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Abstract

We establish a decidability boundary of the model checking problem for in�nite-
state systems de�ned by Process Rewrite Systems (PRS) or weakly extended Process
Rewrite Systems (wPRS), and properties described by basic fragments of action-
based Linear Temporal Logic (LTL). It is known that the problem for general LTL
properties is decidable for Petri nets and for pushdown processes, while it is unde-
cidable for PA processes. As our main result, we show that the problem is decidable
for wPRS if we consider properties de�ned by formulae with only modalities strict
eventually and strict always. Moreover, we show that the problem remains undecid-
able for PA processes even with respect to the LTL fragment with the only modality
until or the fragment with modalities next and in�nitely often.

∗This is a full version of the paper [BK �RS06] accepted for FSTTCS 2006.
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1 Introduction

Automatic veri�cation of current software systems often needs to model them as
in�nite-state systems. One of the most powerful formalisms for description of in�nite-
state systems (except formalisms with Turing power for which nearly all interesting ver-
i�cation problems are undecidable) is called Process Rewrite Systems (PRS) [May00]. The
PRS framework, based on term rewriting, subsumes many formalisms studied in the
context of formal veri�cation, e.g. Petri nets (PN), pushdown processes (PDA), and process
algebras like BPA, BPP, or PA. PRS can be adopted as a formal model for programs with
recursive procedures and restricted forms of dynamic creation and synchronization of
concurrent processes. A substantial advantage of PRS is that some important veri�ca-
tion problems are decidable for the whole PRS class. In particular, Mayr [May00] proved
that the reachability problem (whether a given state is reachable) and the reachable property
problem (whether there is a reachable state where some given actions are enabled and
some given actions are disabled) are decidable for PRS.

In [K �RS04b], we have presented weakly extended PRS (wPRS), where a �nite-state
control unit with self-loops as the only loops is added to the standard PRS formalism
(addition of a general �nite-state control unit makes PRS Turing powerful). This control
unit enriches PRS by abilities to model a bounded number of arbitrary communica-
tion events and global variables whose values are changed only a bounded number of
times during any computation. We have proved that the reachability problem remains
decidable for wPRS [K �RS04a] and that the problem called reachability Hennessy�Milner

property (whether there is a reachable state satisfying a given Hennessy�Milner formula)
is decidable for wPRS as well [K �RS05]. The hierarchy of all PRS and wPRS classes is de-
picted in Figure 1.

Concerning the model checking problem, a broad overview of (un)decidability re-
sults for subclasses of PRS and various temporal logics can be found in [May98]. Here
we focus exclusively on (future) Linear Temporal Logic (LTL). It is known that LTL model
checking of PDA is EXPTIME-complete [BEM97]. LTL model checking of PN is also de-
cidable, but at least as hard as the reachability problem for PN [Esp94] (the reachability
problem is EXPSPACE-hard [May84, Lip76] and no primitive recursive upper bound
is known). If we consider only in�nite runs, then the problem for PN is EXPSPACE-
complete [Hab97, May98].
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Conversely, LTL model checking is undecidable for all classes subsuming PA [BH96,
May98]. So far, there are only two positive results for these classes. Bouajjani andHaber-
mehl [BH96] have identi�ed a fragment called simple PLTL2 for which model checking
of in�nite runs is decidable for PA (strictly speaking, simple PLTL2 is not a fragment
of LTL as it can express also some non-regular properties, while LTL cannot). Only re-
cently, we have demonstrated that model checking of in�nite runs is decidable for PRS
and the fragment of LTL capturing exactly fairness properties [Boz05].

Our contribution: This paper completely locates the decidability boundary of the
model checking problem for all subclasses of PRS (and wPRS) and all basic LTL frag-

ments, where a basic LTL fragment is a set of all formulae containing only a given subset
of standard modalities. The boundary is depicted in Figure 2. To locate the boundary,
we show the following results.

1. We introduce a new LTL fragment A and prove that every formula of the basic
fragment LTL(Fs,Gs) (i.e. the fragment with modalities strict eventually and strict

always only) can be effectively translated into A. As LTL(Fs,Gs) is closed under
negation, we can also translate LTL(Fs,Gs) formulae into negated formulae of A.

2. We show that model checking (of both �nite and in�nite runs) of wPRS against
negated formulae of A is decidable. The proof employs our results presented
in [Boz05, K �RS04a, K �RS05] to reduce the problem to LTL model checking for PDA
and PN. Thus we get decidability of model checking for wPRS against LTL(Fs,Gs).
Note that LTL(Fs,Gs) is strictly more expressive than the Lamport logic (i.e. the ba-
sic fragment with modalities eventually and always), which is again strictly more
expressive than the mentioned fragment of fairness properties and also than the
regular part of simple PLTL2.

3. We demonstrate that the model checking problem remains undecidable for PA
even if we consider the basic fragment with modality until or the basic fragment
with modalities next and in�nitely often (which is strictly less expressive than the
one with next and eventually).

The paper is organized as follows. The following section recalls basic de�nitions.
Sections 3, 4, and 5 correspond, respectively, to the three results listed above. The last
section discuss other potential applications of our results and it contains an open ques-
tion driving our future research.
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2 Preliminaries

2.1 PRS and its extensions

Let Const = {X, . . .} be a set of process constants. The set of process terms t is de�ned by the
abstract syntax t ::= ε | X | t.t | t‖t, where ε is the empty term, X ∈ Const, and '.' and '‖'
mean sequential and parallel compositions, respectively. We always workwith equivalence
classes of terms modulo commutativity and associativity of '‖', associativity of '.', and
neutrality of ε, i.e. ε.t = t.ε = t‖ε = t. We distinguish four classes of process terms as:

1 � terms consisting of a single process constant, in particular, ε 6∈ 1,

S � sequential terms - terms without parallel composition, e.g. X.Y.Z,

P � parallel terms - terms without sequential composition, e.g. X‖Y‖Z,

G � general terms - terms without any restrictions, e.g. (X.(Y‖Z))‖W.

LetM = {o, p, q, . . .} be a set of control states, ≤ be a partial ordering on this set, and
Act = {a, b, c, . . .} be a set of actions. Let α,β ∈ {1, S, P,G} be classes of process terms
such that α ⊆ β. An (α,β)-wPRS (weakly extended process rewrite system) ∆ is a tuple
(R, p0, X0), where

• R is a �nite set of rewrite rules of the form (p, t1)
a

↪→ (q, t2), where t1 ∈ α, t1 6= ε,
t2 ∈ β, a ∈ Act, and p, q ∈M are control states satisfying p ≤ q,

• the pair (p0, X0) ∈M× Const forms the distinguished initial state.

By Act(∆), Const(∆), and M(∆) we denote the sets of actions, process constants, and
control states occurring in the rewrite rules or the initial state of ∆, respectively.

An (α,β)-wPRS ∆ = (R, p0, X0) induces a labelled transition system, whose states
are pairs (p, t) such that p ∈ M(∆) is a control state and t ∈ β is a process term over
Const(∆). The transition relation −→∆ is the least relation satisfying the following infer-
ence rules:

((p, t1)
a

↪→ (q, t2)) ∈ ∆
(p, t1)

a
−→∆ (q, t2)

(p, t1)
a

−→∆ (q, t2)

(p, t1‖t ′1)
a

−→∆ (q, t2‖t ′1)
(p, t1)

a
−→∆ (q, t2)

(p, t1.t
′
1)

a
−→∆ (q, t2.t

′
1)

Sometimes we write −→ instead of −→∆ if ∆ is clear from the context. The transition
relation can be extended to �nite words over Act in a standard way. To shorten our
notation we write pt in lieu of (p, t). A state pt is called terminal, written pt 6−→∆, if there
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Figure 1: The hierarchy of PRS and wPRS subclasses.

is no state p ′t ′ and action a such that pt a
−→∆ p

′t ′. In this paper we always consider
only systems where the initial state is not terminal. A (�nite or in�nite) sequence

σ = p1t1
a1−→∆ p2t2

a2−→∆ . . .
an

−→∆ pn+1tn+1

(
an+1
−→∆ . . .

)
is called derivation over the word u = a1a2 . . . an(an+1 . . .) in ∆. Finite derivations are also
denoted as p1t1

u
−→∆ pn+1tn+1, in�nite as p1t1

u
−→∆. A derivation in ∆ is called a run of

∆ if it starts in the initial state p0X0 and it is either in�nite, or its last state is terminal.
Further, L(∆) denotes the set of words u such that there is a run of ∆ over u.

An (α,β)-wPRS ∆ where M(∆) is a singleton is called (α,β)-PRS (process rewrite

system) [May00]. In such systems we omit the single control state from rules and states.
Some classes of (α,β)-PRS correspond to widely known models, namely �nite-state

systems (FS), basic process algebras (BPA), basic parallel processes (BPP), process algebras (PA),
pushdown processes (PDA), and Petri nets (PN). The other classes have been named as
PAD, PAN, and PRS. The relations between (α,β)-PRS and the mentioned formalisms
and names are indicated in Figure 1. Instead of (α,β)-wPRS we juxtapose the pre�x `w-
' with the acronym corresponding to the (α,β)-PRS class. For example, we use wBPA
rather than (1, S)-wPRS. Figure 1 shows the expressiveness hierarchy of all considered
classes, where expressive power of a class is measured by the set of transition systems
that are de�nable (up to the strong bisimulation equivalence [Mil89]) by the class. This
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hierarchy is strict, with a potential exception concerning the classes wPRS and PRS,
where the strictness is just our conjecture. For details see [K �RS04b, K �RS04a].

For technical reasons, we de�ne a normal form of wPRS systems. A rewrite rule is
parallel or sequential if it has one of the following forms:

Parallel rules: pX1‖X2‖ . . . ‖Xn
a

↪→ qY1‖Y2‖ . . . ‖Ym
Sequential rules: pX

a
↪→ qY.Z pX.Y

a
↪→ qZ pX

a
↪→ qY pX

a
↪→ qε

where X, Y, Xi, Yj, Z ∈ Const, p, q ∈M, n > 0,m ≥ 0, and a ∈ Act. A rule is called trivial

if it is both parallel and sequential (i.e. it has the form pX
a

↪→ qY or pX a
↪→ qε). A wPRS

∆ is in normal form if it has only parallel and sequential rewrite rules.

2.2 Linear Temporal Logic (LTL) and studied problems

The syntax of Linear Temporal Logic (LTL) [Pnu77] is de�ned as follows

ϕ ::= tt | a | ¬ϕ | ϕ∧ϕ | Xϕ | ϕUϕ,

where a ranges over Act, X is called next, and U is called until. The logic is in-
terpreted over in�nite as well as nonempty �nite words of actions. Given a word
u = u(0)u(1)u(2) . . . ∈ Act∗∪Actω, |u| denotes the length of theword (we set |u| = ∞ if u
is in�nite). For all 0 ≤ i < |u|, by ui we denote the ith suf�x of u, i.e. ui = u(i)u(i+1) . . ..

The semantics of LTL formulae is de�ned inductively as follows:

u |= tt

u |= a iff u(0) = a

u |= ¬ϕ iff u 6|= ϕ

u |= ϕ1 ∧ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff |u| > 1 and u1 |= ϕ

u |= ϕ1 Uϕ2 iff ∃0 ≤ i < |u| . (ui |= ϕ2 and ∀ 0 ≤ j < i . uj |= ϕ1 )

We say that a nonempty word u satis�es ϕwhenever u |= ϕ. Given a set of words L,
we write L |= ϕ if u |= ϕ holds for all u ∈ L. We say that a derivation (or run) σ over a
word u satis�es ϕ, written σ |= ϕ, whenever u |= ϕ.

Moreover, we de�ne the following modalities: Fϕ (eventually) standing for ttUϕ,
Gϕ (always) standing for ¬F¬ϕ, Fsϕ (strict eventually) standing for XFϕ, Gsϕ (strict
always) standing for ¬Fs¬ϕ,

∞
Fϕ (in�nitely often) standing for GFϕ,

∞
Gϕ (almost always)

standing for ¬
∞
F¬ϕ. Note that Fϕ is equivalent to ϕ∨ Fsϕ but Fsϕ cannot be expressed
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Figure 2: The hierarchy of basic fragments with model checking decidability boundary.

with F as the only modality. Thus Fs is �stronger� than F. The relation between Gs and
G is similar.

For a set {O1, . . . , On} of modalities, LTL(O1, . . . , On) denotes the LTL fragment con-
taining all formulae with modalities O1, . . . , On only. Such a fragment is called basic.
Figure 2 shows an expressiveness hierarchy of all studied basic LTL fragments. In-
deed, every basic LTL fragment using standard1 future modalities is equivalent to one
of the fragments in the hierarchy, where equivalence between fragments means that ev-
ery formula of one fragment can be effectively translated into a semantically equivalent
formula of the other fragment and vice versa. For example, LTL(Fs,Gs) ≡ LTL(Fs). Fur-
ther, the hierarchy is strict. For detailed information about expressiveness of future LTL
modalities and LTL fragments we refer to [Str04].

Let F be an LTL fragment and C be a class of wPRS systems. The model checking

problem for F and C is to decide whether a given formula ϕ ∈ F and a given system
∆ ∈ C satis�es L(∆) |= ϕ. We also mention the problem called model checking of in�nite

runs, where L(∆) ∩ Actω |= ϕ is examined.
1By standardmodalities wemean the ones de�ned in this paper and also other commonly usedmodal-

ities like strict until, release, weak until, etc. However, it is well possible that one can de�ne a newmodality
such that there is a basic fragment not equivalent to any of the fragments in the hierarchy.
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3 Fragment A and translation of LTL(Fs,Gs) into A

The A fragment consists of �nite disjunctions of α-formulae de�ned as follows.
Recall that LTL() denotes the fragment of formulae without any modality,

i.e. boolean combinations of actions. In the following we use ϕ1 U+ϕ2 to abbreviate
ϕ1 ∧ X(ϕ1 Uϕ2). Let δ = θ1O1θ2O2 . . . θnOnθn+1, where n > 0, each θi ∈ LTL(), On is
`∧ Gs', and, for each i < n, Oi is either `U' or `U+' or `∧ X'. Further, let B ⊆ LTL() be a
�nite set. An α-formula is de�ned as

α(δ,B) =
(
θ1O1(θ2O2 . . . (θnOnθn+1) . . .)

)
∧

∧
ψ∈B

GsFsψ

Hence, a word u satis�es α(δ,B) iff u can be written as u1.u2. · · · .un+1, where

• each ui consists only of actions satisfying θi and

� |ui| ≥ 0 if i = n+ 1 or Oi is `U',

� |ui| > 0 if Oi is `U+',

� |ui| = 1 if Oi is `∧ X' or `∧ Gs',

• and un+1 satis�es GsFsψ for every ψ ∈ B.

Proof of the following lemma is a simple exercise.

Lemma 3.1. A conjunction of α-formulae can be effectively converted into an equivalent dis-

junction of α-formulae.

Theorem 3.2. Every LTL(Fs,Gs) formula can be translated into an equivalent disjunction of

α-formulae.

Proof. As Fs and Gs are dual modalities, we can assume that every LTL(Fs,Gs) formula
contains negations only in front of actions. Given an LTL(Fs,Gs) formula ϕ, we con-
struct a �nite set Aϕ of α-formulae such that ϕ is equivalent to disjunction of formulae
in Aϕ. Although our proof looks like induction on structure of ϕ, it is in fact induc-
tion on the length of ϕ. Thus, if ϕ 6∈ LTL(), then we assume that for every LTL(Fs,Gs)

formula ϕ ′ shorter than ϕ we can construct the corresponding set Aϕ ′ . In this proof, p
represents a formula of LTL(). The structure of ϕ �ts into one of the following cases.

•p Case p: In this case, ϕ is eqvivalent to p∧ Gstt. Hence Aϕ = {α(p∧ Gstt, ∅)}.
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•∨ Case ϕ1 ∨ϕ2: Due to induction hypothesis, we can assume that we have sets Aϕ1
and Aϕ2 . Clearly, Aϕ = Aϕ1 ∪Aϕ2 .

•∧ Case ϕ1 ∧ϕ2: Due to Lemma 3.1, the set Aϕ can be constructed from the sets Aϕ1
and Aϕ2 .

•Fs Case Fsϕ1: As Fs(α1 ∨ α2) ≡ (Fsα1) ∨ (Fsα2) and Fs(α∧ GsFsφ) ≡ (Fsα) ∧ (GsFsφ),
we set Aϕ = {α(ttU+ δ,B) | α(δ,B) ∈ Aϕ1}.

•Gs Case Gsϕ1: This case is divided into the following subcases according to the struc-
ture of ϕ1.

◦p Case Gsp: As Gsp is equivalent to tt ∧ Gsp, we set Aϕ = {α(tt ∧ Gsp, ∅)}.

◦∧ Case Gs(ϕ2 ∧ ϕ3): As Gs(ϕ2 ∧ ϕ3) ≡ (Gsϕ2) ∧ (Gsϕ3), the set Aϕ can be
constructed from AGsϕ2 and AGsϕ3 using Lemma 3.1. Note that AGsϕ2 and
AGsϕ3 can be constructed because Gsϕ2 and Gsϕ3 are shorter than Gs(ϕ2 ∧

ϕ3).

◦Fs Case GsFsϕ2: This case is again divided into the following subcases.

−p Case GsFsp: As p ∈ LTL(), we directly set Aϕ = {α(tt ∧ Gstt, {p})}.

−∨ Case GsFs(ϕ3 ∨ ϕ4): As GsFs(ϕ3 ∨ ϕ4) ≡ (GsFsϕ3) ∨ (GsFsϕ4), we set
Aϕ = AGsFsϕ3 ∪AGsFsϕ4 .

−∧ Case GsFs(ϕ3 ∧ ϕ4): This case is also divided into subcases depending
on the formulae ϕ3 and ϕ4.

∗p Case GsFs(p3∧p4): As p3∧p4 ∈ LTL(), this subcase has already been
covered by Case GsFsp.

∗∨ Case GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)): As GsFs(ϕ3 ∧ (ϕ5 ∨ ϕ6)) ≡ GsFs(ϕ3 ∧

ϕ5) ∨ GsFs(ϕ3 ∧ϕ6), we set Aϕ = AGsFs(ϕ3∧ϕ5) ∪AGsFs(ϕ3∧ϕ6).

∗Fs Case GsFs(ϕ3∧Fsϕ5): As GsFs(ϕ3∧Fsϕ5) ≡ (GsFsϕ3)∧ (GsFsϕ5), the
set Aϕ can be constructed from AGsFsϕ3 and AGsFsϕ5 using Lemma 3.1.

∗Gs Case GsFs(ϕ3∧Gsϕ5): As GsFs(ϕ3∧Gsϕ5) ≡ (GsFsϕ3)∧(GsFsGsϕ5),
the set Aϕ can be constructed from AGsFsϕ3 and AGsFsGsϕ5 using
Lemma 3.1.

−Fs Case GsFsFsϕ3: As GsFsFsϕ3 ≡ GsFsϕ3, we set Aϕ = AGsFsϕ1 .

−Gs Case GsFsGsϕ3: A word u satis�es GsFsGsϕ3 iff |u| = 1 or u is an in�nite
word satisfying FsGsϕ3. Note that Gs¬tt is satisifed only by �nite words
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of length one. Further, a word u satis�es (Fstt) ∧ (GsFstt) iff u is in�nite.
Thus, GsFsGsϕ3 ≡ (Gs¬tt) ∨ϕ ′ where ϕ ′ = (Fstt) ∧ (GsFstt) ∧ (FsGsϕ3).
Hence,Aϕ = AGs¬tt∪Aϕ ′ whereAϕ ′ is constructed fromAFstt,AGsFstt, and
AFsGsϕ3 using Lemma 3.1.

◦∨ Case Gs(ϕ2 ∨ ϕ3): According to the structure of ϕ2 and ϕ3, there are the
following subcases.

?p Case Gs(p2 ∨ p3): As p2 ∨ p3 ∈ LTL(), this subcase has already been
covered by Case Gsp.

?∧ Case Gs(ϕ2∨(ϕ4∧ϕ5)): As Gs(ϕ2∨(ϕ4∧ϕ5)) ≡ Gs(ϕ2∨ϕ4)∧Gs(ϕ2∨

ϕ5), the set Aϕ can be constructed from AGs(ϕ2∨ϕ4) and AGs(ϕ2∨ϕ5) using
Lemma 3.1.

?Fs Case Gs(ϕ2 ∨ Fsϕ4): It holds that Gs(ϕ2 ∨ Fsϕ4) ≡ (Gsϕ2) ∨ Fs(ϕ4 ∧

ϕ2∧Gsϕ2)∨GsFsϕ4. Therefore, the setAϕ can be constructed asAGsϕ2 ∪
{α(ttU+ δ,B) | α(δ,B) ∈ Aϕ4∧ϕ2∧Gsϕ2} ∪ AGsFsϕ4 , where Aϕ4∧ϕ2∧Gsϕ2 is
composed form Aϕ4 , Aϕ2 , and AGsϕ2 due to Lemma 3.1.

?Gs Case Gs(ϕ2∨ Gsϕ4): There are only the following two subcases (the oth-
ers �t to some of the previous cases).

(i) Case Gs(
∨
ϕ ′∈G Gsϕ

′): It holds that Gs(
∨
ϕ ′∈G Gsϕ

′) ≡ (Gs¬tt) ∨∨
ϕ ′∈G(XGsϕ

′). Therefore, the set Aϕ can be constructed as AGs¬tt ∪⋃
ϕ ′∈G{α(tt ∧ Xδ,B) | α(δ,B) ∈ AGsϕ ′}.

(ii) Case Gs(p2 ∨
∨
ϕ1∈G Gsϕ1): As Gs(p2 ∨

∨
ϕ ′∈G Gsϕ

′) ≡ (Gsp2) ∨∨
ϕ ′∈G(X(p2 U Gsϕ

′)). Therefore, the set Aϕ can be constructed as
AGsp2 ∪

⋃
ϕ ′∈G{α(tt ∧ Xp2 U δ,B) | α(δ,B) ∈ AGsϕ ′}.

◦Gs Case Gs(Gsϕ2): As Gs(Gsϕ2) ≡ (Gs¬tt) ∨ (XGsϕ2), the set Aϕ can be con-
structed as AGs¬tt ∪ {α(tt ∧ Xδ,B) | α(δ,B) ∈ AGsϕ2}.

4 Model checking of wPRS against negated A

This section is devoted to decidability of the model checking problem for wPRS and
negated formulae of theA fragment. In fact, we prove decidability of the dual problem,
i.e. whether a given wPRS system has a run satisfying a given formula of A. Finite and
in�nite runs are treated separately.
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Theorem 4.1. The problem whether a given wPRS system has a �nite run satisfying a given

α-formula is decidable.

Proof. Let ∆ be a wPRS system and α(δ,B) be an α-formula. Note that a formula GsFsψ

is valid on a �nite nonempty word if and only if the length of the word is 1. Therefore,
if B 6= ∅ then it is easy to check whether there is a �nite run of ∆ satisfying α(δ,B). In
what follows we assume B = ∅.

Let δ = θ1O1θ2O2 . . . θnOnθn+1. We construct a wPRS system ∆ ′ with control states
M(∆)× {1, 2, . . . , n+ 1} in the following way.

• For any 1 ≤ i ≤ n and every rule pt1
a

↪→ qt2 of ∆ such that a satis�es θi, we
add to ∆ ′ the rule (p, i)t1

a
↪→ (q, i + 1)t2 and if Oi is U or U+ then also the rule

(p, i)t1
a

↪→ (q, i)t2.

• For every p ∈ M(∆), X ∈ Const(∆), and for any 1 ≤ i ≤ n such that Oi = U, we
add to ∆ ′ the rule (p, i)X

e
↪→ (p, i+ 1)X, where e is an arbitrary action.

• For every rule pt1
a

↪→ qt2 of ∆ such that a satis�es θn+1, we add to ∆ ′ the rule
(p, n+ 1)t1

a
↪→ (q, n+ 1)t2.

• For every rule pt1
a

↪→ qt2 of ∆ we add to ∆ ′ the rule (p, n+ 1)t1
a

↪→ (p, n+ 1)t1.

Let p0X0 be the initial state of ∆. There is a �nite run p0X0
u

−→∆ qt satisfying α(δ, ∅) if
and only if there is a �nite run (p0, 1)X0

v
−→∆ ′ (q, n + 1)t. Hence, we need to decide

whether there exists a state of the form (q, n + 1)t that is terminal and reachable from
(p0, 1)X0. To do that, for every p ∈M(∆) we add to ∆ ′ the rule (p, n+1)Z

end
↪→ (p, n+1)ε,

where end 6∈ Act(∆) is a fresh action and Z 6∈ Const(∆) is a fresh process constant.
Now, it holds that ∆ has a �nite run satisfying α(δ, ∅) if and only if there exists a state
of ∆ ′, which is reachable from (p0, 1)(X0‖Z) and the only enabled action in this state
is end. This last condition on the state can be expressed by formula ϕ = 〈end〉tt ∧∧
a∈Act(∆) ¬〈a〉tt of the Hennessy�Milner logic. As reachability of a state satisfying a

given Hennessy�Milner formula is decidable for wPRS (see [K �RS05] for details), we are
done.

The problem for in�nite runs is more complicated. In order to solve it, we introduce
more terminology and notation. First we de�ne β-formulae and regular languages called
γ-languages. Let w = a1O1a2O2 . . . anOn, where n ≥ 0, a1, . . . , an ∈ Act are pairwise
distinct actions and each Oi is either `U+' or `∧ X'. Further, let B ⊆ Act r {a1, . . . , an}
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be a nonempty �nite set of actions and C ⊆ B. A β-formula β(w,B,C) and γ-language
γ(w,C) are de�ned as

β(w,B,C) =
(
a1O1(a2O2 . . . (anOnG

∨
b∈B

b) . . .)
)

∧
∧
b∈C

GFb ∧
∧

b∈BrC

(Fb ∧ ¬GFb)

γ(w,C) = ao11 .a
o2
2 . · · · .a

on
n .L,

where oi =

{
+ if Oi = U+

1 if Oi = ∧ X
and L =

{
{ε} if C = ∅⋂

b∈CC
∗.b.C∗ otherwise

Roughly speaking, a β-formula is a more restrictive version of an α-formula and in
context of β-formulae we consider in�nite words only. Contrary to δ of an α-formula,
w of a β-formula employs actions rather than LTL() formulae. While a tail of an in�nite
word satisfying an α-formula is speci�ed by θn+1, in the de�nition of β-formulae we
use a set B containing exactly all the actions of the tail and its subset C of exactly all
actions occurring in�nitely many times in the tail.

Remark 4.2. Note that an in�nite word satis�es a formula β(w,B,C) if and only if it can be

divided into a pre�x u ∈ γ(w,B) and a suf�x v ∈ Cω such that v contains in�nitely many

occurrences of every c ∈ C.

Let w,B,C be de�ned as above. We say that a �nite derivation σ over a word u
satis�es γ(w,C) if and only if u ∈ γ(w,C). We write (w ′, B ′) v (w,B) whenever B ′ ⊆ B
and w ′ = ai1Oi1ai2Oi2 . . . aikOik for some 1 ≤ i1 < i2 < . . . < ik ≤ n. Moreover, we
write (w ′, B ′, C ′) v (w,B,C) whenever (w ′, B ′) v (w,B), B ′ is nonempty, and C ′ ⊆
C ∩ B ′.

Remark 4.3. If u is an in�nite word satisfying β(w,B,C) and v is an in�nite subword of u

(i.e. it arises from u by omitting some letters), then there is exactly one triple (w ′, B ′, C ′) v
(w,B,C) such that v |= β(w ′, B ′, C ′). Further, for each �nite subword v of u, there is exactly

one pair (w ′, B ′) such that (w ′, B ′) v (w,B) and v ∈ γ(w ′, B ′).

Given a PRS in normal form, by tri(∆), par(∆), and seq(∆) we denote the system ∆

restricted to trivial, parallel, and sequential rules, respectively. A derivation in tri(∆)

is called a trivial derivation in ∆. In the following we write simply tri, par, seq as ∆ is
always clearly determined by the context.

De�nition 4.4. Let ∆ be a PRS in normal form and β(w,B,C) be a β-formula. The PRS ∆ is

in �at (w,B,C)-form if and only if for each X, Y ∈ Const(∆), each (w ′, B ′, C ′) v (w,B,C),

and each B ′′ ⊆ B, the following conditions hold:
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1. If there is a �nite derivation X u
−→ Y satisfying γ(w ′, B ′′), then there is also a �nite

derivation X v
−→tri Y satisfying γ(w ′, B ′′).

2. If there is a term t and a �nite derivation X u
−→ t satisfying γ(w ′, B ′′), then there is also

a constant Z and a �nite derivation X v
−→tri Z satisfying γ(w ′, B ′′).

3. If w ′ = ε and there is an in�nite derivation X u
−→ satisfying β(w ′, B ′, C ′), then there is

also an in�nite derivation X v
−→tri satisfying β(w ′, B ′, C ′).

4. If there is an in�nite derivation X u
−→par satisfying β(w ′, B ′, C ′), then there is also an

in�nite derivation X v
−→tri satisfying β(w ′, B ′, C ′);

5. If there is an in�nite derivation X u
−→seq satisfying β(w ′, B ′, C ′), then there is also an

in�nite derivation X v
−→tri satisfying β(w ′, B ′, C ′).

Intuitively, the system is in �at (w,B,C)-form if for every derivation of one of the
listed types there is an �equivalent� trivial derivation. All conditions of the de�nition
can be checked due to the following lemma, [Boz05], and decidability of LTL model
checking for PDA and PN. Lemma 4.6 says that every PRS in normal form can be trans-
formed into an �equivalent� �at system. Finally, the Lemma 4.9 says that if a PRS system
in �at (w,B,C)-form has an in�nite derivation satisfying β(w,B,C), then it has also a
trivial in�nite derivation satisfying β(w,B,C). Note that it is easy to check whether
such a trivial derivation exists.

Lemma 4.5. Given a γ-language γ(w,C), a PRS system ∆, and constants X, Y, the following

problems are decidable:

(i) Is there any derivation X u
−→ Y satisfying γ(w,C)?

(ii) Is there any derivation X u
−→ t such that t is a term and u ∈ γ(w,C)?

Proof. The problems can be reduced to the reachability problem for wPRS (i.e. to decide
whether given states p1t1, p2t2 of a given wPRS system ∆ ′ satisfy p1t1

v
−→∆ ′ p2t2 for

some v), which is known to be decidable [K �RS04a].

(i) Let w = a1O1 . . . anOn. We construct a wPRS ∆ ′ with the set of control states
{1, 2, . . . n} ∪ 2C. The set of rewrite rules is de�ned as follows. We use (n + 1) as
another name for the control state ∅.

• For every 1 ≤ i ≤ n and every rule t1
ai
↪→ t2 of ∆, we add to ∆ ′ the rule

it1
ai
↪→ (i+ 1)t2 and if Oi = U+ then also the rule it1

ai
↪→ it2.

13



• For every b ∈ C, every D ⊆ C, and every rule t1
b

↪→ t2 of ∆, we add to ∆ ′ the
rule Dt1

b
↪→ (D ∪ {b})t2.

Obviously, a word u ∈ Act∗ satis�es 1X u
−→∆ ′ CY if and only if it satis�es both

X
u

−→∆ Y and u ∈ γ(w,C). As we can decide whether 1X u
−→∆ ′ CY holds for some

u, we can decide Problem (i).

(ii) We construct a wPRS ∆ ′ as in the previous case. Moreover, for every Z ∈ Const(∆)

we add to ∆ ′ the rule CZ e
↪→ Cε. It is easy to see that if a word u ∈ γ(w,C)

satis�es X u
−→∆ t for some t, then 1X uem

−→∆ ′ Cε holds for somem ≥ 0. Conversely,
if 1X v

−→∆ ′ Cε holds for some v, then some pre�x u of v satis�es both u ∈ γ(w,C)

and X u
−→∆ t for some t. As we can decide whether 1X v

−→∆ ′ Cε holds for some v,
we can decide Problem (ii).

The proof of the following lemma contains the algorithmic core of this section.

Lemma 4.6. Let ∆ be a PRS in normal form and β(w,B,C) be a β-formula. One can construct

a PRS ∆ ′ in �at (w,B,C)-form such that for each (w ′, B ′, C ′) v (w,B,C) and each X ∈
Const(∆), ∆ ′ is equivalent to ∆ with respect to the existence of an in�nite derivation starting

from X and satisfying β(w ′, B ′, C ′).

Proof. In order to obtain ∆ ′, we describe an algorithm extending ∆ with trivial rewrite
rules in accordance with Conditions 1�5 of De�nition 4.4.

All conditions of De�nition 4.4 can be checked for each X, Y ∈ Const(∆), each
(w ′, B ′, C ′) v (w,B,C), and each B ′′ ⊆ B. For Conditions 1 and 2, this follows from
Lemma 4.5. The problem whether there is an in�nite derivation X u

−→ satisfying
β(ε, B ′, C ′) is a special case of the fairness problem, which is decidable due to [Boz05].
Finally, Conditions 4 and 5 can be checked due to decidability of LTL model checking
for PDA and PN. If there is a non-satis�ed condition, we add some trivial rules forming
the missing derivation.

Let us assume that Condition 3 (resp., 4 or 5) is not satis�ed, i.e. there exists an
in�nite derivation X u

−→ (resp. X u
−→par or X

u
−→seq) satisfying β(w ′, B ′, C ′) for some

(w ′, B ′, C ′) v (w,B,C) and violating the condition. Remark 4.2 implies that C ′ is
nonempty and there is a �nite derivation X v

−→∆ t satisfying γ(w ′, B ′). Hence, there
exists an ordering of B ′ = {b1, b2, . . . , bm} such that
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(*) for each 1 ≤ j ≤ m, there is a �nite derivation in ∆ starting from X and satisfying
γ(w ′, {b1, . . . , bj}).

Such an ordering can be effectively computed using Lemma 4.5. Further, let w ′ =

a1O1a2O2 . . . anOn and let C ′ = {c1, c2, . . . , ck}. Then, we add the trivial rule Zi−1
ai
↪→ Zi

for each 1 ≤ i ≤ n, the trivial rule Zn+j−1

bj
↪→ Zn+j for each 1 ≤ j ≤ m, and the trivial

rule Zn+m+j−1

cj
↪→ Zn+m+j for each 1 ≤ j ≤ k, where Z0 = X, Z1, . . . , Zn+m+k−1 are fresh

process constants, and Zn+m+k = Zn+m. These added rules form an in�nite derivation
using only trivial rules, starting from X, and satisfying β(w ′, B ′, C ′).

Similarly, if there are X, Y, and γ(w ′, B ′′) with w ′ = a1O1a2O2 . . . anOn such that
Condition 1 or 2 of De�nition 4.4 is violated, then we �rst compute an ordering
{b1, . . . , bm} of B ′′ satisfying (*), and then we add the trivial rule Zi−1

ai
↪→ Zi for each

1 ≤ i ≤ n, and the trivial rule Zn+j−1

bj
↪→ Zn+j for each 1 ≤ j ≤ m, where Z0 = X

and Z1, . . . , Zn+m are fresh process constants (with exception of Zn+m which is Y in the
case of Condition 1). The added trivial rules generate derivation X a1...anb1...bm−→ Zn+m

satisfying γ(w ′, B ′′).
Let ∆ ′′ be the PRS ∆ extended with the new rules. The condition (*) ensures that, for

each X ∈ Const(∆) and each (w ′, B ′, C ′) v (w,B,C), ∆ ′′ is equivalent to ∆ with respect
to the existence of an in�nite derivation starting from X and satisfying β(w ′, B ′, C ′).
If ∆ ′′ is not in �at (w,B,C)-form, then the algorithm repeats the procedure described
above on the system ∆ ′′ with the difference that X and Y range over the constants of
the original system ∆. The algorithm eventually terminates as the number of iterations
is bounded by the number of pairs of process constants X, Y of ∆, times the number of
triples (w ′, B ′, C ′) satisfying (w ′, B ′, C ′) v (w,B,C), and times the number of subsets
B ′′ ⊆ B. We claim that the resulting PRS ∆ ′ is in �at (w,B,C)-form. For the process
constants of the original system ∆, by construction ∆ ′ satis�es all conditions of De�ni-
tion 4.4. For the added constants, it is suf�cient to observe that any derivation in ∆ ′

starting from such a constant either is trivial or has a trivial pre�x leading to a constant
of ∆. Hence, ∆ ′ is the desired PRS system.

De�nition 4.7 (Subderivation). Let ∆ be a PRS in normal form and σ1 be a (�nite or in�nite)

derivation s1
a1−→ s2

a2−→ . . ., where s1
a1−→ s2 has the form X

a1−→ Y.Z and, for each i ≥ 2, if

si is not the last state of the derivation, then it has the form si = ti.Z with ti 6= ε. Then σ1 is

called a subderivation of a derivation σ if σ has a suf�x σ ′ satisfying the following:
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1. every transition step in σ ′ is of the form si‖t ′
ai−→ si+1‖t ′ or si‖t ′

b
−→ si‖t ′′, where

t ′
b

−→ t ′′,

2. in σ ′, if we replace every step of the form si‖t ′
ai−→ si+1‖t ′ by step si

ai−→ si+1 and we

skip every step of the form si‖t ′
b

−→ si‖t ′′, we get precisely σ1.

Further, if σ1 and σ are �nite, the last term of σ1 is a process constant, and σ is a pre�x of a

derivation σ ′, then σ1 is also a subderivation of σ ′.

Remark 4.8. Let ∆ be a PRS in normal form and σ be a derivation of ∆ having a suf�x σ ′ of the

form σ ′ = X‖t a
−→ (Y.Z)‖t u

−→. Then, there is a subderivation of σ whose �rst transition step

X
a

−→ Y.Z corresponds to the �rst transition step of σ ′.

Intuitively, the subderivation captures the behaviour of the subterm Y.Z since its
emergence until it is possibly reduced to a term without any sequential composition.
Due to the normal form of ∆, the subterm Y.Z behaves undependently on the rest of the
term (as long as it contains a sequential composition).

Lemma 4.9. Let ∆ be a PRS in �at (w,B,C)-form. Then, the following condition holds for each

X ∈ Const(∆) and each (w ′, B ′, C ′) v (w,B,C):

If there is an in�nite derivation X u
−→ satisfying β(w ′, B ′, C ′), then there is also an in�nite

derivation X v
−→tri satisfying β(w ′, B ′, C ′).

A sketch of the proof. Given an in�nite derivation σ satisfying a formula β(σ) =

β(w ′, B ′, C ′) where (w ′, B ′, C ′) v (w,B,C), by trivial equivalent of σ we mean an in-
�nite trivial derivation starting in the same term as σ and satisfying β(σ). Similarly,
given a �nite derivation σ satisfying some γ(σ) = γ(w ′, B ′) where (w ′, B ′) v (w,B), by
trivial equivalent of σwemean a �nite trivial derivation σ ′ such that σ ′ starts in the same
term as σ, it satis�es γ(σ), and if the last term of σ is a process constant, then the last
term of σ ′ is the same process constant.

The lemma is proven by contradiction. We assume that there exist some in�nite
derivations violating the condition of the lemma. Let σ be one of these derivations such
that the number of transition steps of σ generated by sequential non-trivial rules with
actions a 6∈ B is minimal (note that this number is always �nite as we consider deriva-
tions satisfying β(w ′, B ′, C ′) for some (w ′, B ′, C ′) v (w,B,C)). First, we prove that
every subderivation of σ has a trivial equivalent. Then we replace all subderivations of
σ by the corresponding trivial equivalents. This step is technically nontrivial because
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σ may have in�nitely many subderivations. By the replacement we obtain an in�nite
derivation σ ′ satisfying β(σ) and starting in the same process constant as σ. Moreover,
σ ′ has no subderivations and hence it does not contain any sequential operator. Flat
(w,B,C)-form of ∆ (Condition 4) implies that σ ′ has a trivial equivalent. This is also a
trivial equivalent of σ which means that σ does not violate the condition of our lemma.

Proof. In this proof, by β-formula we always mean a formula of the form β(w ′, B ′, C ′)

where (w ′, B ′, C ′) v (w,B,C). We also consider only in�nite derivations satisfying
some of these β-formulae. Remark 4.3 implies that such an in�nite derivation σ satis-
�es exactly one β-formula. We denote this β-formula by β(σ). Further, by SEQ(σ) we
denote the number of transition steps ti

a
−→ ti+1 of σ generated by a sequential non-

trivial rule and such that a 6∈ B. Note that SEQ(σ) is always �nite due to the restrictions
on considered in�nite derivations. Given an in�nite derivation σ, by its trivial equivalent
wemean an in�nite trivial derivation starting in the same term as σ and satisfying β(σ).

Similarly, we consider only �nite derivations satisfying some γ(w ′, B ′) where
(w ′, B ′) v (w,B). Remark 4.3 implies that such a �nite derivation σ satis�es exactly
one γ-language, which is denoted by γ(σ). Given a �nite derivation σ, by its trivial

equivalentwe mean a �nite trivial derivation σ ′ such that σ ′ starts in the same term as σ,
it satis�es γ(σ), and if the last term of σ is a process constant, then the last term of σ ′ is
the same process constant.

Using the introduced terminology, the lemma says that every in�nite derivation
starting in a process constant has a trivial equivalent. For the sake of contradiction, we
assume that the lemma does not hold. Let Σ be the set of in�nite derivations violating
the lemma and let k = min{SEQ(σ) | σ ∈ Σ}.

First of all, we prove two claims.

Claim 1. Let σ be an in�nite derivation satisfying SEQ(σ) ≤ k. Then every subderivation
of σ has a trivial equivalent.

Proof of the claim: For �nite subderivations, the existence of trivial equivalents follows
directly from the �at (w,B,C)-form of ∆ (Conditions 1 and 2). Let σ1 be an in�nite
subderivation of σ. It has the form σ1 = X

a
−→seq Y.Z

b1−→ t1.Z
b2−→ t2.Z

b3−→ . . . where
t1, t2, . . . are nonempty terms. There are two cases:

• If a ∈ B, then β(σ1) has the form β(ε, B ′, C ′). Hence, σ1 has a trivial equivalent
due to the �at (w,B,C)-form of ∆ (Condition 3).
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• If a 6∈ B, then the �rst step X
a

−→seq Y.Z of σ1 is counted in SEQ(σ1) and
the corresponding step X‖t ′ a

−→seq Y.Z‖t ′ of σ is counted in SEQ(σ). Hence,
0 < SEQ(σ). Let σ2 be the derivation σ2 = Y

b1−→ t1
b2−→ t2

b3−→ . . .. As
SEQ(σ2) < SEQ(σ1) ≤ k, the de�nition of k implies that σ2 has a trivial equiv-
alent σ ′

2 = Y
c1−→tri Y1

c2−→tri Y2
c3−→tri. Further, as σ ′

2 satis�es β(σ2), the derivation
σ ′
1 = X

a
−→seq Y.Z

c1−→tri Y1.Z
c2−→tri Y2.Z

c3−→tri . . . satis�es β(σ1). Moreover, the �at
(w,B,C)-form of ∆ (Condition 5) implies that σ ′

1 has a trivial equivalent. Obvi-
ously, it is also a trivial equivalent of σ1.

Claim 2. Let σ be an in�nite derivation such that SEQ(σ) ≤ k, it starts in a paral-
lel term p, and it satis�es a formula β(w ′, B ′, C ′). Then there is an in�nite derivation
p

u
−→par p

′ v
−→ such that p ′ is a parallel term, u ∈ γ(w ′, B ′), and v satis�es β(ε, C ′, C ′).

Proof of the claim: Remark 4.2 implies that σ can be written as p u1−→ t
u2−→ where p u1−→ t

is theminimal pre�x of σ satisfying γ(w ′, B ′) and such that t u2−→ satis�esβ(ε, C ′, C ′). Let
S̃EQ(σ) denote the number of transition steps in the pre�x p u1−→ t generated by sequen-
tial non-trivial rules (note that S̃EQ(σ) ≥ SEQ(σ)). We prove the claim by induction on
S̃EQ(σ). The base case S̃EQ(σ) = 0 is obvious. Now, assume that S̃EQ(σ) > 0. Since p
is parallel term and ∆ is in normal form, the �rst transition step of p u1−→ t counted in
S̃EQ(σ) has the form Y‖p ′ a

−→ (W.Z)‖p ′ and it corresponds to the �rst transition step
Y

a
−→ W.Z of a subderivation σ1. In σ, we replace the subderivation σ1 with its trivial

equivalent (whose existence is guaranteed by Claim 1) and we obtain a new derivation
σ ′′ starting from p, satisfying β(σ) and such that S̃EQ(σ ′′) < S̃EQ(σ). Hence, the second
claim directly follows from the induction hypothesis. In the following, we describe the
replacement of such a subderivation.

Let σ1 = Y
u

−→ and σ ′
1 = Y

v
−→tri be its trivial equivalent. Let β(σ1) =

β(c1O1c2O2 . . . cnOn, B
′′, C ′′). Then u, v ∈ c+

1 c
+
2 . . . c

+
n .B

ω. Recall that c1, c2, . . . , cn are
pairwise distinct and B ⊆ Act r {c1, . . . , cn}. Intuitively, for every 1 ≤ i ≤ n, we replace
the �rst transition step of σ1 labelled with ci by the sequence of transition steps of σ ′

1

labelled with ci, and then we cancel the other transition steps of σ1 labelled with ci.2

2By replacement of a transition step s1 a
−→ s2 of σ1 by a sequence Y1

v ′

−→tri Y2 of transition steps of
σ ′

1 we mean that the corresponding transition step s1‖t ′ a
−→ s2‖t ′ of σ is replaced by Y1‖t ′

v ′

−→tri Y2‖t ′,
and all immediately succeeding steps s2‖t ′′ b

−→ s2‖t ′′′ of σ are replaced by Y2‖t ′′
b

−→ Y2‖t ′′′. Further, by
cancellation of a transition step s1 ci−→ s2 of σ1 we mean that the corresponding transition step s1‖t ′ ci−→
s2‖t ′ of σ is replaced by Y2‖t ′, where Y2 is the last process constant of σ ′

1 such that a transition under ci

leads to Y2, and all immediately succeeding steps s2‖t ′′ b
−→ s2‖t ′′′ of σ are replaced by Y2‖t ′′

b
−→ Y2‖t ′′′.
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Further, the �rst transition step of σ1 labelled with an action of B is replaced with the
minimal pre�x of the remaining part of σ ′

1 satisfying γ(ε, B ′′). Finally, the remaining
transition steps of σ1 are orderly replaced with the remaining transition steps of σ ′

1. The
case when σ1 and its trivial equivalent σ ′

1 are �nite is similar.
It is easy to see that the described replacement operation preserves the ful�llment of

β(σ) and the obtained derivation σ ′′ satis�es S̃EQ(σ ′′) < S̃EQ(σ).

With this claim, we can easily reach a contradiction. Let σ = X
u

−→ be an in�nite
derivation such that SEQ(σ) = k and it has no trivial equivalent. Further, let β(σ) =

(w ′, B ′, C ′). Note that C ′ is nonempty. Claim 2 says that there is a derivation X u1−→par

p1
v1−→ where p1 is a parallel term, u1 ∈ γ(w ′, B ′), and v1 satis�es β(ε, C ′, C ′). Applying

the second claim on the suf�x p1
v1−→, we get a derivation p1

u2−→par p2
v2−→ where p2 is a

parallel term, u2 ∈ γ(ε, C ′), and v2 satis�es β(ε, C ′, C ′). Iterating this argument, we get
a sequence (pi

ui+1
−→par pi+1)i∈N of derivations satisfying γ(ε, C ′). These derivations are

nonempty as C ′ is nonempty. Let us consider the derivation

σ ′ = X
u1−→par p1

u2−→par p2
u3−→par p3

u4−→par . . .

Flat (w,B,C)-form of ∆ (Condition 4) implies that σ ′ has a trivial equivalent. However,
this is also a trivial equivalent of σ as both σ, σ ′ start with X and σ ′ satis�es β(σ). This
is a contradiction.

Theorem 4.10. The problem whether a given PRS ∆ in normal form has an in�nite run satis-

fying a given formula β(w,B,C) is decidable.

Proof. Due to Lemmata 4.6 and 4.9, the problem can be reduced to the problem whether
there is an in�nite derivation X v

−→tri satisfying β(w,B,C). This problem corresponds
to LTL model checking of �nite-state systems, which is decidable.

The following three theorems show that Theorem 4.10 holds even for wPRS and α-
formulae.

Theorem 4.11. The problem whether a given PRS ∆ in normal form has an in�nite run satis-

fying a given α-formula is decidable.

Proof. Let ∆ be a PRS in normal form and α(θ1O1 . . . θnOnξ,B) be an α-formula. For
every θi and every rule t1

b
↪→ t2 such that b satis�es θi, we add a rule t1

ai
↪→ t2, where

ai is a fresh action corresponding to θi. Similarly, for every ψ ∈ B ∪ {ξ} and every rule
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t1
b

↪→ t2 such that b satis�es ψ ∧ ξ, we add a rule t1
aψ
↪→ t2, where aψ is a fresh action.

Let ∆ ′ be the resulting PRS system. Note that ∆ ′ is also in normal form. Obviously,
∆ has an in�nite run satisfying the original α-formula if and only if ∆ ′ has an in�nite
run satisfying α(a1O1 . . . anOn(aξ ∨

∨
b∈C b), C), where C = {aψ | ψ ∈ B}. It is an

easy exercise to show that this new α-formula can be effectively transformed into a
disjunction of β-formulae which is equivalent with respect to in�nite words. Hence, the
problem is decidable due to Theorem 4.10.

Theorem 4.12. The problem whether a given PRS ∆ has an in�nite run satisfying a given

α-formula is decidable.

Proof. Let ∆ be a PRS, α(δ,B) be an α-formula, and e 6∈ Act(∆) be a fresh action. First
we describe our modi�cation of the standard algorithm [May00] that transforms ∆ into
a PRS in normal form.

If ∆ is not in normal form, then there exists a rule r which is neither parallel nor
sequential; r has one of the following forms:

1. r = t
a

↪→ t1‖t2 (resp., r = t1‖t2
a

↪→ t) where t or t1 or t2 is not a parallel term. Let
Z1, Z2, Z 6∈ Const(∆) be fresh process constants. We replace rwith the rules t e

↪→ Z,
Z

a
↪→ Z1‖Z2, Z1

e
↪→ t1, and Z2

e
↪→ t2 (resp., t1

e
↪→ Z1, t2

e
↪→ Z2, Z1‖Z2

a
↪→ Z, and

Z
e

↪→ t).

2. r = t
a

↪→ t1.(t2‖t3) (resp., r = t1.(t2‖t3)
a

↪→ t). Let Z 6∈ Const(∆) be a fresh process
constant. We modify ∆ in two steps. First, we replace t2‖t3 by Z in left-hand and
right-hand sides of all rules of∆. Then, we add the rules Z e

↪→ t2‖t3 and t2‖t3
e

↪→ Z.

3. r = t1
a

↪→ t2.X (resp., r = t2.X
a

↪→ t1) where t1 or t2 is not a process constant. Let
Z1, Z2 6∈ Const(∆) be fresh process constants. We replace r with the rules t1

e
↪→ Z1,

Z1
a

↪→ Z2.X, and Z2
e

↪→ t2 (resp., t2
e

↪→ Z2, Z2.X
a

↪→ Z1, and Z1
e

↪→ t1).

After a �nite number of applications of this procedure (with the same action e), we
obtain a PRS ∆ ′ in normal form.

We de�ne a formula α(δ ′,B ′), where B ′ = B ∪ {
∨
a∈Act(∆) a} and δ ′ arises from δ =

θ1O1 . . . θnOnξ by the following substitution for every 1 ≤ i ≤ n.

• If Oi is U, then replace the pair θi U by the pair (e∨ θi) U .

• If Oi is U+, then replace the pair θi U+ by the sequence (e∨ θi) U θi U+ .

20



• If Oi is ∧ X, then replace the pair θi ∧ X by the sequence eU θi ∧ X.

• θnOn = θn ∧ Gs is replaced by the sequence eU θn ∧ Gs.

• ξ is replaced by (ξ∨ e).

Let us note that the construction of B ′ ensures that any word with a suf�x eω does
not satisfy α(δ ′,B ′). Observe that u ′ |= α(δ ′,B ′) if and only if u |= α(δ,B), where u is
obtained from u ′ by eliminating all occurrences of action e.

Clearly, ∆ has an in�nite run satisfying α(δ,B) if and only if ∆ ′ has an in�nite run
satisfying α(δ ′,B ′). As ∆ ′ is in normal form, we can now apply Theorem 4.11.

Theorem 4.13. The problem whether a given wPRS system has an in�nite run satisfying a

given α-formula is decidable.

Proof. Let ∆ be a wPRS with initial state p0X0 and α(δ,B) be an α-formula. We construct
a PRS ∆ ′ with initial state X0 which can simulate ∆. We also de�ne set of formulae
recognizing correct simulations.

The system ∆ ′ is very similar to ∆. We only change actions of rules to hold infor-
mation about control states in the rules and then we remove all control states. More
precisely, for every rule of the form pt1

a
↪→ pt2 of ∆ we add to ∆ ′ the rule t1

a[p]

↪→ t2, and
for every rule of the form pt1

a
↪→ qt2 of ∆ we add to ∆ ′ the rule t1

a[p<q]

↪→ t2.
Further, we modify the formula α(δ,B) such that every occurrence of each action a

is replaced by
∨
q∈M(∆)(a[q] ∨

∨
p<q a[p<q]). Let α(δ ′,B ′) be the resulting formula.

Moreover, for every sequence p1 < p2 < . . . < pk of control states ofM(∆) such that
p1 = p0, we de�ne an α-formula

ϕ[p1<p2<...<pk] = α(θ[p1] U θ[p1<p2] ∧ X θ[p2] U θ[p2<p3] ∧ X . . . θ[pk−1<pk] ∧ Gsθ[pk], ∅)

where θ[pi] =
∨
a∈Act(∆) a[pi] and θ[pi<pj] =

∨
a∈Act(∆) a[pi<pj].

It is easy to see that there is an in�nite run of ∆ satisfying α(δ,B) if and only if
there is an in�nite run of ∆ ′ satisfying α(δ ′,B ′) and ϕ[p1<p2<...<pk] for some sequence
p1 < p2 < . . . < pk. As the number of such sequences is �nite and each ϕ[p1<p2<...<pk]

is an α-formula, Theorem 4.12 and Lemma 3.1 imply that the considered problem is
decidable.

As LTL(Fs,Gs) is closed under negation, Theorems 3.2, 4.1, and 4.13 give us the fol-
lowing.
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Corollary 4.14. The model checking problem for wPRS and LTL(Fs,Gs) is decidable.

This problem is EXPSPACE-hard due to EXPSPACE-hardness of the model check-
ing problem for LTL(F,G) for PN [Hab97]. Our decidability proof does not provide any
primitive recursive upper bound as it employs LTL model checking for PN, for which
no primitive recursive upper bound is known.

5 Undecidability results

Obviously, the model checking for wPRS and LTL(X) is decidable. Hence, to show
that the decidability boundary of Figure 2 is drawn correctly, we have to prove that
the model checking problem is undecidable for the class PA and fragments LTL(U) and
LTL(

∞
F, X). The undecidability proofs are based on reduction from the non-halting prob-

lem for Minsky 2-counter machines, which is known to be undecidable [Min67].
We recall a de�nition of Minsky machines �rst. A Minsky 2-counter machine, or a

machine for short, is a �nite sequence N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt, where
n ≥ 1, l1, l2, . . . , ln are labels, and each ij is an instruction for

• increment: ck:= ck+1; goto lr, or

• test-and-decrement: if ck>0 then ck:= ck-1; goto lr else goto ls

where k ∈ {1, 2} and 1 ≤ r, s ≤ n.
The machine N induces a transition relation −→ over con�gurations of the form

(lj, v1, v2), where lj is a label of an instruction to be executed and v1, v2 ≥ 0 represent
current values of counters c1 and c2, respectively.

We say that the machineN halts if there are numbers v1, v2 ≥ 0 such that (l1, 0, 0) −→
∗(ln, v1, v2). The non-halting problem is to decide whether a given machine N does not
halt. The problem is undecidable [Min67].

Theorem 5.1. Model checking of PA against LTL(U) is undecidable.

Proof. Given a machineN, we construct a PA system ∆N with initial termD1‖D2‖H and
set of rules containing

• for every instruction li : ck:= ck+1; goto lr, the rules

Dk
li
↪→ Sk.Dk Ck

li
↪→ Sk.Ck Sk

inci
↪→ Ck.Sk
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• for every instruction li : if ck>0 then ck:= ck-1; goto lr else goto ls, the
rules

Dk
li
↪→ Ek Ek

zeroi
↪→ Dk Ck

li
↪→ ε Sk

deci
↪→ ε

• the rule H ln
↪→ H corresponding to instruction ln : halt.

Now, we de�ne a formula ψ describing a correct step of the constructed PA when sim-
ulating machine N.

ψ =
∧

each li:ck:= ck+1; goto lr

(
(li =⇒ (li U inci)) ∧ (inci =⇒ (inci U lr))

)
∧∧

each li:if ck>0 then ck:= ck-1; goto lr else goto ls

(
(li =⇒ (li U (deci ∨ zeroi)))

∧ (deci =⇒ (deci U lr))

∧ (zeroi =⇒ (zeroi U ls))
)

Finally, we set ϕ = l1 ∧ (ψU ln). It is easy to see that machine N halts if and only if the
system ∆N has a run satisfying ϕ. In other words, the machine N does not halt if and
only if L(∆N) |= ¬ϕ.

Theorem 5.2. Model checking of PA against LTL(
∞
F,X) is undecidable.

Proof. Given a machine N = l1 : i1, l2 : i2, . . . , ln−1 : in−1, ln : halt, we construct a PA
system ∆N with initial term D1‖D2‖H and set of rules containing

• for every instruction li : ck:= ck+1; goto lr, the rules

Dk
inci
↪→ Ck.Dk Ck

inci
↪→ Ck.Ck

• for every instruction li : if ck>0 then ck:= ck-1; goto lr else goto ls, the
rules

Dk
zeroi
↪→ Dk Ck

deci
↪→ ε

• rules corresponding to halt and instruction labels

H
halt
↪→ H H

li
↪→ H for every 1 ≤ i ≤ n

• and the rules allowing to reset the counters

C1
del1
↪→ ε C2

del2
↪→ ε D1

reset1
↪→ D1 D2

reset2
↪→ D2

As in the previous proof, we de�ne a formula ψ describing a correct step of the con-
structed PA when simulating machine N.
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ψ =
∧

each li:ck:= ck+1; goto lr

(
(li =⇒ Xinci) ∧ (inci =⇒ Xlr)

)
∧∧

each li:if ck>0 then ck:= ck-1; goto lr else goto ls

(
(li =⇒ X(deci ∨ zeroi))

∧ (deci =⇒ Xlr)

∧ (zeroi =⇒ Xls)
)

∧ (ln =⇒ Xhalt)

Moreover, we de�ne a formula ρ describing a correct step of resetting counters and
restarting the simulation.

ρ = (halt =⇒ X(del1 ∨ reset1)) ∧ (del1 =⇒ X(del1 ∨ reset1))

∧ (reset1 =⇒ X(del2 ∨ reset2)) ∧ (del2 =⇒ X(del2 ∨ reset2))

∧ (reset2 =⇒ Xl1)

The formula ϕ =
∞
G(ψ ∧ ρ) ∧

∞
Fhalt says that at some point the halt action occurs, both

counters are reset, a correct simulation is started, and whenever the simulation ends
(with halt action), this sequence of events is performed again. Moreover, note that ϕ is
satis�ed only if the action halt appears in�nitely many times. Hence, there is a run of
∆N satisfying ϕ if and only if N halts. In other words, the machine N does not halt if
and only if L(∆N) |= ¬ϕ.

In the proofs of the previous two theorems, the PA systems constructed there have
only in�nite runs. This means that model checking of in�nite runs remains undecidable
for PA and both LTL(

∞
F,X) and LTL(U). However, note that model checking of �nite runs

against LTL(
∞
F,X) is decidable, even for wPRS. The proof is based on the observation

that a nonempty �nite run satis�es
∞
Fϕ if and only if the last action of the run satis�esϕ.

The same holds for the formula
∞
Gϕ. Hence, if we restrict only to nonempty �nite runs,

the modalities
∞
F,

∞
G are equivalent. The observation also implies that

∞
F¬ϕ is equivalent

to ¬
∞
Fϕ,

∞
F(ϕ1 ∧ ϕ2) is equivalent to (

∞
Fϕ1) ∧ (

∞
Fϕ2),

∞
F

∞
Fϕ is equivalent to

∞
Fϕ, and

that
∞
FXϕ never holds. It is now easy to see that every LTL(

∞
F,X) formula can describe

only a bounded pre�x of a �nite run (using the modality X) and the last action of the
run. Thus, decidability of model checking of �nite runs against LTL(

∞
F,X) follows from

decidability of the reachability Hennessy-Milner property problem [K �RS05].

6 Conclusion

We have established the decidability border of model checking of wPRS classes and ba-
sic fragments of future LTL (see Figure 2) by showing that the model checking problem
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of wPRS against LTL(Fs,Gs) is decidable, while the same problem for PA and LTL(U)

or LTL(X,
∞
F) is undecidable. So far, only two positive results on LTL model checking of

PA (and classes subsuming PA) have been published: decidability of model checking of
in�nite runs for PRS and LTL fragment of fairness properties [Boz05] and decidability
of the same problem for PA and simple PLTL2 [BH96]. Note that the fairness fragment
and the regular part of simple PLTL2 are strictly less expressive than LTL(F,G) (also
known as Lamport logic), which is again strictly less expressive than LTL(Fs,Gs). We
also emphasize that our positive result for LTL(Fs,Gs) deals with both �nite and in�nite
runs, and with wPRS rather than PRS or PA only.

It is also worth mentioning that our proof techniques differ from those used
in [Boz05] and [BH96]. The decidability proof for LTL(Fs,Gs) is based on the auxiliary
result saying that model checking for wPRS and negated A fragment is decidable. In
fact, this auxiliary result is very powerful. We conjecture that it also implies decidabil-
ity of the model checking problem of wPRS and the common fragment of CTL and LTL
called LTLdet [Mai00]. Note that LTLdet is semantically incomparable with LTL(Fs,Gs).

Unfortunately, our results are insuf�cient to establish the decidability border for ba-
sic LTL fragments with both future and past modalities. Indeed, fragments LTL(Fs,Ps)

and LTL(F,P), where P,Ps are past counterparts of F,Fs respectively, do not semanti-
cally coincide with any fragment of Figure 2 and decidability of the model checking
problem for these two fragments and all wPRS classes subsuming PA is an open ques-
tion. However, we conjecture that our technique can be adopted to answer this question
positively.
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