vk−1(s ′, t+ x)dx

= Ω(vk−1)(s, t) = Ωk+1(f0)(s, t).

Again, the function vk is measurable and continuous on [0, T ].

• Finally, if s ∈ Se+M, we need to perform a nested induction on the count n of self-

loops performed by strategy π before taking a non-self-loop transition. We denote

by

vk,n(s, t) = sup
σ∈Σ

inf
π∈Πn

Pσ,πG,s [♦
≤T−t
≤k G],
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whereΠm is the set of strategies that start by assigning positive probability to wait-

ing at most m times before taking an external transition with probability one. We

can separate the first decision ρ of π from the rest of the strategy and interchange

with σ since σ cannot influence the first step,

= inf
ρ

sup
σ∈Σ

inf
π∈Πρ∩Πn

Pσ,πG,s [♦
≤T−t
≤k G]︸ ︷︷ ︸

=:vρk,n(s,t)

and denote the outcome of ρ w.r.t. next k steps by vρk,n. Let n = 0. We analyze

the outcomes of deterministic decisions ρ, i.e. ρ[{s ′}] = 1 for some s ′ ∈ succe(s). It

holds

vρk,0(s, t) = sup
σ∈Σ

inf
π∈Πρ∩Πn

Pσ,πG,s 0 s ′ [♦
≤T−t
≤k−1G] = sup

σ∈Σ
inf
π∈Π
Pσ,πG,s ′ [♦

≤T−t
≤k−1G] = vk−1(s

′, t).

By this we obtain that vk,0 = mins ′∈succe(s) vk−1(s ′, t) since by randomizing over

finite number of successor one cannot achieve less then the minimum. Let n = 1.

We again start with deterministic decisions ρ. If ρ[{s ′}] = 1 for some s ′ ∈ succe(s),

we also get vρk,1(s, t) = vk−1(s
′, t). If ρ[{w}] = 1 for some w > 0, it holds

vρk,1(s, t) = sup
σ∈Σ

inf
π∈Πρ∩Π1

(
e−µw · Pσ,πG,sw s[♦

≤T−t−w
≤k G] +∫w

0

µe−µx
∑

s ′∈succM(s)

P(s, s ′) · Pσ,πG,s x s ′ [♦
≤T−t−x
≤k−1 G]dx

)
= e−µw · sup

σ∈Σ
inf
π∈Π0
Pσ,πG,s [♦

≤T−t−w
≤k G] +∫w

0

µe−µx
∑

s ′∈succM(s)

P(s, s ′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s ′ [♦

≤T−t−x
≤k−1 G]dx

= e−µw · min
s ′∈succe(s)

vk−1(s ′, t+w)+∫w
0

µe−µx
∑

s ′∈succM(s)

P(s, s ′) · vk−1(s ′, t+ x)dx.

We denote by ρw the deterministic decision for waiting time w > 0. Mixing the

deterministic waiting decision cannot yield better outcome than infw>0 vρwk (s, t)

since
∫
x>0
f(x)dρ ≥ infx>0 f(x) for any probability measure ρ over positive real

numbers and for any real measurable function f. Hence,

vk,1(s, t) = min{ min
s ′∈succe(s)

vk−1(s ′, t), inf
w>0

vρwk,1(s, t)}
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= inf
w≥0,s ′∈succe(s)

(e−µw · vk−1(s ′, t+w) +A(w)) .

From the continuity of vk−1 on [0, T ] and from the fact that for any w,w ′ > T we

have vk−1(s ′, w) = vk−1(s ′, w ′) and A(w) = A(w ′) the function attains minimum;

it holds

= min
w≥0,s ′∈succe(s)

(e−µw · vk−1(s ′, t+w) +A(w))

= Ω(vk−1)(s, t) = Ωk+1(f0)(s, t).

At last, let n > 1. For deterministic decision ρ[{s ′}] = 1 for some s ′ ∈ succe(s), we

again get vρk,n(s, t) = vk−1(s
′, t). If ρ[{w}] = 1 for some w > 0, we get

vρk,n(s, t) = e−µw · sup
σ∈Σ

inf
π∈Πn−1

Pσ,πG,s [♦
≤T−t−w
≤k G] +∫w

0

µe−µx
∑

s ′∈succM(s)

P(s, s ′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s ′ [♦

≤T−t−x
≤k−1 G]dx

= e−µw · vk,n−1(s, t+w) +

∫w
0

µe−µx
∑

s ′∈succM(s)

P(s, s ′) · vk−1(s ′, t+ x)dx

= e−µw · inf
w ′≥0,s ′∈succe(s)

(
e−µw ′ · vk−1(s ′, t+w+w ′) +A(w ′)

)
+A(w)

= inf
w ′≥0,s ′∈succe(s)

(
e−µ(w+w ′) · vk−1(s ′, t+w+w ′) + +A(w+w ′)

)
.

Hence, we again obtain

vk,n(s, t) = min{ min
s ′∈succe(s)

vk−1(s ′, t), inf
w>0

vρwk,n(s, t)}

= inf
w≥0

inf
w ′≥0,s ′∈succe(s)

(
e−µ(w+w ′) · vk−1(s ′, t+w+w ′) +A(w+w ′)

)
= inf

w≥0,s ′∈succe(s)

(
e−µ(w) · vk−1(s ′, t+w) +A(w)

)
= min

w≥0,s ′∈succe(s)

(
e−µ(w) · vk−1(s ′, t+w) +A(w)

)
= Ωk+1(f0)(s, t)

Now we show that it suffices to consider strategies from
⋃∞
n=0Πn. Let π be any

non-Zeno strategy, i.e. for any σ we have that Pσ,πG,s [Z] = 0 where Z is the set

of Zeno runs. Then also Pσ,πG,s [X∞] = 0 where X∞ is the set of runs with infinite

amount of self-loop transitions before any non-self-loop transition. For any ε > 0

there must be an amount of self-loop transitions k ∈ N0 such that Pσ,πG,s [Xk] ≤
ε. Hence, a strategy π ′ ∈ Πk that emulates π in first k self-loop transitions and
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then takes an arbitrary external transition (and also emulates π in all following

transitions) guarantees the same value as π up to ε. Hence, limn→∞ vk,n = vk.

The function vk is again measurable and continuous on [0, T ].

Lemma A.2 (Tail bound on steps). For each ε > 0 there is k ∈ N such that for every pair of

strategies σ ∈ Σ, π ∈ Π we have

Pσ,πG (♦≤T (G) \ ♦≤T≤k(G)) ≤ ε

Proof. The proof is based on the Assumption 1 and on a tail bound for Poisson distri-

bution. From the Assumption 1, at least one transition on any cycle in Markovian. This

provides a bound on number of cycles that can be traversed: for any ε > 0 there is k ′

such that Pr[X > k ′] < ε for a random variable X ∼ Pois(λ · T) distributed according to

the Poisson distribution with rate λ · T .

Let n ≤ |S| be the maximal length of a cycle in the state space. We can set k := k ′ · n
and get the desired property.

Lemma A.3 (Value). The function v is a fixed point of the operatorΩ.

Proof. From Lemma A.2 we get that vk uniformly converges to v for k → ∞. From the

measurability of vk from Lemma A.1 we immediately get that v is measurable. The fact

that v is a fixed point follows from the fact that for any s ∈ S and t ∈ R≥0 it holds

v(s, t) = lim
k→∞ vk(s, t) = lim

k→∞ vk+1(s, t)

which is from Lemma A.1 and from continuity ofΩ equal to

= lim
k→∞Ω(vk)(s, t) = Ω( lim

k→∞ vk)(s, t)

= Ω(v)(s, t)

Lemma A.4. Let us fix δ > 0 such that T = δn for some n ∈ N. The function v satisfies for

any k ∈ N0 the following. First, v(s, kδ) = 0 if kδ > T or s ∈ Se, and v(s, kδ) = 1 if s ∈ G
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and kδ ≤ T . Second, for any s 6∈ G and kδ ≤ T it holds

v(s, kδ) =



max
s ′∈succτ(s)

v(s ′, kδ) if s ∈ Sτ,

A(δ) + e−µδ · v(s, (k+ 1)δ) if s ∈ SM,

min

(
A(δ) + e−µδ · v(s, (k+ 1)δ),

min
s ′∈succe(s),
0≤w≤δ

(e−µw · v(s ′, kδ+w) +A(w))

)
if s ∈ Se+M,

where µ = E(s) and A(u) =
∫u
0
µe−µx ·

∑
s ′′∈S P(s, s ′′) · v(s ′′, kδ+ x)dx.

Proof. From Lemma A.3 we immediately get that v(s, kδ) = 0 if kδ > T or s ∈ Se;

v(s, kδ) = 1 if s ∈ G and kδ ≤ T ; and v(s, kδ) = maxs ′∈succτ(s) v(s ′, kδ) if s ∈ Sτ \ G and

kδ ≤ T . Now let s ∈ SM \G and kδ ≤ T . It holds that

v(s, kδ) =

∫ T−t

0

µe−µx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x)dx

which can be rewritten by splitting the integral and further by substituting x + δ for x

as

= A(δ) +

∫ T−t

δ

µe−µx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x)dx

= A(δ) +

∫ T−t−δ

0

µe−µ(x+δ) ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x+ δ)dx

= A(δ) + e−µδ ·
∫ T−t−δ

0

µe−µx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x+ δ)dx

= A(δ) + e−µδ · v(s, (k+ 1) + δ)

Finally, for s ∈ Se+M \G and kδ ≤ T , it holds

v(s, kδ) = min
w≥0,s ′∈succe(s)

(e−µw · F(s ′, t+w) +A(w))

= min{ min
s ′∈succe(s),w≥δ

(e−µw · v(s ′, kδ+w) +A(w)) ,

min
s ′∈succe(s),0≤w≤δ

(e−µw · v(s ′, kδ+w) +A(w))}.

In the first line we can substitute w+ δ for w and yield similarly to the previous case

= min{A(δ) + e−µδ · v(s, (k+ 1)δ),

min
s ′∈succe(s),0≤w≤δ

(e−µw · v(s ′, kδ+w) +A(w))}.
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We say that a strategy ρ ∈ Σ ∪ Π is total time positional if for any two histories h =

s0t0 · · · tn−1sn and h ′ = s ′0t
′
0 · · · t ′m−1s

′
m with sn = s ′m and

∑
h =

∑
h ′ it holds ρ(h) =

ρ(h ′). We denote by ρ(s, t) the decision of a total time positional strategy ρ for any

history h with
∑

h = t that ends with state s. Furthermore, we say that a deterministic

total time positional strategy π of the player envis consistent if it satisfies the following

implication. Let s ∈ S and t ≤ T . If π(s, t) = w for w > 0, we have for any y < w that

π(s, t + y) = w − y and either the strategy waits beyond the bound T , i.e. t + w > T

or it then chooses a transition, i.e. π(s, t + w) = s ′ for some s ′ ∈ succe(s). For any

deterministic total time positional strategy σ of the player conwe say that it is consistent.

For the following lemma, let Σ ′ and Π ′ denote the set of consistent strategies.

Lemma A.5. Consistent strategies suffice for both players, i.e.

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π ′
Pσ,πG [♦≤TG] = sup

σ∈Σ ′
inf
π∈Π
Pσ,πG [♦≤TG].

Proof. Let us define a pair of consistent strategies σ∗ and π∗ using v as follows. Let us

fix an arbitrary linear order � over S. For any state s and total time t ∈ R≥0

• the strategy σ∗ chooses the minimal state s ′ ∈ succτ(s) w.r.t. � out of those that

maximize v(s ′, t), and an arbitrary state if succτ(s) = ∅;

• the strategy π∗ is defined by the following rules. If succe(s) = ∅, π∗ chooses the

delay T + 1− t. Otherwise, let

(s ′, w) = arg min
s ′∈succe(s),w≥0

e−µw · v(s ′, t+w) +

∫w
0

µe−µx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, t+ x)dx.

(1)

where the state s ′ is minimal w.r.t. � if there are more states that minimize the

equation above. The strategy π∗ then chooses the state s ′ if w = 0; and π∗ chooses

the delay w if w > 0.

Clearly, σ∗ and π∗ are total time positional and deterministic. By the Markov property

of the equation that π∗ minimizes, it is easy to show that π∗ is consistent.

Now, let ε > 0. We show that σ∗ and π∗ are ε-optimal. Observe that it suffices

for showing that both strategies are optimal. Indeed, it follows immediately since we

fix ε arbitrarily. Let σ(s,t) and π(s,t) denote some strategies that are (ε/2)-optimal w.r.t.

the value v(s, t). For any n > 0, we define strategies σn and πn as follows. Let h =

s0t0 · · · tk−1sk be a history.
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• We set σn(h) = σ∗(h) and πn(h) = π∗(h) if there are ≤ n non-self-loop transition in

h (i.e., σn and πn behave as σ∗ and π∗ in the first n steps, respectively).

• Otherwise, we set σn(h) = σ(sm,t)(h
′′) and πn(h) = π(sm,t)(h

′′) where t =
∑

h ′,

h ′ = s0t0 · · · tm−1sm is the shortest prefix of h with n non-self-loop transitions, and

h ′′ = smtm · · · tk−1sk be the remaining part of h (i.e., σn and πn then behave as an

ε-optimal strategy).

Claim A.6. For any n ∈ N0, any s ∈ S, and any t ∈ R≥0 it holds

inf
π∈Π
Pσn,πG,s [♦≤T−tG] ≥ v(s, t) − ε,

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] ≤ v(s, t) + ε.

Proof. By induction on n. The strategies σ0 and π0 behave directly as ε-optimal strate-

gies yielding the claim. Let n > 0. For t > T , s ∈ G or s ∈ Se, the claim is straightfor-

ward. Otherwise:

• If s ∈ Sτ, let s ′ = σn(s). We get

inf
π∈Π
Pσn,πG,s [♦≤T−tG] = inf

π∈Π
Pσn−1,π
G,s ′ [♦≤T−tG] ≥ v(s ′, t) − ε = v(s, t) − ε,

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] = max

s ′∈succτ(s)
sup
σ∈Σ
Pσ,πn−1

G,s ′ [♦≤T−tG]

≥ max
s ′∈succτ(s)

v(s ′, t) − ε = v(s, t) − ε.

• If s ∈∈ SM, let µ = E(s). We have

inf
π∈Π
Pσn,πG,s [♦≤T−tG] =

∫ T−t

0

µe−µx ·
∑

s ′∈succM(s)

P(s, s ′) inf
π∈Π
Pσn−1,π
G,s ′ [♦≤T−t−xG]dx

≥
∫ T−t

0

µe−µx ·
∑

s ′∈succM(s)

P(s, s ′)(v(s ′, t+ x) − ε)dx

≥v(s, t) − ε.

and analogously for supσ∈ΣP
σ,πn
G,s [♦≤T−tG].

• Finally, if s ∈∈ SM+e, let (s ′, w) be the successor state and waiting time minimizing

(1) and µ = E(s). We have

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] = e−µw sup

σ∈Σ
Pσ,πn−1

G,s ′ [♦≤T−t−wG]+
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∫w
0

µe−µx
∑
s ′′∈S

P(s, s ′′) sup
σ∈Σ
Pσ,πn−1

G,s ′′ [♦≤T−t−xG]dx

≤ e−µw(v(s ′, t+w) + ε)+∫w
0

µe−µx
∑
s ′′∈S

P(s, s ′′)(v(s ′′, t+ x) + ε)dx

≤ v(s, t) + ε

For infπ∈ΠPσn,πG,s [♦≤T−tG], it does not depend on σn in the first step (analogously

to supσ∈ΣP
σ,πn
G,s [♦≤T−tG] for s ∈ Sτ). Therefore, it can be easily shown by similar

arguments as in Lemma A.1.

We conclude the proof of the lemma by a simple observation. Notice that for any π ∈ Π

Pσn,πG [♦≤TG] = Pσn,πG [♦≤T≤nG ] X] = Pσn,πG [♦≤T≤nG] +Pσn,πG [X] = Pσ∗,πG [♦≤T≤nG] +Pσn,πG [X]

where X = ♦≤TG \ ♦≤T≤nG. Since from Lemma A.2, Pσn,πG [X] → 0 as n → ∞, we get that

Pσn,πG [♦≤TG]→ Pσ∗,πG [♦≤TG]. Hence, there is n such that

inf
π∈Π
Pσ∗,πG,s [♦≤TG] ≥ inf

π∈Π
Pσn,πG,s [♦≤TG] − ε/2 ≥ v(s0, t) − ε.

It proves that σ∗ is ε-optimal, and analogously that π∗ is ε-optimal, concluding the proof.

A.4 Proof of Proposition 4.1

By Lemma A.5 we can slightly abuse the notation and for the rest of the appendix denote

by Σ and Π the set of deterministic strategies.

Proposition 4.1. (∗) = (∗∗), i.e.

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
= sup

σ∈Σ
inf
π∈Π
Pσ,πG

[
♦≤TG

]

Proof. Firstly, we prove the inequality (∗) ≥ (∗∗). This amounts to showing that an

arbitrary environment E can be “simulated” by the player envin the CE game. Formally,

it is sufficient to prove
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∀σ ∈ Σ ∃σ ′ ∈ S(C) ∀E ∈ ENV ∀π ∈ S(C(E), σ ′) ∃πE ∈ Π :

PπC(E)

[
♦≤TGE

]
≥ Pσ,πEG

[
♦≤TG

]
(♥)

Note that every strategy σ of the player conis actually also a scheduler for C. Thus we

set σ ′ := σ and then for every environment E and its scheduler π, we give a strategy πE
of the player envthat makes “equivalent” decisions as π in the “equivalent” history. We

then prove that πE guarantees the same value as π does.

The idea of the simulation is the following. Whenever π synchronizes on an external

action a, πE chooses a. Whenever Ewaits with a rate λ, πE chooses to wait, too. Here we

use randomizing strategies so that we can combine all waiting times t ∈ R>0 with the

exponential distribution with rate λ. In other words, πE simulates the random waiting

of E using randomizing (which we can consider due to Lemma A.5). One can view this

kind of randomizing strategies as strategies where the co-domain contains not only R>0
but also exponential distributions and we will use this notation.

Let thus σ, E, π be arbitrary but fixed. In the following, we define πE through a

function WC : Histories(G) → Paths(C(E)) transforming the histories of the CE game

into paths of C(E), which πE uses to ask what πwould do. Since E can have probabilistic

branching, we need to pick one of possibly more paths of C(E) corresponding to the

history of the simulating play in G. We will pick one where the future chances are the

best for the environment, i.e. worst for the time bounded reachability, hence WC for the

“worst case”.

The functions πE and WC are defined inductively and only on the reachable histories;

one can define them arbitrarily elsewhere. We start with WC(sC0) := (sC0 , s
E
0 ). For history

h with WC(h) ending in (c1, e1), we first define what π does after a (possibly empty)

sequence of internal steps in E. Formally, let n ∈ N be the greatest such that there

is a sequence (c1, e1), . . . , (cn, en) where π(WC(h)(c2, e2) · · · (ci, ei)) = (ci+1, ei+1) and

ci = c1 and ei τ↪→ ei+1 for i < n. If n = 1 then (c2, e2) · · · (cn, en) is empty. Depending on

the type of the transition between (cn, en) and (c, e) := π
(
WC(h)(c2, e2) · · · (cn, en)

)
, we

define πE(h) as follows:

• If either cn a↪→ c and en a↪→ e for some a ∈ Act, /* external transition */

or cn τ↪→ c and en = e /* internal transition in C */

then πE(h) := c.

The new history is then h ′ = h 0 c and we set WC(h ′) :=

WC(h)(c2, e2) · · · (cn, en)(c, e).
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• Else /* only Markovian transition(s) are enabled and π[σ] is thus ignored*/

– if succM(en) = ∅ then πE(h) := T + 1; /* E is blocked */

the new history is then either longer than T if no Markovian transition from

cn occurs before T , or else a Markovian transition occurs after t still before T

and we set h ′ = h t cM given by the respective cM ∈ succM(cn), and further

WC(h ′) := WC(h)(c2, e2), . . . , (cn, en)(cM, en);

– else πE(h) := Exp(E(e)); /* Ewaits */

then either a Markovian transition c cM happens before t, in which case h ′

and WC(h ′) are defined as in the previous case; or else pick arbitrary eM ∈
succM(en) minimizing

PπC(E)

[
♦≤TGE

∣∣WC(h ′)
]

where h ′ := h t cn and WC(h ′) := WC(h)(c2, e2), . . . , (cn, en)(cn, eM).

Lemma A.8. For every σ ∈ S(C), E ∈ ENV, π ∈ S(C(E), σ), we have

PπC(E)

[
♦≤TGE

]
≥ Pσ,πEG

[
♦≤TG

]
Proof. If there are no probabilistic choices in E then the values are the same. Indeed, the

only difference of the simulating probabilistic space to the original one is that whenever

there is a probabilistic choice, the environment is always “lucky”. Since the minimum

of elements is never greater than their affine combination, the result follows.

Formally, we proceed as follows.

Firstly, we define a measure PE,πG on infinite histories of G directly induced by E and

π. As opposed to πE, the probabilistic choices of the environment are reflected here. Let

RealStep : Paths(C(E))→ Histories(G) project all internal transitions of the environment

out, i.e. it maps a run (c0, e0)t0(c1, e1)t1 · · · to a run c0 t0 · · · where each ci ti is omitted

whenever ci = ci−1 and ei−1 τ↪→ ei. Then we define PE,πG := PπC(E) ◦RealStep−1. Clearly, as

τ transitions take no time we have5

PπC(E)[♦
≤TGE] = PE,πG [♦≤TG]

Secondly, for i ∈ N0, consider the set Historiesi ⊆ Histories(G) of histories of length

i, i.e. after the ith step is taken. Let pi ∈ D(Historiesi) denote the transient probability
5Note that E and π[σ] do not induce any strategy that would copy the IMC behavior completely. For

this, one would need the notion of a strategy with a stochastic update, i.e. a strategy that can change its

“state” randomly and thus model where in E the original path currently is.
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measure according to PE,π[σ]
G after i steps. Further let ri : Historiesi → [0, 1] be given by

ri(h) = PE,πG [♦≤TGE | h]. Clearly, as states of G are absorbing we have

PE,πG [♦≤TGE] =

∫
ridpi

Thirdly, let qi ∈ D(Historiesi) be the transient probability measure according toPσ,πEG

after the ith step is taken. A simple induction with case distinction from the definition

of πE reveals that ∫
ridpi ≥

∫
ridqi

Indeed, all but one case preserve equality. The only interesting case is the Markovian

transition in E. As the minimum of elements is never greater than their affine combina-

tion, we obtain the desired inequality.

Finally, it remains to prove that

lim
i→∞
∫

ridqi = Pσ,πEG [♦≤TG]

i.e. that the gains of the gradual replacements of the strategy converge to the gain of the

limiting strategy. This follows from ri(h) being zero or one for each path h longer than

T only depending on the state at time T , and from the fact that the set of runs that never

exceed T is of zero measure due to Assumption 1.

The previous lemma proves (♥) by which the proof of (∗) ≥ (∗∗) is concluded.

Secondly, we prove the inequality (∗∗) ≥ (∗). We can divide the proof in three

steps: (a) we show that in the CE game grid strategies are sufficient for both players;

(b) this result is further employed in showing that exponential strategies are sufficient

for the player env; furthermore, (c) any exponential strategy of the player envcan be

straightforwardly simulated by a specific environment and scheduler in the IMC. Let

us first define the necessary notions.

We say that a strategy is a grid strategy on a grid of size δ > 0 if

• it decides only according to the current state and the integer k such that the total

time of the history belongs to the interval [kδ, (k + 1)δ), i.e. for any two histories

h = s0t0 . . . tn−1sn and h ′ = s ′0t
′
0 . . . t

′
m−1s

′
m with sn = s ′m and

∑
h,
∑

h ′ ∈ [kδ, (k+

1)δ) for some k ∈ N0 we have σ(h) = σ(h ′); and

• it is either a strategy of the player conor it chooses waiting times only on the δ-

grid, i.e. for any history h = s0t0 . . . tnsn the strategy σ either chooses an action or

a time step tn+1 such that
∑

h + tn+1 = kδ for some k ∈ N.
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Furthermore, for λ ∈ Rwe say that a strategy π of the player envis exponential with rate

λ if

• it chooses to wait solely with the exponential distribution with rate λ;

• for any history h = s0t0 . . . tnsn with n > 0, tn > 0, and sn 6= sn−1 it chooses to

wait;

• for other histories it behaves as a grid strategy for some δ > 0, i.e. we have σ(h) =

σ(h ′) for any two histories h = s0t0 . . . tn−1sn and h ′ = s ′0t
′
0 . . . t

′
m−1s

′
m with

– either n = m = 0 or tn−1 = t ′m−1 = 0 or sn = sn−1 = s ′m = s ′m−1, and

/* the conditions above negated */

– sn = s ′m and
∑

h,
∑

h ′ ∈ [kδ, (k+ 1)δ) for some k ∈ N0. /* grid strategy */

Intuitively, a λ-exponential strategy cannot take an action right after a Markovian

transition (resulting in sn 6= sn−1 and tn−1 > 0). The set of all grid strategies is denoted

by Σ# and Π#, the set of all λ-exponential strategies is denoted by Πλ.

Lemma A.9. Grid strategies are sufficient for both players, i.e.

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ#

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π#
Pσ,πG [♦≤TG]

Proof. The grid strategies closely correspond to the counting strategies in the discretized

game ∆. Therefore, we do the technical work on this lemma in Section A.8. Denoting

the three values by (1), (2), and (3), observe that (2) ≤ (1) and (1) ≤ (3) hold trivially.

As regards (1) ≤ (2), we denote by Π#,δ the set of grid strategies on a grid of size δ.

Lemma A.16 implies for any ε > 0 and any δ ≤ 2ε/(λ2T)

vδ(s0, 0) ≤ sup
σ∈Σ#,δ

inf
π∈Π
Pσ,πG [♦≤TG],

which combined with the first part of Lemma A.18 results in

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] ≤ sup

σ∈Σ#,δ

inf
π∈Π
Pσ,πG [♦≤TG] + ε,

which proves the inequality by taking ε → 0. Similarly for (3) ≤ (1) because we have

by combining the second part of Lemma A.18 with the first part of Lemma A.16

sup
σ∈Σ

inf
π∈Π#
Pσ,πG [♦≤TG] ≤ sup

σ∈Σ
inf
π∈Π
Pσ,πG [♦≤TG] + ε.
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Lemma A.10. Exponential strategies for the player envare sufficient against grid strategies, i.e.

for any grid strategy σ we have

inf
π∈Π#
Pσ,πG [♦≤TG] = inf

λ∈R>0,πλ∈Πλ
Pσ,πλG [♦≤TG]

Proof. We fix arbitrary strategies σ ∈ Σ# and π ∈ Π# of the same grid size. We need to

find a sequence of strategies πλ for any λ such that

Pσ,πG [♦≤TG] ≥ lim
λ→∞Pσ,πλG [♦≤TG].

For any λ > 0, we define πλ(h) for h = s0t0 · · · tn−1sn using π as follows. Intuitively,

if π chooses to wait for time t and then makes action a, the simulating strategy πλ
repeatedly waits for random time with exponential distribution until the sum of the

random waiting times exceeds t and then makes action a; the larger the rate λ, the more

precise is this simulation. Notice that the history of the play with strategy πλ contains a

lot of waiting steps that are not in the history of the play with strategy π. Therefore, we

need a mapping destutter that removes these superfluous waiting steps. We define it

inductively by destutter(s0) = s0 and

destutter(h ′ ts t ′s ′) =

destutter(h ′ ts) t ′s ′ if s 6= s ′; and

destutter(h ′ ts) if s = s ′.

Notice that the second case corresponds to the situation when the last step is the waiting

step of the strategy πλ or any self-loop transition.

Furthermore, let a ′ be the first action taken by π at total time t ′ for history

destutter(h) if no Markovian transition occurs (notice that strategy π may decide to

wait subsequently for several times before it chooses an action; a ′ is the first action

taken by π if none of the waiting is interrupted by a Markovian transition). We finally

set

πλ(h) =

Exp(λ) if either
∑

h < t ′ or both tn−1 > 0 and sn 6= sn−1;

a ′ if
∑

h ≥ t ′ and either tn−1 = 0 or sn = sn−1.

where Exp(λ) denotes the exponential distribution with rate λ. Notice that the strategy

πλ is from definition λ-exponential.

We now define a set of runs Xλ in the game with πλ where the imprecision in the

simulation does not cause any difference with respect to the time bounded reachability.

Let δ > 0 be the grid size of σ and π. A run in the CE game with strategies σ, πλ belongs

to Xλ if for all k ∈ {0, 1, . . . , T/δ} we have that
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• no non-self-loop transition occurs at the total time neither in the interval [kδ, kδ+

δ/
√
λ] nor in the interval [(k+ 1)δ− δ/

√
λ, (k+ 1)δ].

• the first transition after total time kδ is a self-loop transition and occurs in the

interval [kδ, kδ+ δ/
√
λ];

The proof of the lemma is concluded by the following claim.

Claim A.11. For λ→∞ we have

Pσ,πλG [Xλ] → 1 (2)

Pσ,πλG [♦≤TG | Xλ] → Pσ,πG [♦≤TG] (3)

Proof. As regards (2), we deal with the conditions on runs in Xλ one by one. First, notice

that the Lebesgue measure of all the forbidden intervals tend to 0 as λ goes to infinity;

hence, the probability of a Markovian transition occurring in any such interval tends to

0. Second, we can underestimate the probability of Xλ by considering only the waiting

transitions of πλ as self-loops. The probability that the waiting transition occurs in each

such interval can be bounded by(
1− eλ·δ/

√
λ
)T/δ

=
(
1− e

√
λδ
)T/δ → 1

since T/δ is constant and e
√
λδ → 0 as λ→∞.

As regards (3), notice that the delay caused by the exponential simulation does not

qualitatively change the behavior. Namely, under the condition of Xλ,

• any transition made by π is simulated by πλ at most δ/
√
λ later;

the player concannot interfere meanwhile because if there is an external transition

enabled, there cannot be any internal transitions enabled by the Assumption 2;

• also no Markovian transition occurs meanwhile;

• the decision of the players after the delayed transition are the same as in the orig-

inal play, since both players have grid strategies.

The change is only quantitative because we limit the Markovian transitions, but this

change tends to zero as the probability of the set we condition by goes to one.

Lemma A.12. An exponential strategy in G can be simulated by an IMC environment of C, i.e.

for any scheduler σ we have

inf
λ∈R>0,π ′∈Πλ

Pσ ′,π ′G ′ [♦≤TG] ≥ inf
E∈ENV,π∈S(C(E))

Pπ[σ]
C(E)[♦

≤TGE]
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Proof. We fix an arbitrary scheduler σ and use the same strategy σ (observe that a sched-

uler has the same type as a strategy of the player con). Furthermore, we fix an arbitrary

λ ∈ R>0 and a λ-exponential strategy π ′. We choose E to be a two-state environment

with rate λ depicted below and set π to be strategy that in a state (c, ed) chooses the

transition to (c, ew) if π ′ chooses exponential waiting, and that chooses the transition

to (c ′, ed) if π ′ chooses c ′ (as a result of a synchronization over some external action a,

taking the self-loop in E).

ed ew

Act

τ

λ

Formally, for a path p = (c0, e0) t0 (c1, e1) t1 · · · tn−1 (cn, en)

where each ci is the state of the IMC component and each ei ∈
{ed, ew} is the state of E, we set

• π(p) = (cn, ew) if π ′(proj1(p)) chooses exponential waiting,

• π(p) = (cn+1, ed) if π ′(proj1(p)) chooses cn+1 ∈ succe(cn)

where proj1 : Paths(C(Eλ)) → Histories(G ′) is the first projection of the path (leaving

out the states of the environment).

Again, it remains to show that

Pσ ′,π ′G ′ [♦≤TG] = Pπ[σ]
C(E)[♦

≤TGE]

The key observation is that any path ending with a state of the form (c, ew) where

the scheduler π cannot do anything is mapped by proj1 on a history where the λ-

exponential strategy must wait. Furthermore, in all other situations the decisions of

the schedulers and strategies coincide w.r.t. proj1. Again, it is easy to see that for any

measurable set of runs X in G we have Pσ ′,π ′G [X] = Pσ,πC(Eλ)[proj
−1
1 (X)].

Finally, the proof of (∗∗) ≥ (∗) follows easily from Lemmata A.9, A.10, and A.12

since we have

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ#

inf
π∈Π#
Pσ,πG [♦≤TG] = sup

σ∈Σ#

inf
λ∈R>0,πλ∈Πλ

Pσ,πλG [♦≤TG]

≥ sup
σ∈Σ

inf
E∈ENV,π∈S(C(E))

Pπ[σ]
C(E)[♦

≤TGE]

A.5 Value preservation under uniformization

We say that a game G is uniform if all the states with Markovian transitions have the

maximal rate λ, i.e. every s ∈ SM ∪Se+M satisfies E(s) = λ. After showing that the value

of C(E) equals the value of G we define a uniformized game G ′ with value equal to G.
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Recall that we assume that there are no Markovian self-loops in G. The game G ′ is

obtained by adding to each state s ∈ SM∪Se+M with E(s) < λ a Markovian self-loop with

rate λ − E(s) yielding an uniform game. The game now contains Markovian self-loops

which is not an issue for the following sections.

Lemma A.13.

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π
Pσ,πG ′ [♦≤TG]

Proof. Recall that thanks to Lemma A.5 it is sufficient to consider consistent strategies.

For the rest of the proof, let Σ and Π denote consistent strategies. Intuitively, the val-

ues equal since the decision of same strategies in both games are completely the same

(thanks to the consistency) and the resulting Markov chains have the same probabilities

to reach the target by standard arguments.

More formally, we denote by E and P the total rate function and the probability

matrix of G ′, by E− and P− the total rate function and the probability matrix of G. It is

sufficient to show that the k-step values coincide in the two games.

For k = 0 it is the same as in Lemma A.1. Let k > 0 and s ∈ SM. We proceed by

nested induction on the count n of Markovian self-loops that occur before any non-self-

loop transition. We denote by v ′k,n(s, t) the k-step value of G ′ conditioned by the event

that at most n Markovian self-loops precede the first non-self-loop transition; for n = 0,

we have directly from the definition of the Markov chain .

v ′k,0(s, t) = sup
σ∈Σ

inf
π∈Π

∫∞
0

E−(s) · e−E−(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · Pσ,πG ′,s x s ′ [♦
≤T−t−x
≤k−1 G]dx

=

∫∞
0

E−(s) · e−E−(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG ′,s x s ′ [♦

≤T−t−x
≤k−1 G]dx

=

∫∞
0

E−(s) · e−E−(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x)dx

=

∫ T−t

0

E−(s) · e−E−(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x)dx

= vk(s, t).

For n > 0, we have

v ′k,n(s, t) = sup
σ∈Σ

inf
π∈Π

∫∞
0

E(s) · e−E(s)x ·
( ∑
s ′∈succM(s),s ′ 6=s

P(s, s ′) · Pσ,πG ′,s x s ′ [♦
≤T−t−x
≤k−1 G]

+ P(s, s) · Pσ,πG ′,s x s[♦
≤T−t−x
≤k G]

)
dx,
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=

∫∞
0

E(s) · e−E(s)x ·
∑

s ′∈succM(s),s ′ 6=s

P(s, s ′) · vk−1(s ′, t+ x)dx +∫∞
0

E(s) · e−E(s)x · P(s, s) · v ′k,n−1(s, t+ x)dx.

By the induction hypothesis, v ′k,n−1(s, t+ x) = vk(s, t+ x); hence,

=

∫∞
0

E(s) · e−E(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · E−(s)

E(s)
· vk−1(s ′, t+ x)dx +∫∞

0

E(s) · e−E(s)x · P(s, s)·∫∞
0

E−(s) · e−E−(s)y ·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x+ y)dy

 dx.

Since the density function of the convolution of two exponential distributions with rates

E(s) and E−(s) equals E(s) · E−(s) · (e−E−(s)/ξ − e−E(s)/ξ) where ξ = E(s) − E−(s) is the

rate of the self-loop transition, and since P(s, s) · E(s) = ξ, we have

=

∫∞
0

E−(s) · e−E(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x)dx +∫∞
0

E−(s) ·
(
e−E−(s)x − e−E(s)x

)
·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x)dx

=

∫∞
0

E−(s) · e−E−(s)x ·
∑

s ′∈succM(s)

P−(s, s ′) · vk−1(s ′, t+ x)dx

= vk(s, t).

This proves that vk(s, t) = v ′k(s, t) since v ′k,n(s, t)→ v ′k(s, t) as n→∞.

For s ∈ Se+M it is similar (only more technical). Let w we the delay chosen by a

strategy π in state s. Until leaving s or until timew, the system behaves again as a CTMC

(thanks to the consistency of π), yielding again vk(s, t) = v ′k(s, t) for each n ∈ N0.

Thanks to this value preservation, we will assume in the following sections that G is

uniform (and may contain Markovian self-loops). We will denote all rates by λ.

A.6 Definition of the discrete game

Let us fix a discretization step δ > 0 that divides the time bound T into k ∈ N
pieces of equal length, i.e. T = k · δ. We construct a discrete game ∆ = (V, 7→
, (V�, V♦, V©), Prob, v0) for two players � and ♦, who have antagonistic objectives, and
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Figure 2: Four gadgets for transforming a CE game into a discrete game. The upper part

shows types of states in the CE game, the lower part shows corresponding gadgets in

the discrete game. In the lower part, the square-shaped vertices belong to player �, the

diamond-shaped vertices to player ♦ and the circle-shaped vertices to player©.

a random player©. The game is played on a finite graph with vertices V and edges 7→.

The vertices are assigned to players according to the partitioning V� ∪V♦ ∪V© = V , i.e.

s is assigned to � if s ∈ V�, where � ∈ {�,♦,©}. A play starts in the initial vertex v0
and moves step by step from vertex to vertex forming an infinite sequence v0v1v2 · · · ,
called a run. In each vertex vi the assigned player chooses a successor vi+1 such that

vi 7→ vi+1. The player© chooses the successor randomly according to the fixed distri-

bution Prob(vi), the players� and ♦ choose according to their strategies. In our setting,

strategy is a function that assigns to each finite path v0 · · · vi a successor vertex vi+1. A

pair of such strategies σ ∈ Σ∆ and π ∈ Π∆ of respective players � and ♦ and a vertex

v determine a probability measure Pσ,π∆,v over the measurable space of all runs such that

the play is started in vertex v. For a formal definition, see, e.g., [FV96].

Formally, the set of vertices is V = S ∪ {s̄ | s ∈ S∧ succe(s) 6= ∅}. The initial vertex is

v0 = s0. The partitioning (V�, V♦, V©) and the transition function 7→ are constructed as

follows.

(i) For each s ∈ Sτ, we set s ∈ V� and s 7→ s ′ for s ′ ∈ succτ(s).

(ii) For each s ∈ SM, we set s ∈ V© and s 7→ s ′ for s ′ ∈ succM(s) ∪ {s}.
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(iii) For each s ∈ Se+M, we set s ∈ V♦, s 7→ s ′ for s ′ ∈ succe(s) ∪ {ŝ}, ŝ ∈ V©, ŝ 7→ s ′ for

s ′ ∈ succM(s) ∪ {s}.

(iv) For each s ∈ Se, we set s ∈ V♦, s 7→ s ′ for s ′ ∈ succe(s) ∪ {ŝ}, ŝ ∈ V©, ŝ 7→ s.

The distribution Prob choosing the successors in the states of V© is set as follows.

• For each t equal to s of item (ii) or ŝ of item (iii), and t ′ such that t 7→ t ′, we set

Prob(t, t ′) =

(1− e−λ·δ) · P(t, t ′) if t 6= t ′

(1− e−λ·δ) · P(t, t) + e−λ)·δ if t = t ′.

• For each s̄ of item (iv), we set Prob(s̄, s) = 1.

A.7 Value in the discrete game

Recall that each discrete step from a vertex in V© intuitively “takes” time δ(= T/N)

whereas each step from vertex in V� ∪ V♦ “takes” zero time. The winning condition is

the step-bounded reachability of the set of vertices G in up toN steps where only the steps

from the vertices V© are counted for this limit. Formally,

♦#b≤NG = {v0v1 · · · | ∃n (vn ∈ G and #b(v0 · · · vn−1) ≤ N)}

where #b(v0 · · · vn−1) = |{ i | 0 ≤ i < n, vi ∈ V©}|. Further, let us recall that we are

interested in the lower value of this game

sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆
[
♦#b≤NG] (∗ ∗ ∗)

Finally, recall that we say that a strategy is counting if it only considers the last vertex

and the current count #b. We may view it as a function V × {0, . . . ,N} → V since it is

irrelevant what it does after more than N steps.

Observe that the value in game ∆ is equivalent to the value in the following game

∆ ′ with standard step-bounded reachability objective. In ∆ ′ we enhance the state space

with a counter 0 ≤ k ≤ N representing the count ♦#b≤N of steps from random vertices,

and by introducing a new sink (non-goal) state s which represents counting above N.

Indeed, it is sufficient to consider reachability up to |S| · N steps since from Assump-

tion 1 there cannot be more than |S| steps without a Markovian transition, i.e. without

increasing the counter k. Notice that in discrete reachability games it is sufficient to con-

sider memoryless deterministic strategies [FV96]. Furthermore, notice that memoryless
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deterministic strategies in ∆ ′ correspond bijectively to counting deterministic strategies

in ∆ (observe that we actually defined strategies to be deterministic in ∆ which is now

justified by this bijection). Finally, notice that the game ∆ ′ is acyclic (except for the sink

state swhere the value is trivially 0) which allows to compute the value and the optimal

memoryless deterministic by straightforward (|S| ·N)-fold value iteration in polynomial

time as summarized by the following lemma.

Lemma 5.1. There are counting strategies optimal in (∗ ∗ ∗). Moreover, they can be

computed together with (∗ ∗ ∗) in time O(N|V |2).

Similarly to v, we now need to characterize the value in the discrete game ∆ con-

structed for a given δ. Let

vδ(s, k) = sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆,s
[
♦#b≤N−kG

]
denote the value when starting in vertex s with remaining N − k random steps (or

equivalently, the value in ∆ ′ from the vertex (s, k)). The following characterization is

straightforward from the definition of ∆ and ∆ ′ and from the discussion above.

Lemma A.15. The function vδ satisfies for any k ∈ N0 and s ∈ S the following. First,

vδ(s, k) = 0 if k > N or s ∈ Se, and v(s, k) = 1 if s ∈ G and k ≤ N. Second, for any

s 6∈ G and k < N it holds

vδ(s, k) =



max
s ′∈succτ(s)

vδ(s ′, k) if s ∈ Sτ,

B + e−λδ · vδ(s, k+ 1) if s ∈ SM,

min

(
B + e−λδ · vδ(s, k+ 1), min

s ′∈succe(s)
vδ(s ′, kδ)

)
if s ∈ Se+M,

where B = (1− e−λδ) ·
∑
s ′′∈S P(s, s ′′) · vδ(s ′′, k+ 1).

A.8 Relating (∗∗) and (∗ ∗ ∗)

Some parts of proofs in this section are also inspired by [M.R10]. Recall that we assume

that G is uniform thanks to Lemma A.13. Further, let us recall how a scheduler σ in the

IMC C is defined using a counting optimal strategy σ in the discrete game ∆ constructed

for some error ε > 0.

For σ : V × {0, . . . ,N}→ V , we have for any p = s0 t0 · · · sn−1 tn−1 sn

σ(p) = σ(sn, d(t0 + . . .+ tn−1)/δe).
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Since a scheduler in C is also a strategy of the player conin the CE game G, we use the

same symbol σ also in the CE game setting.

Lemma A.16. For any δ > 0, s ∈ S and any 0 ≤ k ≤ N we have

vδ(s, k) ≤ v(s, kδ) (4)

The strategy σ guarantees in G at least as much as the value in ∆, i.e.

vδ(s, k) ≤ inf
π∈Π
Pσ,πG,s

[
♦≤T−kδG

]
(5)

Proof. We prove it by backwards induction on k relying heavily on the value charac-

terizations in Lemmata A.4 and A.15. For k = N, (4) is immediate from Lemmata A.4

and A.15. Furthermore, any strategy σ satisfies (5). Let us fix 0 ≤ k < N.

For s ∈ G∪Se, (4) is immediate from Lemmata A.4 and A.15 and again, any strategy

σ satisfies (5). For the following, we assume s 6∈ G.

For s ∈ SM, first observe that the function Pσ,πG,s
[
♦≤T−xG

]
is monotonous w.r.t. x

for any strategies σ ∈ Σ, π ∈ Π and any starting state s ∈ S; and thus v(s, ·) is also

monotonous by definition. We get (4) by replacing v(s ′′, (k + 1)δ) for v(s ′′, kδ + x) and

applying the induction hypothesis

v(s, kδ) =

∫ δ
0

λe−λx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x)dx + e−λδ · v(s, (k+ 1)δ)

≥ (1− e−λδ) ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, (k+ 1)δ) + e−λδ · v(s, (k+ 1)δ)

≥ (1− e−λδ) ·
∑
s ′′∈S

P(s, s ′′) · vδ(s ′′, k+ 1) + e−λδ · vδ(s, k+ 1)

= vδ(s, k).

As regards (5), σ does not guarantee v(s ′′, kδ + x) in state s ′′ and elapsed time kδ + x

because its possible decision σ(s ′′, dkδ + xe) may not be optimal for the elapsed time

kδ+x. Nevertheless, again from monotonicity of Pσ,πG,s
[
♦≤T−xG

]
and from the induction

hypothesis, σ guarantees there at least vδ(s ′′, (k + 1)). From the definition of Pσ,πG,s , σ

guarantees in state s and elapsed time kδ at least∫ δ
0

λe−λx ·
∑
s ′′∈S

P(s, s ′′) · vδ(s ′′, (k+ 1)δ)dx + e−λδ · vδ(s, (k+ 1)δ) = vδ(s, k).

Now we deal with the states where potentially no time is spent, i.e. s ∈ Se+M ∪ Sτ.
For these states, we need deal with the value for all elapsed times not only for multiples
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of δ. We define

v↓(s, kδ+w) =


maxs ′∈succτ(s) v↓(s ′, kδ+w) if s ∈ Sτ

C(s,w) if s ∈ SM

min{C(s,w),mins ′∈succe(s) v↓(s ′, kδ+w)} if s ∈ Se+M

where C(s,w) = e−λ(δ−w)vδ(s, k+ 1)+ (1− e−λ(δ−w))
∑
s ′′∈S P(s, s ′′)vδ(s ′′, k+ 1). We need

the following claim in order to prove (4) and (5).

Claim A.17. For any 0 ≤ w ≤ δ it holds v(s, kδ+w) ≥ v↓(s, kδ+w).

We prove the claim as well as (4) and (5) by a nested induction on the length n of

the longest path via internal and external transitions to a state in SM ∪ Se ∪ G. Such

length is bounded for any state by Assumption 1. For n = 0, i.e. for s ∈ SM, we already

discussed (4) and (5), the claim can be obtained by similar arguments as above and as

in Lemma A.4. Now let n > 0.

• For s ∈ Sτ, (4) is easy from Lemmata A.4 and A.15. Furthermore, the strategy σ

which takes any transition that maximizes the value vδ(s, kδ) satisfies (5). Further-

more, the claim can be obtained by similar arguments as in Lemma A.4.

• Finally, for s ∈ Se+M it suffices to prove the claim. Indeed, (5) is trivial for s ∈ Se+M
from the induction hypothesis as σ is not involved in the first step. Furthermore,

from the claim we obtain (4) by setting w = 0 and by observing that v↓(s, kδ) =

vδ(s, k) by definition,

v(s, kδ) ≥ min{C(s, 0), min
s ′∈succe(s)

v↓(s ′, kδ)} = min{C(s, 0), min
s ′∈succe(s)

vδ(s ′, k)} = vδ(s, k).

As regards the claim, observe that we can obtain by similar arguments as in

Lemma A.4

v(s, kδ+w) = min{A(δ−w) + e−λ(δ−w) · v(s, (k+ 1)δ), (6)

min
s ′∈succe(s),
0≤w ′≤δ−w

(
e−λw ′ · v(s ′, kδ+w+w ′) +A(w ′)

)
} (7)

We prove the claim by showing that (6) ≥ v↓(s, kδ + w) and (7) ≥ v↓(s, kδ + w).

First,

(6) =

∫ δ−w
0

λe−λx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, kδ+ x)dx + e−λ(δ−w) · v(s, (k+ 1)δ)
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≥ (1− e−λ(δ−w)) ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, (k+ 1)δ) + e−λ(δ−w) · v(s, (k+ 1)δ)

≥ (1− e−λ(δ−w)) ·
∑
s ′′∈S

P(s, s ′′) · vδ(s ′′, k+ 1) + e−λ(δ−w) · vδ(s, k+ 1)

= C(s,w) ≥ v↓(s, kδ+w).

Let us focus on (7). We fix s ′ ∈ succe(s) and search for the minimal w. First, we

deal with Markovian successor s ′ ∈ SM. It holds

min
0≤w ′≤δ−w

(
e−λw ′ · v(s ′, kδ+w+w ′) +A(w ′)

)
(?)

≥ min
0≤w ′≤δ−w

(
e−λw ′ · v↓(s ′, kδ+w+w ′) +A(w ′)

)
= min
0≤w ′≤δ−w

(
e−λw ′ · C(s ′, w+w ′) +A(w ′)

)
≥ min
0≤w ′≤δ−w

(
e−λw ′ ·

(
e−λ(δ−w−w ′)vδ(s ′, k+ 1) + (1− e−λ(δ−w−w ′))

∑
s ′′∈S

P(s ′, s ′′)vδ(s ′′, k+ 1)

)

+ (1− e−λw ′)
∑
s ′′∈S

P(s, s ′′)vδ(s ′′, k+ 1)

)

= e−λ(δ−w)

(
vδ(s ′, k+ 1) −

∑
s ′′∈S

P(s ′, s ′′)vδ(s ′′, k+ 1)

)
+

min
0≤w ′≤δ−w

(
e−λw ′

∑
s ′′∈S

P(s ′, s ′′)vδ(s ′′, k+ 1) + (1− e−λw ′)
∑
s ′′∈S

P(s, s ′′)vδ(s ′′, k+ 1)

)
.

Now comes the crucial observation of the proof: the formula above is minimized

either for w ′ = 0 or for w ′ = δ − w because of its linearity. By setting w ′ = 0, we

get

e−λ(δ−w)vδ(s ′, k+ 1) + (1− e−λ(δ−w))
∑
s ′′∈S

P(s ′, s ′′)vδ(s ′′, k+ 1) = C(s ′, w).

By setting w ′ = δ−w and from the definition of vδ, we get

e−λ(δ−w)vδ(s ′, k+ 1) + (1− e−λ(δ−w))
∑
s ′′∈S

P(s, s ′′)vδ(s ′′, k+ 1)

≥ e−λ(δ−w)vδ(s, k+ 1) + (1− e−λ(δ−w))
∑
s ′′∈S

P(s, s ′′)vδ(s ′′, k+ 1) = C(s,w).

Now, we consider successor s ′ ∈ Se+M. It holds

(?) ≥ min
0≤w ′≤δ−w

(
e−λw ′ · v↓(s ′, kδ+w+w ′) +A(w ′)

)
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= min
0≤w ′≤δ−w

(
e−λw ′ ·min

{
C(s ′, w+w ′), min

s ′′∈succe(s ′)
v↓(s ′′, kδ+w+w ′)

}
+A(w ′)

)
.

Observe, that similarly for s ′ ∈ Sτ, we can obtain

(?) ≥ min
0≤w ′≤δ−w

(
e−λw ′ · max

s ′′∈succτ(s ′)
v↓(s ′′, kδ+w+w ′) +A(w ′)

)
.

For both the cases s ′ ∈ Sτ ∪ Se+M, we get by unraveling the internal and external

transitions of v↓ according to definition

= min
0≤w ′≤δ−w

(
e−λw ′ · minimaxs’

s ′′∈SM∪Se+M

C(s ′′, w+w ′) +A(w ′)

)

where minimaxs’ is an operator that chooses a state with Markovian transitions

that is reachable from s ′ (where s ′ is also reachable from s ′) that is the most

suitable for both players. Technically, it is a sequence of min and max opera-

tors that are combined according to the transition structure of G. Similarly to

the previous case, it is easy to show that for any fixed s ′′ ∈ SM ∪ Se+M it holds

min0≤w ′≤δ−w
(
e−λw ′ · C(s ′′, w+w ′) +A(w ′)

)
≥ min{C(s ′′, w), C(s,w)}. To sum up

all the cases,

(7) ≥ min
s ′∈succe(s)

min
{
C(s,w), minimaxs’

s ′′∈SM∪Se+M

C(s ′′, w)

}
= min

{
C(s,w), minimaxs

s ′′∈SM∪Se+M

C(s ′′, w)

}
,

which is by considering only the first “decision” in minimaxs again

= min{C(s,w), min
s ′∈succe(s)

v↓(s ′, kδ+w)} = v↓(s, kδ+w).

In the following lemma we denote by Π#,δ the set of grid strategies on a grid of size

δ.

Lemma A.18. For any ε > 0, δ ≤ 2ε/(λ2T), s ∈ S and any k ∈ N0 we have

v(s, kδ) ≤ vδ(s, k) + ε · T − kδ

T
(8)

sup
σ∈Σ

inf
π∈Π#,δ

Pσ,πG,s
[
♦≤T−kδG

]
≤ vδ(s, k) + ε · T − kδ

T
. (9)

Proof. Again, we prove it by backwards induction on k. For k = N, (8) is immediate

from Lemmata A.4 and A.15. Let us fix 0 ≤ k < N. For s ∈ G∪Se, (8) is immediate from
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Lemmata A.4 and A.15. Observe that in these two situations, it is easy to derive (9) by

very similar arguments as in Lemma A.4. For the following, we assume s 6∈ G.

For s ∈ SM we need to analyze first, what is the probability that two or more Marko-

vian transitions are taken in the interval [0, δ]. Let us denote by Runs#[0,δ]>1 the set of

runs where more than one Markovian transition occurs in the first δ time units. Further-

more, we denote by ♦≤T#[0,δ]≤1G = ♦≤TG\Runs#[0,δ]>1 and ♦≤T#[0,δ]>1
G = ♦≤TG∩Runs#[0,δ]>1.

Next, we have

v(s, kδ) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδG

]
= sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδ

#[0,δ]≤1G ] ♦
≤T−kδ
#[0,δ]>1

G
]

= sup
σ∈Σ

inf
π∈Π

(
Pσ,πG,(s,kδ)

[
♦≤T−kδ

#[0,δ]≤1G
]

+ Pσ,πG,s
[
♦≤T−kδ

#[0,δ]>1
G
])

≤ sup
σ∈Σ

inf
π∈Π

(
Pσ,πG,s

[
♦≤T−kδ

#[0,δ]≤1G
]

+ Pσ,πG,s
[
Runs#[0,δ]>1

])
= sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδ

#[0,δ]≤1G
]

+ Pσ∗,π∗G,s

[
Runs#[0,δ]>1

]
where σ∗ and π∗ are arbitrary strategies. Indeed, notice that strategies in G have no

influence on the frequency of occurrence of Markovian transitions.

≤ sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T#[0,δ]≤1G

]
︸ ︷︷ ︸

v−(s,kδ)

+
(λδ)2

2

which follows from the properties of the Poisson distribution with parameter λδ using

the very same arguments as in [M.R10, Lemma 6.2]. Finally, by δ ≤ 2ε/(λ2T),

≤ v−(s, kδ) + ε · δ
T

(10)

This observation allows us to focus on paths where at most one Markovian transition

occurs.

v−(s, kδ) =

∫ δ
0

λe−λx ·
∑
s ′′∈S

P(s, s ′′) · κ(s ′′, δ− x)v/δ−x(s ′′, kδ+ x)dx + e−λδ · v(s, (k+ 1)δ)

where κ(s ′′, δ − x) is the probability that (after the first Markovian transition occurs

at time x), no other Markovian transition occurs in the remaining time δ − x; and

v/δ−x(s ′′, kδ+x) denotes the value in configuration (s ′′, kδ+x) with no Markovian tran-

sition occurring in the next δ− x time units. Now we show

v/δ−x(s ′′, kδ+ x) ≤ v(s ′′, (k+ 1)δ) for any 0 ≤ x ≤ δ. (11)
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We proceed by nested induction on the length j of the longest path via internal and

external transitions to a state in SM ∪ Se ∪ G. Such length is bounded for any state by

the Assumption 1.

Let j = 0. If s ′′ ∈ SM, it is clear since the game waits there for sure until time (k+1)δ.

If s ′′ ∈ G, both values equal to 1, and if s ′′ ∈ Se, the strategy that waits until time (k+1)δ

gains value v(s ′′, (k+ 1)δ) = 0which is optimal.

Assume j > 0,

• if s ′′ ∈ Sτ, the player chooses successor state s ′′′ with maximal v/δ−x(s ′′′, kδ + x),

respectively. Thus, for such s ′′′, v/δ−x(s ′′, kδ+ x) equals v/δ−x(s ′′′, kδ+ x) for which

we can use the induction hypothesis;

• if s ′′ ∈ Se+M, the value equals

min

v(s ′′, (k+ 1)δ), min
s ′′′∈succe(s ′′),
w∈[0,δ−x]

v/δ−x−w(s ′′′, kδ+ x+w)

 ≤ v(s ′′, (k+ 1)δ).

By (10), (11) and since 0 ≤ κ ≤ 1, we get

v−(s, kδ) ≤
∫ δ
0

λe−λx ·
∑
s ′′∈S

P(s, s ′′) · v(s ′′, (k+ 1)δ)dx + e−λδ · v(s, (k+ 1)δ)

and further by integrating the density and by applying the induction hypothesis

≤(1− e−λδ) ·
∑
s ′′∈S

P(s, s ′′) · vδ(s ′′, k+ 1) + e−λδ · vδ(s, k+ 1) + ε · T − (k+ 1)δ

T

≤ vδ(s, k) + ε · T − (k+ 1)δ

T

which in total yields the sought form v(s, kδ) ≤ vδ(s, k) + ε · T−kδ
T

. Similarly, as regards

(9), we can denote v#(s, kδ) := supσ∈Σ infπ∈Π#,δ Pσ,πG,s
[
♦≤T−kδG

]
, and analogously define

v#− and v#/δ−x. By similar arguments it can be shown that v#(s, kδ) ≤ v#−(s, kδ) + εδ/T ,

v#/δ−x(s
′′, kδ+x) ≤ v#(s

′′, (k+1)δ) for any 0 ≤ x ≤ δ (observe that a grid strategy that for

any x chooses to wait until the end of the interval guarantees the value v#(s
′′, (k+ 1)δ)).

From these inequalities it is again easy to derive that v#(s, kδ) ≤ vδ(s, k) + ε · T−kδ
T

.

Now, let us proceed to the states where potentially no time is spent, i.e. s ∈ Se+M∪Sτ.
Again, we need to use a nested induction on the length of the longest path to a state in

SM ∪ Se ∪G. For length 0, we have already proven it. Assume length > 0,
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• for s ∈ Sτ we have

v(s, kδ) = max
s ′∈succτ(s)

v(s ′, kδ)

≤ max
s ′∈succτ(s)

(
vδ(s ′, kδ) + ε · T − kδ

T

)
= vδ(s, kδ) + ε · T − kδ

T
;

By similar arguments as in Lemma A.4 it is easy to see that v#(s, kδ) =

maxs ′∈succτ(s) v#(s
′, kδ) and thus also v#(s, kδ) ≤ vδ(s, kδ) + ε(T − kδ)/T .

• for s ∈ Se+M we get

v(s, kδ) = min

A(δ) + e−λδ · v(s, (k+ 1)δ), min
s ′∈succe(s),
0≤w<δ

(
e−λw · v(s ′, kδ+w) +A(w)

)
which is surely increased by restricting the choice only to w ∈ {0, δ} so that we

obtain v(s, kδ) ≤ v#(s, kδ); which is further increased by restricting the choice only

to w ∈ {0},

v#(s, kδ) ≤min
(
A(δ) + e−λδ · v(s, (k+ 1)δ), min

s ′∈succe(s)
v(s ′, kδ)

)
.

By the same arguments as for s ∈ SM we obtain

≤min
(
B + e−λδ · vδ(s, k+ 1), min

s ′∈succe(s)
vδ(s ′, k)

)
+ ε · T − kδ

T
.

Theorem 5.2. For every approximation bound ε > 0 and discretization step δ ≤ ε/(λ2T)
where λ = maxs∈S E(s), the value (∗ ∗ ∗) induced by δ satisfies

(∗ ∗ ∗) ≤ (∗∗) ≤ (∗ ∗ ∗) + ε.

Proof. Straightforward, by putting s := s0 and k := 0 into Lemmata A.16 and A.18.

Theorem 5.3. Let ε > 0, ∆ be a corresponding discrete game, and σ be induced by an

optimal counting strategy in ∆, then

(∗) ≤ inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
+ ε
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Proof. By combining Theorem 5.2 and Lemma A.16 we get that

sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
≤ inf

π∈Π
Pσ,πG

[
♦≤TG

]
+ ε

and further by Proposition 4.1

sup
σ∈S(C)

inf
E∈IMC

π∈S(C(E),σ)

Pπ[σ]
C(E)

[
♦≤TGE

]
≤ inf

π∈Π
Pσ,πG

[
♦≤TG

]
+ ε.

Since the proof of Proposition 4.1 shows that for each strategy σ it holds

inf
π∈Π
Pσ,πG

[
♦≤TG

]
≤ inf

E∈IMC
π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
,

we can conclude the proof by

sup
σ∈S(C)

inf
E∈IMC

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
≤ inf

E∈IMC
π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
+ ε.
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