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Abstract

We establish a decidability boundary of the model checking problem for infinite-
state systems defined by Process Rewrite Systems (PRS) or weakly extended Process
Rewrite Systems (WPRS), and properties described by basic fragments of action-
based Linear Temporal Logic (LTL). It is known that the problem for general LTL
properties is decidable for Petri nets and for pushdown processes, while it is unde-
cidable for PA processes. As our main result, we show that the problem is decidable
for wPRS if we consider properties defined by formulae with only modalities strict
eventually and strict always. Moreover, we show that the problem remains undecid-
able for PA processes even with respect to the LTL fragment with the only modality

until or the fragment with modalities next and infinitely often.

*This is a full version of the paper [BKRS06] accepted for FSTTCS 2006.



1 Introduction

Automatic verification of current software systems often needs to model them as
infinite-state systems. One of the most powerful formalisms for description of infinite-
state systems (except formalisms with Turing power for which nearly all interesting ver-
ification problems are undecidable) is called Process Rewrite Systems (PRS) [May00]. The
PRS framework, based on term rewriting, subsumes many formalisms studied in the
context of formal verification, e.g. Petri nets (PN), pushdown processes (PDA), and process
algebras like BPA, BPP, or PA. PRS can be adopted as a formal model for programs with
recursive procedures and restricted forms of dynamic creation and synchronization of
concurrent processes. A substantial advantage of PRS is that some important verifica-
tion problems are decidable for the whole PRS class. In particular, Mayr [May00] proved
that the reachability problem (whether a given state is reachable) and the reachable property
problem (whether there is a reachable state where some given actions are enabled and
some given actions are disabled) are decidable for PRS.

In [KRS04b], we have presented weakly extended PRS (WPRS), where a finite-state
control unit with self-loops as the only loops is added to the standard PRS formalism
(addition of a general finite-state control unit makes PRS Turing powerful). This control
unit enriches PRS by abilities to model a bounded number of arbitrary communica-
tion events and global variables whose values are changed only a bounded number of
times during any computation. We have proved that the reachability problem remains
decidable for wPRS [KRS04a] and that the problem called reachability Hennessy—Milner
property (whether there is a reachable state satisfying a given Hennessy—Milner formula)
is decidable for wPRS as well [KRS05]. The hierarchy of all PRS and wPRS classes is de-
picted in Figure 1.

Concerning the model checking problem, a broad overview of (un)decidability re-
sults for subclasses of PRS and various temporal logics can be found in [May98]. Here
we focus exclusively on (future) Linear Temporal Logic (LTL). It is known that LTL model
checking of PDA is EXPTIME-complete [BEM97]. LTL model checking of PN is also de-
cidable, but at least as hard as the reachability problem for PN [Esp94] (the reachability
problem is EXPSPACE-hard [May84, Lip76] and no primitive recursive upper bound
is known). If we consider only infinite runs, then the problem for PN is EXPSPACE-
complete [Hab97, May98].



Conversely, LTL model checking is undecidable for all classes subsuming PA [BH96,
May98]. So far, there are only two positive results for these classes. Bouajjani and Haber-
mehl [BH96] have identified a fragment called simple PLTLg for which model checking
of infinite runs is decidable for PA (strictly speaking, simple PLTLg is not a fragment
of LTL as it can express also some non-regular properties, while LTL cannot). Only re-
cently, we have demonstrated that model checking of infinite runs is decidable for PRS
and the fragment of LTL capturing exactly fairness properties [Boz05].

Our contribution: This paper completely locates the decidability boundary of the
model checking problem for all subclasses of PRS (and wPRS) and all basic LTL frag-
ments, where a basic LTL fragment is a set of all formulae containing only a given subset
of standard modalities. The boundary is depicted in Figure 2. To locate the boundary,

we show the following results.

1. We introduce a new LTL fragment A and prove that every formula of the basic
fragment LTL(F;, Gs) (i.e. the fragment with modalities strict eventually and strict
always only) can be effectively translated into A. As LTL(F;, Gs) is closed under

negation, we can also translate LTL(Fs, Gs) formulae into negated formulae of A.

2. We show that model checking (of both finite and infinite runs) of wPRS against
negated formulae of A is decidable. The proof employs our results presented
in [Boz05, KRS04a, KRS05] to reduce the problem to LTL model checking for PDA
and PN. Thus we get decidability of model checking for wPRS against LTL(Fs, Gs).
Note that LTL(F, Gs) is strictly more expressive than the Lamport logic (i.e. the ba-
sic fragment with modalities eventually and always), which is again strictly more
expressive than the mentioned fragment of fairness properties and also than the

regular part of simple PLTL.

3. We demonstrate that the model checking problem remains undecidable for PA
even if we consider the basic fragment with modality until or the basic fragment
with modalities next and infinitely often (which is strictly less expressive than the

one with next and eventually).

The paper is organized as follows. The following section recalls basic definitions.
Sections 3, 4, and 5 correspond, respectively, to the three results listed above. The last
section discuss other potential applications of our results and it contains an open ques-

tion driving our future research.



2 Preliminaries

2.1 PRS and its extensions

Let Const ={X, ...} be a set of process constants. The set of process terms t is defined by the
abstract syntax t == ¢ | X | t.t | t||t, where ¢ is the empty term, X € Const, and ’.” and ’||’
mean sequential and parallel compositions, respectively. We always work with equivalence
classes of terms modulo commutativity and associativity of ’||’, associativity of ’.”, and

neutrality of ¢, i.e. e.t = t.e = t[|e =t. We distinguish four classes of process terms as:
1 —terms consisting of a single process constant, in particular, ¢ ¢ 1,

S —sequential terms - terms without parallel composition, e.g. X.Y.Z,

P — parallel terms - terms without sequential composition, e.g. X||Y||Z,

G — general terms - terms without any restrictions, e.g. (X.(Y||Z))||W.

Let M ={o,p, q, ...} be a set of control states, < be a partial ordering on this set, and
Act = {a,b,c,...} be a set of actions. Let «,3 € {1,S,P, G} be classes of process terms
such that « C (3. An («, 3)-wPRS (weakly extended process rewrite system) A is a tuple
(R, po, Xo), where

e R s a finite set of rewrite rules of the form (p,t;) < (q,t2), where t; € «, t1 # ¢,

t, € B, a € Act,and p, q € M are control states satisfying p < q,
e the pair (po, Xo) € M x Const forms the distinguished initial state.

By Act(A), Const(A), and M(A) we denote the sets of actions, process constants, and
control states occurring in the rewrite rules or the initial state of A, respectively.

An («, 3)-wPRS A = (R,po, Xo) induces a labelled transition system, whose states
are pairs (p,t) such that p € M(A) is a control state and t € 3 is a process term over

Const(A). The transition relation —a, is the least relation satisfying the following infer-

ence rules:
((p,t1)<i>(q,t2))€A (p,t1) —a (g, t2) (p,t1) —a (g, t2)
(P, t1) —a (q,t2) (p, tallt]) —=a (g, t2[t])  (p,t1.t)) —>a (g, t2.t])

Sometimes we write — instead of — if A is clear from the context. The transition
relation can be extended to finite words over Act in a standard way. To shorten our

notation we write pt in lieu of (p, t). A state ptis called terminal, written pt —/-,, if there
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Figure 1: The hierarchy of PRS and wPRS subclasses.

is no state p’t’ and action a such that pt —, p’t’. In this paper we always consider

only systems where the initial state is not terminal. A (finite or infinite) sequence

(e8] az an an+]
o=p1ti —a P2tz —a ... /A Pnritnn ( —A - >

is called derivation over the word w = a1a, ... an(any1...) in A. Finite derivations are also
denoted as pit; 50 Pni1tngt, infinite as pity —51. A derivation in A is called a run of
A if it starts in the initial state poXo and it is either infinite, or its last state is terminal.
Further, L(A) denotes the set of words u such that there is a run of A over u.

An («x, 3)-wPRS A where M(A) is a singleton is called (o, 3)-PRS (process rewrite
system) [May00]. In such systems we omit the single control state from rules and states.

Some classes of («, 3)-PRS correspond to widely known models, namely finite-state
systems (FS), basic process algebras (BPA), basic parallel processes (BPP), process algebras (PA),
pushdown processes (PDA), and Petri nets (PN). The other classes have been named as
PAD, PAN, and PRS. The relations between («, 3)-PRS and the mentioned formalisms
and names are indicated in Figure 1. Instead of («, 3)-wPRS we juxtapose the prefix ‘w-
" with the acronym corresponding to the («, 3)-PRS class. For example, we use wBPA
rather than (1, S)-wPRS. Figure 1 shows the expressiveness hierarchy of all considered
classes, where expressive power of a class is measured by the set of transition systems

that are definable (up to the strong bisimulation equivalence [Mil89]) by the class. This



hierarchy is strict, with a potential exception concerning the classes wPRS and PRS,
where the strictness is just our conjecture. For details see [KRS04b, KRS04a].
For technical reasons, we define a normal form of wPRS systems. A rewrite rule is

parallel or sequential if it has one of the following forms:

Parallel rules:  pXi|Xa|| ... [ Xn < qYVq|[Yal...[[Ym
Sequential rules: pX < qY.Z pX.Y < qZ pX < qYy pX < qe

where X, Y, Xy,Y;,Z € Const, p,qg € M,n >0, m >0, and a € Act. A rule is called trivial
if it is both parallel and sequential (i.e. it has the form pX < qY or pX <5 qe). A wPRS

A is in normal form if it has only parallel and sequential rewrite rules.

2.2 Linear Temporal Logic (LTL) and studied problems

The syntax of Linear Temporal Logic (LTL) [Pnu77] is defined as follows

pu=ttlal e eANe | Xp | eUg,

where a ranges over Act, X is called next, and U is called until. The logic is in-
terpreted over infinite as well as nonempty finite words of actions. Given a word
u=u(0)u(Mu(2)... € Act*UAct®, |u| denotes the length of the word (we set |u| = coif u
is infinite). Forall 0 < i < [u, by u; we denote the i*" suffix of u, i.e. uy = u(i)u(i+1)....

The semantics of LTL formulae is defined inductively as follows:

upEtt

ukEa iff u(0)=a

ukE—@ iff upto

uE @i NA@y iff uEg@randuk @,

upE Xo iff Ju/>Tanduy E o

uE @U@, iff I0<i<pul.(uyiE@andV0<j<i.ujk=oq)

We say that a nonempty word u satisfies ¢ whenever u = @. Given a set of words L,
we write L = ¢ if u = ¢ holds for all u € L. We say that a derivation (or run) o over a
word u satisfies ¢, written 0 = ¢, whenever u = .

Moreover, we define the following modalities: Fo (eventually) standing for ttU ¢,
G (always) standing for —F—¢, K@ (strict eventually) standing for XF¢, Gs@ (strict
always) standing for ~F—o, Olgcp (infinitely often) standing for GF e, E(p (almost always)
standing for ﬁolgﬁ(p. Note that Fo is equivalent to ¢ V K¢ but k¢ cannot be expressed
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Figure 2: The hierarchy of basic fragments with model checking decidability boundary.

with F as the only modality. Thus K is “stronger” than F. The relation between Gs and
G is similar.

Foraset{Oy,...,0n} of modalities, LTL(Oy, ..., O,) denotes the LTL fragment con-
taining all formulae with modalities Oy,..., Oy only. Such a fragment is called basic.
Figure 2 shows an expressiveness hierarchy of all studied basic LTL fragments. In-
deed, every basic LTL fragment using standard! future modalities is equivalent to one
of the fragments in the hierarchy, where equivalence between fragments means that ev-
ery formula of one fragment can be effectively translated into a semantically equivalent
formula of the other fragment and vice versa. For example, LTL(F;, Gs) = LTL(FK). Fur-
ther, the hierarchy is strict. For detailed information about expressiveness of future LTL

modalities and LTL fragments we refer to [Str04].

Let F be an LTL fragment and C be a class of wPRS systems. The model checking
problem for F and C is to decide whether a given formula ¢ € F and a given system
A € C satisfies L(A) = ¢. We also mention the problem called model checking of infinite

runs, where L(A) N Act® = ¢ is examined.

!By standard modalities we mean the ones defined in this paper and also other commonly used modal-
ities like strict until, release, weak until, etc. However, it is well possible that one can define a new modality

such that there is a basic fragment not equivalent to any of the fragments in the hierarchy.



3 Fragment A and translation of LTL(K;, G¢) into A

The A fragment consists of finite disjunctions of x-formulae defined as follows.

Recall that LTL() denotes the fragment of formulae without any modality,
i.e. boolean combinations of actions. In the following we use ¢ U, ¢, to abbreviate
©1 AN X(@1Uq@y). Let 5 = 0,010,0,...0,0,,0,..1, where n > 0, each 8; € LTL(), O, is
‘ANGy’, and, for each i < n, O; is either ‘U’” or ‘U, or ‘A X’. Further, let B C LTL() be a
finite set. An a-formula is defined as

«(8,8) = (8101(020... (040nOn11)...)) A /\ GsFtb
peB

Hence, a word u satisfies «(9, B) iff u can be written as u;.u,. - - - .u,1, where
e each u; consists only of actions satisfying 6; and
- lwl >0ifi=n+1orO;is ‘U,
- |luy > 0if Oyis ‘U,
- lul =T1if O;is ‘AX or ‘AGy’,
o and u, . satisfies GsR for every P € 5.

Proof of the following lemma is a simple exercise.

Lemma 3.1. A conjunction of a-formulae can be effectively converted into an equivalent dis-

junction of «-formulae.

Theorem 3.2. Every LTL(Fs, Gs) formula can be translated into an equivalent disjunction of

o-formulae.

Proof. As Fs and G are dual modalities, we can assume that every LTL(FK, Gs) formula
contains negations only in front of actions. Given an LTL(F, Gs) formula ¢, we con-
struct a finite set A, of a-formulae such that ¢ is equivalent to disjunction of formulae
in A,. Although our proof looks like induction on structure of ¢, it is in fact induc-
tion on the length of ¢. Thus, if ¢ ¢ LTL(), then we assume that for every LTL(F, Gs)
formula ¢’ shorter than ¢ we can construct the corresponding set A . In this proof, p

represents a formula of LTL(). The structure of ¢ fits into one of the following cases.

ep Case p: In this case, ¢ is eqvivalent to p A Gstt. Hence A, = {o(p A Gstt, D)}



oV Case @1V ¢, Due to induction hypothesis, we can assume that we have sets A,
and A,. Clearly, A, = Ay, UA,,.

o/\ Case @; /A @,: Due to Lemma 3.1, the set A, can be constructed from the sets A,
and A,.

o Case Rt AsK(oi V) = (o) V (Ray) and K(a A GsRd) = () A (GsKod),
weset A, ={a(ttU;8,B) | «(d,B) € Ay, .

oG Case Gsq: This case is divided into the following subcases according to the struc-

ture of ;.

op Case Gsp: As Ggp is equivalent to tt A Gsp, we set A, = {ox(tt A Ggp, 0) 1.
o/\ Case Gs(@2 N\ @3): As Gs(@2 N\ @3) = (Gs@2) A (Gs@3), the set A, can be

constructed from Ag,,, and Ag,,, using Lemma 3.1. Note that Ag,,, and

Acse; can be constructed because Gs¢, and Ggsg3 are shorter than Gs(¢@, A
©3).

oFs Case GsR@y: This case is again divided into the following subcases.

—p Case GsFp: Asp € LTL(), we directly set A, = {o(tt A\ Gstt, {p})}.
—V Case GsFs(@3V @4): As GsK(@3V @4) = (GsKs@3) V (GsR@s), we set
Ap = Acshs UAGR s
—/\ Case GsFs(@3 A @4): This case is also divided into subcases depending
on the formulae @3 and 4.
*p Case GsFs(p3/\pa): Asp3/Aps € LTL(), this subcase has already been
covered by Case GsKp.
*V Case GsFs(@3 N\ (@05 V @¢)): As GsKs(@3 N (@5 V @¢)) = GsKs(@3 A
©s5) V GsR(p3 A\ @), we set Ay = Ak (p3A05) Y AGR (0300 )-
xFs Case GsRs(@3/A\Rs@s5): As GsR(@3/A\R@s) = (Gske3) N\ (GsRk@s), the
set A, can be constructed from A, and Ag,g ¢, using Lemma 3.1.
*xGg Case GsFRs(p3/AGs@s5): As GsRs(93/AGs@s5) = (Gsk@3) A (GsRGs@s),
the set A, can be constructed from Agry, and Agrc.e; USING
Lemma 3.1.
—F Case GsRFs@3: As GskRp3 = GsRps, weset A, = Agro -
—Gs Case GsFRsGs3: A word u satisfies GsFsGs @3 iff [u| = 1 or u is an infinite

word satisfying F;Gs 3. Note that Gs—tt is satisifed only by finite words

9



of length one. Further, a word u satisfies (Fstt) /\ (GsFstt) iff u is infinite.
Hence, A, = Ag,—1 UA o where A,/ is constructed from Agy, Ag,ru, and

ARG g; using Lemma 3.1.

oV Case Gs(p2 V @3): According to the structure of ¢, and @3, there are the

following subcases.

*xp Case Gs(p2 V p3): As p, V p3 € LTL(), this subcase has already been
covered by Case Ggp.

*/\ Case Gs(92V (94 @s5)): As Gs(92V (92 @5)) = Gs(92V @a) AGs(92V
@s), the set A, can be constructed from Ag(p,vep,) and Ag,(p,ves) USING
Lemma 3.1.

xFs Case Gs(@; V FK@4): It holds that Gs(@2 V Kes) = (Gs@z) V K(@s A
@2/A\Gs@32)V GsFs@4. Therefore, the set A, can be constructed as Ag, ¢, U
{a(tt UL 8,B) | a(8,B8) € ApyngrAGser) U AR, Where A g, Ap, AGso, 1S
composed form A, A,,, and Ag,,, due to Lemma 3.1.

*Gs Case Gs(¢2V Gs@y): There are only the following two subcases (the oth-

ers fit to some of the previous cases).

(i) Case GS(\/(p’EG Gso’): It holds that GS(\/(p’EG Gso') = (Gstt) V
V @,GG(XGS(p’ ). Therefore, the set A, can be constructed as Ag,—y U
Ugreclaltt AX8,B) | «(8, B) € Agypr}-

(il) Case Gs(p2 V V,,ccGs@1): As Gs(p2V Ve Gs®’) = (Gsp2) V
\/(P,eG(X(szGS(p’)). Therefore, the set A, can be constructed as
Agep, U U@,GG{oc(tt AXp2Ub, B) | «(d,B) € Aggop)-

oG Case Gs(Gs@2): As Gs(Gsz) = (Gstt) V (XGs@2), the set A, can be con-
structed as Ag,—n U{o(tt A X8, B) | «(d,B) € Ag,q, -

4 Model checking of wPRS against negated A

This section is devoted to decidability of the model checking problem for wPRS and
negated formulae of the A fragment. In fact, we prove decidability of the dual problem,
i.e. whether a given wPRS system has a run satisfying a given formula of A. Finite and

infinite runs are treated separately.
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Theorem 4.1. The problem whether a given wPRS system has a finite run satisfying a given

o-formula is decidable.

Proof. Let A be a wPRS system and «(5, B) be an «-formula. Note that a formula GsR
is valid on a finite nonempty word if and only if the length of the word is 1. Therefore,
if B # () then it is easy to check whether there is a finite run of A satisfying (5, B). In
what follows we assume B = ).

Let 6 = 07010,0;...0,0,0141. We construct a wPRS system A’ with control states
M(A) x{1,2,...,n+ 1} in the following way.

e For any 1 < i < n and every rule pt; i gt; of A such that a satisfies 8;, we
add to A’ the rule (p,i)t; < (q,1+ 1)ty and if O; is U or U, then also the rule
(p)l)t1 (i> (q)l)tz

e For every p € M(A), X € Const(A), and for any 1 < i < n such that O; = U, we
add to A’ the rule (p,1)X < (p,1+ 1)X, where e is an arbitrary action.

e For every rule pt, < qt, of A such that a satisfies 0,,,1, we add to A’ the rule

(p,n+ Dty = (q,n+ Dty
e For every rule pt; <& qt; of Awe add to A’ the rule (p,n + 1)t; < (p,n+ 1)t.

Let poXo be the initial state of A. There is a finite run peXo ——a qt satisfying o(d, 0) if
and only if there is a finite run (po, 1)Xo —=a’ (q,n + 1)t. Hence, we need to decide
whether there exists a state of the form (q,n + 1)t that is terminal and reachable from
(Po, 1)Xo. To do that, for every p € M(A) we add to A’ therule (p,n+1)Z e (p,n+1)e,
where end ¢ Act(A) is a fresh action and Z ¢ Const(A) is a fresh process constant.
Now, it holds that A has a finite run satisfying «(5, () if and only if there exists a state
of A’, which is reachable from (po, 1)(Xo||Z) and the only enabled action in this state
is end. This last condition on the state can be expressed by formula ¢ = (end)tt N
Nacacia) (@)t of the Hennessy-Milner logic. As reachability of a state satisfying a
given Hennessy—Milner formula is decidable for wPRS (see [KRS05] for details), we are

done. ]

The problem for infinite runs is more complicated. In order to solve it, we introduce
more terminology and notation. First we define 3-formulae and regular languages called
Y-languages. Let w = a;07a,0;...a,0,, wheren > 0, a4,...,a, € Act are pairwise

distinct actions and each Oj is either ‘U or “AX’. Further, let B C Act ~ {aj,...,an}

11



be a nonempty finite set of actions and C C B. A 3-formula 3(w, B, C) and y-language

v(w, C) are defined as

B(w,B,C) = (0101(a;0;...(an0.G \/ b)...)) A )\ GFb A A (Fb A —~GFb)

beB beC bEB.C
Y(w,C) =af'.ad?.--- .apt.L,
if O; =U if C =
where o; = o T and L= te) ' b
1 ifO;=AX MNpec Cb.C*  otherwise

Roughly speaking, a 3-formula is a more restrictive version of an a-formula and in
context of B-formulae we consider infinite words only. Contrary to 6 of an ax-formula,
w of a 3-formula employs actions rather than LTL() formulae. While a tail of an infinite
word satisfying an «-formula is specified by 6,1, in the definition of B-formulae we
use a set B containing exactly all the actions of the tail and its subset C of exactly all

actions occurring infinitely many times in the tail.

Remark 4.2. Note that an infinite word satisfies a formula (3(w, B, C) if and only if it can be
divided into a prefix u € y(w, B) and a suffix v.€ C® such that v contains infinitely many

occurrences of every ¢ € C.

Let w, B, C be defined as above. We say that a finite derivation o over a word u
satisfies y(w, C) if and only if u € y(w, C). We write (w’,B’) C (w, B) whenever B’ C B
and w’ = a;,04,a4,04, ..., 04, forsome 1 < i; < i, < ... < ix < n. Moreover, we
write (w/,B’,C’) C (w,B,C) whenever (w,B’) C (w,B), B’ is nonempty, and C" C
CnNnB'.

Remark 4.3. If u is an infinite word satisfying (3(w, B, C) and v is an infinite subword of u
(i.e. it arises from u by omitting some letters), then there is exactly one triple (w',B’,C’) C
(w, B, C) such that v = 3(w',B’, C’). Further, for each finite subword v of u, there is exactly
one pair (W', B’) such that (w’,B’) C (w,B) and v € y(w', B’).

Given a PRS in normal form, by tri(A), par(A), and seq(A) we denote the system A
restricted to trivial, parallel, and sequential rules, respectively. A derivation in tri(A)
is called a trivial derivation in A. In the following we write simply tri, par,seq as A is

always clearly determined by the context.

Definition 4.4. Let A be a PRS in normal form and 3(w, B, C) be a 3-formula. The PRS A is
in flat (w, B, C)-form if and only if for each X,Y € Const(A), each (w',B’,C’) C (w, B, C),
and each B"” C B, the following conditions hold:

12



1. If there is a finite derivation X — Y satisfying y(w’,B"), then there is also a finite

derivation X ——,; Y satisfying y(w’, B”).

2. If there is a term t and a finite derivation X — t satisfying y(w’, B"), then there is also

a constant Z and a finite derivation X —-,; Z satisfying y(w’, B”).

3. If W' = ¢ and there is an infinite derivation X —— satisfying 3(w’,B’, C’), then there is

also an infinite derivation X i satisfying 3(w’,B’, C’).

4. If there is an infinite derivation X L&W satisfying 3(w’,B’, C’), then there is also an

infinite derivation X —,; satisfying B(w’,B’, C");

5. If there is an infinite derivation X — ., satisfying p(w’,B’,C’), then there is also an

infinite derivation X — -, satisfying 3(w’,B’, C').

Intuitively, the system is in flat (w, B, C)-form if for every derivation of one of the
listed types there is an “equivalent” trivial derivation. All conditions of the definition
can be checked due to the following lemma, [Boz05], and decidability of LTL model
checking for PDA and PN. Lemma 4.6 says that every PRS in normal form can be trans-
formed into an “equivalent” flat system. Finally, the Lemma 4.9 says that if a PRS system
in flat (w, B, C)-form has an infinite derivation satisfying 3(w, B, C), then it has also a
trivial infinite derivation satisfying 3(w, B, C). Note that it is easy to check whether

such a trivial derivation exists.

Lemma 4.5. Given a y-language y(w, C), a PRS system A, and constants X,Y, the following
problems are decidable:
(i) Is there any derivation X — Y satisfying y(w, C)?

(ii) Is there any derivation X — t such that t is a term and u € y(w, C)?

Proof. The problems can be reduced to the reachability problem for wPRS (i.e. to decide
whether given states pitq, p,t, of a given wPRS system A’ satisfy pit; — A Paty for
some V), which is known to be decidable [KRS04a].

(i) Let w = a107...0a,0,. We construct a wPRS A’ with the set of control states
{1,2,...1n} U 2€. The set of rewrite rules is defined as follows. We use (n + 1) as

another name for the control state ().

e For every 1 < i < n and every rule t; & t, of A, we add to A’ the rule

ity & (14 1)t; and if O; = U, then also the rule it; & it,.
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e Forevery b € C,every D C C, and every rule t; & t, of A, we add to A’ the
rule Dt; <% (D U{b})t,.

Obviously, a word u € Act” satisfies 1X 50 CY if and only if it satisties both
X =54 Yand u € y(w, C). As we can decide whether 1X —=,, CY holds for some

u, we can decide Problem (i).

(if) We construct a wPRS A’ as in the previous case. Moreover, for every Z € Const(A)
we add to A’ the rule CZ < Ce. It is easy to see that if a word u € y(w, C)
satisfies X —— t for some t, then 1X ﬂg Ce holds for some m > 0. Conversely,
if 1X —54 Ce holds for some v, then some prefix u of v satisfies both u € y(w, C)
and X —54 t for some t. As we can decide whether 1X —5,, Ce holds for some v,

we can decide Problem (ii).

The proof of the following lemma contains the algorithmic core of this section.

Lemma 4.6. Let A be a PRS in normal form and 3(w, B, C) be a B-formula. One can construct
a PRS A’ in flat (w, B, C)-form such that for each (w’,B’,C") C (w,B,C) and each X €
Const(A), A’ is equivalent to A with respect to the existence of an infinite derivation starting
from X and satisfying 3(w’, B’, C’).

Proof. In order to obtain A’, we describe an algorithm extending A with trivial rewrite
rules in accordance with Conditions 1-5 of Definition 4.4.

All conditions of Definition 4.4 can be checked for each X,Y € Const(A), each
(w/,B’,C’) C (w,B,C), and each B” C B. For Conditions 1 and 2, this follows from
Lemma 4.5. The problem whether there is an infinite derivation X — satisfying
B(e,B’,C’) is a special case of the fairness problem, which is decidable due to [Boz05].
Finally, Conditions 4 and 5 can be checked due to decidability of LTL model checking
for PDA and PN. If there is a non-satisfied condition, we add some trivial rules forming
the missing derivation.

Let us assume that Condition 3 (resp., 4 or 5) is not satisfied, i.e. there exists an
infinite derivation X — (resp. X l%r or X lgai) satistying (w’, B’, C’) for some
(w’,B’,C’) C (w,B,C) and violating the condition. Remark 4.2 implies that C’ is
nonempty and there is a finite derivation X —>, t satisfying y(w’, B’). Hence, there

exists an ordering of B’ = {b;, b,, ..., by} such that
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(*) for each 1 <j < m, there is a finite derivation in A starting from X and satisfying
Y(Wla{bh o abi})'

Such an ordering can be effectively computed using Lemma 4.5. Further, let w' =
a101a;0,...a,0, and let C' ={c1,cy,...,ck}. Then, we add the trivial rule Z;_; & Z;
for each T < i < n, the trivial rule Z,, ;4 (E) Zny; foreach T < j < m, and the trivial
rule Z, ym4j—1 e Znimyj foreach 1 <j <k, where Zy, = X, Z4,...,Zytmix1 are fresh
process constants, and Z, ik = Znim. These added rules form an infinite derivation
using only trivial rules, starting from X, and satistying 3(w’, B/, C’).

Similarly, if there are X, Y, and y(w’,B”) with w' = a;07a,0,;...a,0, such that
Condition 1 or 2 of Definition 4.4 is violated, then we first compute an ordering
{b1,...,bm) of B” satisfying (*¥), and then we add the trivial rule Z;_; & Z; for each
1 < i < n, and the trivial rule Z,, 4, ‘i Zny; foreach T < j < m, where Zy = X
and Z,,...,Zym are fresh process constants (with exception of Z,,,, which is Y in the
case of Condition 1). The added trivial rules generate derivation X % Gn by bm Ziim
satisfying y(w’, B").

Let A” be the PRS A extended with the new rules. The condition (*) ensures that, for
each X € Const(A) and each (w’,B’,C’) C (w, B, C), A” is equivalent to A with respect
to the existence of an infinite derivation starting from X and satistying (3(w’,B’, C’).
If A” is not in flat (w, B, C)-form, then the algorithm repeats the procedure described
above on the system A” with the difference that X and Y range over the constants of
the original system A. The algorithm eventually terminates as the number of iterations
is bounded by the number of pairs of process constants X, Y of A, times the number of
triples (w’, B/, C’) satisfying (w’,B’,C’) C (w, B, C), and times the number of subsets
B” C B. We claim that the resulting PRS A’ is in flat (w, B, C)-form. For the process
constants of the original system A, by construction A’ satisfies all conditions of Defini-
tion 4.4. For the added constants, it is sufficient to observe that any derivation in A’
starting from such a constant either is trivial or has a trivial prefix leading to a constant
of A. Hence, A’ is the desired PRS system. O

Definition 4.7 (Subderivation). Let A be a PRS in normal form and oy be a (finite or infinite)
derivation s1 —% s, —= ..., where s1 —5 s, has the form X % Y.Z and, for each i > 2, if
si is not the last state of the derivation, then it has the form s; = t;.Z with t; # €. Then o, is

called a subderivation of a derivation o if o has a suffix o’ satisfying the following:
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1. every transition step in o’ is of the form si||t’ — si ||t or si|t’ L si|[t”, where
t 2 ¢
4

2. in o, if we replace every step of the form si||[t' — siq||t’ by step s; —— siq and we

skip every step of the form s;||t’ L si|[t”, we get precisely 0.

Further, if o1 and o are finite, the last term of o1 is a process constant, and o is a prefix of a

derivation o', then oy is also a subderivation of ¢’.

Remark 4.8. Let A be a PRS in normal form and o be a derivation of A having a suffix o' of the
form o' = X|[t == (Y.Z)||t —. Then, there is a subderivation of o whose first transition step

X =% Y.Z corresponds to the first transition step of o'

Intuitively, the subderivation captures the behaviour of the subterm Y.Z since its
emergence until it is possibly reduced to a term without any sequential composition.
Due to the normal form of A, the subterm Y.Z behaves undependently on the rest of the

term (as long as it contains a sequential composition).

Lemma 4.9. Let A bea PRS in flat (w, B, C)-form. Then, the following condition holds for each
X € Const(A) and each (w',B’,C’) C (w, B, C):
If there is an infinite derivation X — satisfying B(w’,B’, C'), then there is also an infinite

derivation X — -, satisfying p(w’, B, C’).

A sketch of the proof. Given an infinite derivation o satisfying a formula (o) =
B(w',B’,C’) where (W',B’,C’) T (w,B,C), by trivial equivalent of c we mean an in-
finite trivial derivation starting in the same term as o and satisfying (o). Similarly,
given a finite derivation o satisfying some y(o) = y(w’, B’) where (W', B’) C (w, B), by
trivial equivalent of o we mean a finite trivial derivation o’ such that ¢’ starts in the same
term as o, it satisfies y(0), and if the last term of o is a process constant, then the last
term of o’ is the same process constant.

The lemma is proven by contradiction. We assume that there exist some infinite
derivations violating the condition of the lemma. Let o be one of these derivations such
that the number of transition steps of o generated by sequential non-trivial rules with
actions a ¢ B is minimal (note that this number is always finite as we consider deriva-
tions satisfying 3(w’,B’,C’) for some (w',B’,C’) C (w,B,C)). First, we prove that
every subderivation of ¢ has a trivial equivalent. Then we replace all subderivations of

o by the corresponding trivial equivalents. This step is technically nontrivial because
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o may have infinitely many subderivations. By the replacement we obtain an infinite
derivation o’ satisfying 3(o) and starting in the same process constant as 0. Moreover,
o’ has no subderivations and hence it does not contain any sequential operator. Flat
(w, B, C)-form of A (Condition 4) implies that ¢’ has a trivial equivalent. This is also a

trivial equivalent of o which means that o does not violate the condition of our lemma.

Proof. In this proof, by B-formula we always mean a formula of the form 3(w’,B’, C’)
where (W/,B’,C’) C (w,B,C). We also consider only infinite derivations satisfying
some of these B-formulae. Remark 4.3 implies that such an infinite derivation o satis-
ties exactly one B-formula. We denote this 3-formula by (3(c). Further, by SEQ(o) we
denote the number of transition steps t; — ti;1 of o generated by a sequential non-
trivial rule and such that a ¢ B. Note that SEQ(0) is always finite due to the restrictions
on considered infinite derivations. Given an infinite derivation o, by its trivial equivalent
we mean an infinite trivial derivation starting in the same term as o and satisfying (o).

Similarly, we consider only finite derivations satisfying some y(w’,B’) where
(w',B’) C (w,B). Remark 4.3 implies that such a finite derivation o satisfies exactly
one y-language, which is denoted by y(o). Given a finite derivation o, by its trivial
equivalent we mean a finite trivial derivation o’ such that ¢’ starts in the same term as o,
it satisfies y(0), and if the last term of o is a process constant, then the last term of o’ is
the same process constant.

Using the introduced terminology, the lemma says that every infinite derivation
starting in a process constant has a trivial equivalent. For the sake of contradiction, we
assume that the lemma does not hold. Let X be the set of infinite derivations violating
the lemma and let k = min{SEQ(o0) | 0 € L}.

First of all, we prove two claims.
Claim 1. Let o be an infinite derivation satisfying SEQ(o) < k. Then every subderivation

of o has a trivial equivalent.

Proof of the claim: For finite subderivations, the existence of trivial equivalents follows
directly from the flat (w, B, C)-form of A (Conditions 1 and 2). Let o; be an infinite
subderivation of o. It has the form o; = X —a>seq vz 2 .2 b2, .2 5, where

t1,t2,... are nonempty terms. There are two cases:

e If a € B, then (o) has the form (3(¢, B/, C’). Hence, o, has a trivial equivalent
due to the flat (w, B, C)-form of A (Condition 3).
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o If a ¢ B, then the first step X —a>seq Y.Z of o7 is counted in SEQ(o;) and
the corresponding step X||t' — Y.Z|t’ of o is counted in SEQ(c). Hence,
0 < SEQ(o0). Let o, be the derivation 0, = Y LN t b2, t, b, As
SEQ(02) < SEQ(o7) < k, the definition of k implies that o, has a trivial equiv-
alent 0, =Y i Y1 =2 Y, =5, Further, as o} satisfies 3(032), the derivation
o; =X —a—>m, Y.Z i Yi.Z 25 Ya.Z =, . .. satisfies B(o7). Moreover, the flat
(w, B, C)-form of A (Condition 5) implies that o] has a trivial equivalent. Obvi-

ously, it is also a trivial equivalent of 0. O]

Claim 2. Let o be an infinite derivation such that SEQ(oc) < k, it starts in a paral-
lel term p, and it satisfies a formula 3(w’,B’, C’). Then there is an infinite derivation

P —ar P’ — such that p’ is a parallel term, u € y(w’, B’), and v satisfies B (e, C’, C).

Proof of the claim: Remark 4.2 implies that o can be written as p —- t — where p —5 t
is the minimal prefix of o satisftying y(w’, B’) and such that t 2, satisfies (¢, C’, C’). Let
SEQ(0) denote the number of transition steps in the prefix p — t generated by sequen-
tial non-trivial rules (note that SE/\Q(G) > SEQ(0)). We prove the claim by induction on
SEAQ(G). The base case SEAQ(G) = 0 is obvious. Now, assume that SEAQ(G) > 0. Since p
is parallel term and A is in normal form, the first transition step of p — t counted in
SEQ(0) has the form Y||p’ —% (W.Z)||p’ and it corresponds to the first transition step
Y - W.Z of a subderivation ;. In o, we replace the subderivation oy with its trivial
equivalent (whose existence is guaranteed by Claim 1) and we obtain a new derivation
o” starting from p, satisfying 3(o) and such that SEA/Q( o) < 95va(0). Hence, the second
claim directly follows from the induction hypothesis. In the following, we describe the

replacement of such a subderivation.

Let 07 = Y -5 and o =Y —Ys,; be its trivial equivalent. Let B(oy) =
B(c101¢20;7...¢q0n,B”,C”). Then u,v € cjc; ...c}.B®. Recall that ¢y,c¢z,...,c, are
pairwise distinct and B C Act \ {cy, ..., cnJ. Intuitively, for every 1 <1i < n, we replace

the first transition step of o labelled with c; by the sequence of transition steps of o}

labelled with c;, and then we cancel the other transition steps of o; labelled with ci?

2By replacement of a transition step s; 25 55 of 0y by a sequence Y; Lm Y, of transition steps of
o} we mean that the corresponding transition step s1|[t’ —— s,||t’ of ¢ is replaced by Y1 ||t’ V—,>m- Y, |t/,
and all immediately succeeding steps s;||t” s, |t”" of o are replaced by Y;||t” 25y, |t”". Further, by
cancellation of a transition step s; i 5, of 07 we mean that the corresponding transition step s |t’ AN
s2||t’ of o is replaced by Y ||t’, where Y, is the last process constant of ¢} such that a transition under c;

leads to Y», and all immediately succeeding steps s> ||t” B It"" of o are replaced by Y,||t” BLEGA It”.
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Further, the first transition step of o labelled with an action of B is replaced with the
minimal prefix of the remaining part of o} satisfying y(e,B”). Finally, the remaining
transition steps of oy are orderly replaced with the remaining transition steps of 0. The
case when o7 and its trivial equivalent o are finite is similar.

It is easy to see that the described replacement operation preserves the fulfillment of
B(o) and the obtained derivation o’ satisfies SE/VQ(G” ) < SE/VQ(G). ]

With this claim, we can easily reach a contradiction. Let ¢ = X — be an infinite
derivation such that SEQ(o) = k and it has no trivial equivalent. Further, let 3(o) =
(w’,B’,C’). Note that C’ is nonempty. Claim 2 says that there is a derivation X —5,,
p1 — where p; is a parallel term, u; € y(w’,B’), and v, satisfies 3(e, C’, C’). Applying
the second claim on the suffix p; —5, we get a derivation p; —uz%pm P2 -2 where pyis a
parallel term, u, € y(¢g, C’), and v, satisfies (¢, C’, C’). Iterating this argument, we get
a sequence (p; Lﬁ)pm Pit1)ien of derivations satisfying y(e, C’). These derivations are

nonempty as C’ is nonempty. Let us consider the derivation
/ u up ug ug
o =X —par P1 —par P2 —par P3 —par - - -

Flat (w, B, C)-form of A (Condition 4) implies that ¢’ has a trivial equivalent. However,
this is also a trivial equivalent of o as both o, ¢’ start with X and o’ satisfies (o). This

is a contradiction. ]

Theorem 4.10. The problem whether a given PRS A in normal form has an infinite run satis-

fying a given formula 3(w, B, C) is decidable.

Proof. Due to Lemmata 4.6 and 4.9, the problem can be reduced to the problem whether
there is an infinite derivation X ——,; satistying (3(w, B, C). This problem corresponds

to LTL model checking of finite-state systems, which is decidable. O

The following three theorems show that Theorem 4.10 holds even for wPRS and «-

formulae.

Theorem 4.11. The problem whether a given PRS A in normal form has an infinite run satis-

fying a given «-formula is decidable.

Proof. Let A be a PRS in normal form and «(670;...6,,0,¢&,8) be an «-formula. For
every 0; and every rule t; £> t, such that b satisfies 0;, we add a rule t; & t,, where

a; is a fresh action corresponding to 0;. Similarly, for every \ € B U{&} and every rule
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t & t, such that b satisfies P A &, we add a rule t; bt t,, where a,, is a fresh action.
Let A’ be the resulting PRS system. Note that A’ is also in normal form. Obviously,
A has an infinite run satisfying the original a-formula if and only if A’ has an infinite
run satisfying «(a;01...a,Onl(ag V Vo b),C), where C = {ay | P € B}. Itis an
easy exercise to show that this new «-formula can be effectively transformed into a
disjunction of B-formulae which is equivalent with respect to infinite words. Hence, the
problem is decidable due to Theorem 4.10. O

Theorem 4.12. The problem whether a given PRS A has an infinite run satisfying a given

o-formula is decidable.

Proof. Let A be a PRS, «(9, B) be an a-formula, and e ¢ Act(A) be a fresh action. First
we describe our modification of the standard algorithm [May00] that transforms A into
a PRS in normal form.

If A is not in normal form, then there exists a rule r which is neither parallel nor

sequential; r has one of the following forms:

1.r=t< |tz (resp., = t1]|t2 < t) where t or t; or t, is not a parallel term. Let
Zy,Z,,Z ¢ Const(A) be fresh process constants. We replace r with the rules t < Z,
Z ‘i) Z1HZ2/ Z1 ‘g t, and Zz ‘i) t, (resp., t ‘i> Z], 15 ‘g Zz, Z]HZz ‘i) Z, and

Z51).

2.r=t< ty.(t2]|t3) (resp., v = ti.(t2]|t3) < t). Let Z & Const(A) be a fresh process
constant. We modify A in two steps. First, we replace t,||t3 by Z in left-hand and
right-hand sides of all rules of A. Then, we add the rules Z < to||tz and t||t; < 7.

3.r=1 it t2.X (resp., v = t2.X < t1) where t; or t, is not a process constant. Let
Zy,Z, & Const(A) be fresh process constants. We replace r with the rules t; < Z1,
Z] & Zz.X, and Zz ‘i> t, (resp., t) é Zz, ZzX ‘i) Z], and Z] é t1).

After a finite number of applications of this procedure (with the same action e), we
obtain a PRS A’ in normal form.
We define a formula «(8', B'), where B' = B U {\/ .44 @} and &' arises from & =

0101 ...0,0.,& by the following substitution for every 1 <i <n.
e If O;is U, then replace the pair 6; U by the pair (e V 0;) U.

e If O;is Uy, then replace the pair 6; U; by the sequence (e V 8;) UB; U, .
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o If O;is A X, then replace the pair 6; /A X by the sequence e U 8; A X.
e 0,0, = 0,, A Ggs is replaced by the sequence e U 6,, A\ Gs.
o fisreplaced by (&£ V e).

Let us note that the construction of B’ ensures that any word with a suffix e does
not satisfy «(6’, B'). Observe that u’ = «(8’, B’) if and only if u = «(§, B), where u is
obtained from u’ by eliminating all occurrences of action e.

Clearly, A has an infinite run satisfying (0, ) if and only if A’ has an infinite run

satistying «(6', B'). As A’ is in normal form, we can now apply Theorem 4.11. H

Theorem 4.13. The problem whether a given wPRS system has an infinite run satisfying a

given «-formula is decidable.

Proof. Let A be a wPRS with initial state poXo and «(9, B) be an a-formula. We construct
a PRS A’ with initial state X, which can simulate A. We also define set of formulae
recognizing correct simulations.

The system A’ is very similar to A. We only change actions of rules to hold infor-
mation about control states in the rules and then we remove all control states. More
precisely, for every rule of the form pt; i Pty of A we add to A’ the rule t;4 E t,, and
for every rule of the form pt; < gty of A we add to A’ the rule t, a[gifﬂ t).

Further, we modify the formula (9, B) such that every occurrence of each action a
is replaced by \/qu(A)(a[q] V \/p<q Qpp<q))- Let &(d’, B') be the resulting formula.

Moreover, for every sequence p; < p2 < ... < pi of control states of M(A) such that

P1 = po, we define an «-formula
Clpy<pr<..<p] = o‘(e[m] U e[p1<pz] A X e[sz U e[pz<p3] AX... eh?k71<Pk] A Gse[pk}v Q))

where 0, = \/aeAct(A) Appy and O, < = VaeAct(A) Afp; <p;1-

It is easy to see that there is an infinite run of A satisfying «(9, ) if and only if
there is an infinite run of A’ satisfying «(6’, B’) and @, <p,<..<p,] fOr some sequence
P1 < p2 < ... < pk. As the number of such sequences is finite and each @p,, <p, <. <p,]
is an a-formula, Theorem 4.12 and Lemma 3.1 imply that the considered problem is
decidable. n

As LTL(F, Gs) is closed under negation, Theorems 3.2, 4.1, and 4.13 give us the fol-

lowing.
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Corollary 4.14. The model checking problem for wPRS and LTL(Fs, Gs) is decidable.

This problem is EXPSPACE-hard due to EXPSPACE-hardness of the model check-
ing problem for LTL(F, G) for PN [Hab97]. Our decidability proof does not provide any
primitive recursive upper bound as it employs LTL model checking for PN, for which

no primitive recursive upper bound is known.

5 Undecidability results

Obviously, the model checking for wPRS and LTL(X) is decidable. Hence, to show
that the decidability boundary of Figure 2 is drawn correctly, we have to prove that
the model checking problem is undecidable for the class PA and fragments LTL(U) and
LTL(OFO, X). The undecidability proofs are based on reduction from the non-halting prob-
lem for Minsky 2-counter machines, which is known to be undecidable [Min67].

We recall a definition of Minsky machines first. A Minsky 2-counter machine, or a
machine for short, is a finite sequence N = 1;: 1y, Lot iy, ..., lh_1:in1, Lyt halt, where

n>1,1,1,...,1, are labels, and each 1i; is an instruction for
e increment: cy:=c+1; goto l,, or
o test-and-decrement: if ¢, >0 then cp:=cy-1; goto 1, else goto I

wherek € {1,2}and 1 <r,s <n.

The machine N induces a transition relation — over configurations of the form
(1j,v1,v2), where 1; is a label of an instruction to be executed and vq,v, > 0 represent
current values of counters c; and c,, respectively.

We say that the machine N halts if there are numbers vq,v, > 0 such that (1,0,0) —
*(ln, v1,Vv2). The non-halting problem is to decide whether a given machine N does not
halt. The problem is undecidable [Min67].

Theorem 5.1. Model checking of PA against LTL(U) is undecidable.

Proof. Given a machine N, we construct a PA system Ay with initial term D4||D,||H and

set of rules containing
e for every instruction l;: cx:=cy+1; goto 1,, the rules

incy

Dk ‘i) Sk.Dk Ck ‘i) Sk.Ck Sk — Ck.Sk
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e for every instruction 1; : if ¢y >0 then cy:=cy-1; goto l. else goto l, the
rules

Zeroq decy

Dki)Ek Ek‘—>Dk Ckgﬁ Sk‘—>€

1"’1 . - .
e the rule H — H corresponding to instruction l,,: halt.

Now, we define a formula 1 describing a correct step of the constructed PA when sim-

ulating machine N.

V= Acach ey = eps1s goro 1, (L= (LUincy)) A (inc = (inciU1,))) A
(L= (LU (dec; V zeroy)))
A (dec; = (dec; U 1))

A (zero; = (zero;Ul)))

/\each li:if ¢k >0 then ck:=ck-1; goto L. else goto Ls

Finally, we set @ = 1; A (P U1,,). It is easy to see that machine N halts if and only if the
system Ay has a run satisfying ¢. In other words, the machine N does not halt if and
only if L(AN) = —. [l

Theorem 5.2. Model checking of PA against LTL(OFO, X) is undecidable.
Proof. Given a machine N = 1;: 1y, 1y: 12, ..., Li1:in_1, ln: halt, we construct a PA
system Ay with initial term D;||D;||H and set of rules containing

e for every instruction 1;: cx:=cy+1; goto 1,, the rules

incy incy

Dy < Ck.Dk Ck — Ck.Ck

e for every instruction 1; : if ¢y >0 then cy:=cy-1; goto l. else goto l;, the

rules

Zer0; dec;

Dk<—>Dk Ck%s

e rules corresponding to halt and instruction labels

H@H Hngorevery1§i§n

e and the rules allowing to reset the counters

del; dely resefq resets
C]‘—)S Cz‘%s D; — D, D, < D>

As in the previous proof, we define a formula 1 describing a correct step of the con-

structed PA when simulating machine N.
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V= Acach ey imepsts goto Lt ((li — Xiney) N (inc; = le)) A

((l; = X(dec; V zeroy))
N (dec; = X1,)

A (zero; => X1y))

/\each li:if cx>0 then cy:=ck-1; goto 1. else goto 1

A (L, = Xhalt)
Moreover, we define a formula p describing a correct step of resetting counters and

restarting the simulation.

p = (halt = X(dely V resety))  /\ (dely = X(del, V reset;))
A (reset; = X(del, V reset;)) /N (del, = X(del, V reset;))
A (reset; — X14)

The formula ¢ = 8(11) A p) N oFohalif says that at some point the halt action occurs, both
counters are reset, a correct simulation is started, and whenever the simulation ends
(with halt action), this sequence of events is performed again. Moreover, note that ¢ is
satisfied only if the action halt appears infinitely many times. Hence, there is a run of
An satisfying ¢ if and only if N halts. In other words, the machine N does not halt if
and only if L(AN) = —o. ]

In the proofs of the previous two theorems, the PA systems constructed there have
only infinite runs. This means that model checking of infinite runs remains undecidable
for PA and both LTL(OIE), X) and LTL(U). However, note that model checking of finite runs
against LTL(OFO, X) is decidable, even for wPRS. The proof is based on the observation
that a nonempty finite run satisfies E @ if and only if the last action of the run satisfies ¢.
The same holds for the formula é(p. Hence, if we restrict only to nonempty finite runs,
the modalities OIS, G are equivalent. The observation also implies that oIgﬁ(p is equivalent
to ﬁoFo(p, OFO((m N\ @;) is equivalent to (oFo(p1) VAN (oFo(pz), C>Foolgcp is equivalent to Olgcp, and
that o|§X(p never holds. It is now easy to see that every LTL(OIE), X) formula can describe
only a bounded prefix of a finite run (using the modality X) and the last action of the
run. Thus, decidability of model checking of finite runs against LTL(OFO, X) follows from

decidability of the reachability Hennessy-Milner property problem [KRS05].

6 Conclusion

We have established the decidability border of model checking of wPRS classes and ba-
sic fragments of future LTL (see Figure 2) by showing that the model checking problem
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of wPRS against LTL(F, Gs) is decidable, while the same problem for PA and LTL(U)
or LTL(X, C>Fo) is undecidable. So far, only two positive results on LTL model checking of
PA (and classes subsuming PA) have been published: decidability of model checking of
infinite runs for PRS and LTL fragment of fairness properties [Boz05] and decidability
of the same problem for PA and simple PLTLy [BH96]. Note that the fairness fragment
and the regular part of simple PLTLy are strictly less expressive than LTL(F, G) (also
known as Lamport logic), which is again strictly less expressive than LTL(F, Gs). We
also emphasize that our positive result for LTL(F;, Gs) deals with both finite and infinite
runs, and with wPRS rather than PRS or PA only.

It is also worth mentioning that our proof techniques differ from those used
in [Boz05] and [BH96]. The decidability proof for LTL(Fs, Gs) is based on the auxiliary
result saying that model checking for wPRS and negated A fragment is decidable. In
fact, this auxiliary result is very powerful. We conjecture that it also implies decidabil-
ity of the model checking problem of wPRS and the common fragment of CTL and LTL
called LTL4t [Mai00]. Note that LTLt is semantically incomparable with LTL(F;, Gs).

Unfortunately, our results are insufficient to establish the decidability border for ba-
sic LTL fragments with both future and past modalities. Indeed, fragments LTL(F;, Ps)
and LTL(F,P), where P, P are past counterparts of F, K respectively, do not semanti-
cally coincide with any fragment of Figure 2 and decidability of the model checking
problem for these two fragments and all wPRS classes subsuming PA is an open ques-
tion. However, we conjecture that our technique can be adopted to answer this question

positively.
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