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Abstract. We study long run average behavior of generalized semi-Markov pro-
cesses with both fixed-delay events as well as variable-delay events. We show that
allowing two fixed-delay events and one variable-delay event may cause an unsta-
ble behavior of a GSMP. In particular, we show that a frequency of a given state
may not be defined for almost all runs (or more generally, an invariant measure
may not exist). We use this observation to disprove several results from litera-
ture. Next we study GSMP with at most one fixed-delay event combined with an
arbitrary number of variable-delay events. We prove that such a GSMP always
possesses an invariant measure which means that the frequencies of states are
always well defined and we provide algorithms for approximation of these fre-
quencies. Additionally, we show that the positive results remain valid even if we
allow an arbitrary number of reasonably restricted fixed-delay events.

1 Introduction

Generalized semi-Markov processes (GSMP), introduced by Matthes in [23], are a stan-
dard model for discrete-event stochastic systems. Such a system operates in continuous
time and reacts, by changing its state, to occurrences of events. Each event is assigned a
random delay after which it occurs; state transitions may be randomized as well. When-
ever the system reacts to an event, new events may be scheduled and pending events may
be discarded. To get some intuition, imagine a simple communication model in which a
server sends messages to several clients asking them to reply. The reaction of each client
may be randomly delayed, e.g., due to latency of communication links. Whenever a re-
ply comes from a client, the server changes its state (e.g., by updating its database of
alive clients or by sending another message to the client) and then waits for the rest of
the replies. Such a model is usually extended by allowing the server to time-out and to
take an appropriate action, e.g., demand replies from the remaining clients in a more
urgent way. The time-out can be seen as another event which has a fixed delay.

More formally, a GSMP consists of a set S of states and a set E of events. Each
state s is assigned a set E(s) of events scheduled in s. Intuitively, each event in E(s) is
assigned a positive real number representing the amount of time which elapses before
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the event occurs. Note that several events may occur at the same time. Once a set of
events E ⊆ E(s) occurs, the system makes a transition to a new state s′. The state s′

is randomly chosen according to a fixed distribution which depends only on the state s
and the set E. In s′, the old events of E(s)rE(s′) are discarded, each inherited event of
(E(s′)∩E(s))rE remains scheduled to the same point in the future, and each new event
of (E(s′) r E(s)) ∪ (E(s′) ∩ E) is newly scheduled according to its given probability
distribution.

In order to deal with GSMP in a rigorous way, one has to impose some restrictions
on the distributions of delays. Standard mathematical literature, such as [15, 16], usually
considers GSMP with continuously distributed delays. This is certainly a limitation, as
some systems with fixed time delays (such as time-outs or processor ticks) cannot be
faithfully modeled using only continuously distributed delays. We show some exam-
ples where fixed delays exhibit qualitatively different behavior than any continuously
distributed approximation. In this paper we consider the following two types of events:

– variable-delay: the delay of the event is randomly distributed according to a proba-
bility density function which is continuous and positive either on a bounded interval
[`, u] or on an unbounded interval [`,∞);

– fixed-delay: the delay is set to a fixed value with probability one.

The desired behavior of systems modeled using GSMP can be specified by various
means. One is often interested in long-run behavior such as mean response time, fre-
quency of errors, etc. (see, e.g., [1]). For example, in the above communication model,
one may be interested in average response time of clients or in average time in which
all clients eventually reply. Several model independent formalisms have been devised
for expressing such properties of continuous time systems. For example, a well known
temporal logic CSL contains a steady state operator expressing frequency of states
satisfying a given subformula. In [9], we proposed to specify long-run behavior of a
continuous-time process using a timed automaton which observes runs of the process,
and measure the frequency of locations of the automaton.

In this paper we consider a standard performance measure, the frequency of states
of the GSMP. To be more specific, let us fix a state s̊ ∈ S . We define a random variable
d which to every run assigns the (discrete) frequency of visits to s̊ on the run, i.e. the
ratio of the number of transitions entering s̊ to the number of all transitions. We also
define a random variable c which gives timed frequency of s̊, i.e. the ratio of the amount
of time spent in s̊ to the amount of time spent in all states. Technically, both variables
d and c are defined as limits of the corresponding ratios on prefixes of the run that
are prolonged ad infinitum. Note that the limits may not be defined for some runs. For
example, consider a run which alternates between s̊ and another state s; it spends 2 time
unit in s̊, then 4 in s, then 8 in s̊, then 16 in s, etc. Such a run does not have a limit
ratio between time spent in s̊ and in s. We say that d (or c) is well-defined for a run if
the limit ratios exist for this run. Our goal is to characterize stable systems that have
the variables d and c well-defined for almost all runs, and to analyze the probability
distributions of d and c on these stable systems.

As a working example of GSMP with fixed-delay events, we present a simplified
protocol for time synchronization. Using the variable c, we show how to measure relia-
bility of the protocol. Via message exchange, the protocol sets and keeps a client clock
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Fig. 1. A GSMP model of a clock synchronization protocol. Below each state label, we list the
set of scheduled events. We only display transitions that can take place with non-zero probability.

sufficiently close to a server clock. Each message exchange is initialized by the client
asking the server for the current time, i.e. sending a query message. The server adds a
timestamp into the message and sends it back as a response. This query-response ex-
change provides a reliable data for synchronization action if it is realized within a given
round-trip delay. Otherwise, the client has to repeat the procedure. After a success, the
client is considered to be synchronized until a given stable-time delay elapses. Since the
aim is to keep the clocks synchronized all the time, the client restarts the synchroniza-
tion process sooner, i.e. after a given polling delay that is shorter than the stable-time
delay. Notice that the client gets desynchronized whenever several unsuccessful syn-
chronizations occur in a row. Our goal is to measure the portion of the time when the
client clock is not synchronized.

Figure 1 shows a GSMP model of this protocol. The delays specified in the proto-
col are modeled using fixed-delay events roundtrip_d, stable_d, and polling_d while
actions are modeled by variable-delay events query, response, and sync. Note that if
the stable-time runs out before a fast enough response arrives, the systems moves into
primed states denoting it is not synchronized at the moment. Thus, c(Init’) + c(Q-sent’)
expresses the portion of the time when the client clock is not synchronized.

Our contribution. So far, GSMP were mostly studied with variable-delay events only.
There are a few exceptions such as [4, 3, 8, 2] but they often contain erroneous state-
ments due to presence of fixed-delay events. Our goal is to study the effect of mixing a
number of fixed-delay events with an arbitrary amount of variable-delay events.

At the beginning we give an example of a GSMP with two fixed-delay events for
which it is not true that the variables d and c are well-defined for almost all runs. We
also disprove some crucial statements of [3, 4]. In particular, we show an example of
a GSMP which reaches one of its states with probability less than one even though
the algorithms of [3, 4] return the probability one. The mistake of these algorithms is
fundamental as they neglect the possibility of unstable behavior of GSMP.

Concerning positive results, we show that if there is at most one fixed-delay event,
then both d and c are almost surely well-defined. This is true even if we allow an arbi-
trary number of reasonably restricted fixed-delay events. We also show how to approxi-
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mate distribution functions of d and c. To be more specific, we show that for GSMP with
at most one unrestricted and an arbitrary number of restricted fixed-delay events, both
variables d and c have finite ranges {d1, . . . , dn} and {c1, . . . , cn}. Moreover, all values di

and ci and probabilities P(d = di) and P(c = ci) can be effectively approximated.

Related work. There are two main approaches to the analysis of GSMP. One is to
restrict the amount of events or types of their distributions and to solve the problems
using symbolic methods [8, 2, 21]. The other is to estimate the values of interest using
simulation [26, 15, 16]. Concerning the first approach, time-bounded reachability has
been studied in [2] where the authors restricted the delays of events to so called expoly-
nomial distributions. The same authors also studied reachability probabilities of GSMP
where in each transition at most one event is inherited [8]. Further, the widely studied
formalisms of semi-Markov processes (see, e.g., [20, 9]) and continuous-time Markov
chains (see, e.g., [6, 7]) are both subclasses of GSMP.

As for the second approach, GSMP are studied by mathematicians as a standard
model for discrete event simulation and Markov chains Monte Carlo (see, e.g., [14, 17,
25]). Our work is strongly related to [15, 16] where the long-run average behavior of
GSMP with variable-delay events is studied. Under relatively standard assumptions the
stochastic process generated by a GSMP is shown to be irreducible and to possess an
invariant measure. In such a case, the variables d and c are almost surely constant. Be-
side the theoretical results, there exist tools that employ simulation for model checking
(see, e.g., [26, 11]).

In addition, GSMP are a proper subset of stochastic automata, a model of concur-
rent systems (see, e.g., [12]). Further, as shown in [16], GSMP have the same modeling
power as stochastic Petri nets [22]. The formalism of deterministic and stochastic Petri
nets (DSPN) introduced by [21] adds deterministic transitions – a counterpart of fixed-
delay events. The authors restricted the model to at most one deterministic transition
enabled at a time and to exponentially distributed timed transitions. For this restricted
model, the authors proved existence of a steady state distribution and provided an al-
gorithm for its computation. However, the methods inherently rely on the properties of
the exponential distribution and cannot be extended to our setting with general variable
delays. DSPN have been extended by [13, 19] to allow arbitrarily many deterministic
transitions. The authors provide algorithms for steady-state analysis of DSPN that were
implemented in the tool DSPNExpress [18], but do not discuss under which conditions
the steady-state distributions exist.

2 Preliminaries

In this paper, the sets of all positive integers, non-negative integers, real numbers, pos-
itive real numbers, and non-negative real numbers are denoted by N, N0, R, R>0, and
R≥0, respectively. For a real number r ∈ R, int(r) denotes its integral part, i.e. the largest
integer smaller than r, and frac(r) denotes its fractional part, i.e. r − int(r). Let A be a
finite or countably infinite set. A probability distribution on A is a function f : A→ R≥0
such that

∑
a∈A f (a) = 1. The set of all distributions on A is denoted byD(A).
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A σ-field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under comple-
ment and countable union. A measurable space is a pair (Ω,F ) where Ω is a set called
sample space and F is a σ-field over Ω whose elements are called measurable sets.
Given a measurable space (Ω,F ), we say that a function f : Ω → R is a random vari-
able if the inverse image of any real interval is a measurable set. A probability measure
over a measurable space (Ω,F ) is a functionP : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F , we have P(

⋃
i∈I Xi) =

∑
i∈I P(Xi)

and, moreover, P(Ω) = 1. A probability space is a triple (Ω,F ,P), where (Ω,F ) is a
measurable space and P is a probability measure over (Ω,F ). We say that a property
A ⊆ Ω holds for almost all elements of a measurable set Y if P(Y) > 0, A ∩ Y ∈ F , and
P(A ∩ Y | Y) = 1. Alternatively, we say that A holds almost surely for Y .

2.1 Generalized semi-Markov processes

Let E be a finite set of events. To every e ∈ E we associate the lower bound `e ∈ N0
and the upper bound ue ∈ N ∪ {∞} of its delay. We say that e is a fixed-delay event
if `e = ue, and a variable-delay event if `e < ue. Furthermore, we say that a variable-
delay event e is bounded if ue , ∞, and unbounded, otherwise. To each variable-delay
event e we assign a density function fe : R → R such that

∫ ue

`e
fe(x) dx = 1. We assume

fe to be positive and continuous on the whole [`e, ue] or [`e,∞) if e is bounded or
unbounded, respectively, and zero elsewhere. We require that fe have finite expected
value, i.e.

∫ ue

`e
x · fe(x) dx < ∞.

Definition 1. A generalized semi-Markov process is a tuple (S ,E,E,Succ, α0) where

– S is a finite set of states,
– E is a finite set of events,
– E : S → 2E assigns to each state s a set of events E(s) , ∅ scheduled to occur in s,
– Succ : S × 2E → D(S ) is the successor function, i.e. assigns a probability dis-

tribution specifying the successor state to each state and set of events that occur
simultaneously in this state, and

– α0 ∈ D(S ) is the initial distribution.

A configuration is a pair (s, ν) where s ∈ S and ν is a valuation which assigns to
every event e ∈ E(s) the amount of time that elapsed since the event e was scheduled.1

For convenience, we define ν(e) = ⊥ whenever e < E(s), and we denote by ν(M) the
amount of time spent in the previous configuration (initially, we put ν(M) = 0). When
a set of events E occurs and the process moves from s to a state s′, the valuation of
old events of E(s) r E(s′) is discarded to ⊥, the valuation of each inherited event of
(E(s′) ∩ E(s)) r E is increased by the time spent in s, and the valuation of each new
event of (E(s′) r E(s)) ∪ (E(s′) ∩ E) is set to 0.

We illustrate the dynamics of GSMP on the example of Figure 1. Let
the bounds of the fixed-delay events roundtrip_d, polling_d, and stable_d be

1 Usually, the valuation is defined to store the time left before the event appears. However, our
definition is equivalent and more convenient for the general setting where both bounded and
unbounded events appear.
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1, 90, and 100, respectively. We start in the state Idle, i.e. in the configu-
ration (Idle, ((polling_d, 0), (stable_d, 0), (M, 0))) denoting that ν(polling_d) = 0,
ν(stable_d) = 0, ν(M) = 0, and ⊥ is assigned to all other events. After 90 time units,
the event polling_d occurs and we move to (Init, ((query, 0), (stable_d, 90), (M, 90))).
Assume that the event query occurs in the state Init after 0.6 time units and we move to
(Q-sent, ((response, 0), (roundtrip_d, 0), (stable_d, 90.6), (M, 0.6))) and so forth.

A formal semantics of GSMP is usually defined in terms of general state-space
Markov chains (GSSMC, see, e.g., [24]). A GSSMC is a stochastic process Φ over a
measurable state-space (Γ,G) whose dynamics is determined by an initial measure µ
on (Γ,G) and a transition kernel P which specifies one-step transition probabilities.2

A given GSMP induces a GSSMC whose state-space consists of all configurations,
the initial measure µ is induced by α0 in a natural way, and the transition kernel is
determined by the dynamics of GSMP described above. Formally,

– Γ is the set of all configurations, and G is a σ-field over Γ induced by the discrete
topology over S and the Borel σ-field over the set of all valuations;

– the initial measure µ allows to start in configurations with zero valuation only, i.e.
for A ∈ G we have µ(A) =

∑
s∈Zero(A) α0(s) where Zero(A) = {s ∈ S | (s, 0) ∈ A};

– the transition kernel P(z, A) describing the probability to move in one step from
a configuration z = (s, ν) to any configuration in a set A is defined as follows. It
suffices to consider A of the form {s′}×X where X is a measurable set of valuations.
Let V and F be the sets of variable-delay and fixed-delay events, respectively, that
are scheduled in s. Let F′ ⊆ F be the set of fixed-delay events that can occur as first
among the fixed-delay event enabled in z, i.e. that have in ν the minimal remaining
time u. Note that two variable-delay events occur simultaneously with probability
zero. Hence, we consider all combinations of e ∈ V and t ∈ R≥0 stating that

P(z, A) =


∑

e∈V

∫ ∞
0 Hit({e}, t) ·Win({e}, t) dt if F = ∅∑

e∈V

∫ u
0 Hit({e}, t) ·Win({e}, t) dt + Hit(F′, u) ·Win(F′, u) otherwise,

where the term Hit(E, t) denotes the conditional probability of hitting A under the
condition that E occurs at time t and the term Win(E, t) denotes the probability
(density) of E occurring at time t. Formally,

Hit(E, t) = Succ(s, E)(s′) · 1[ν′ ∈ X]

where 1[ν′ ∈ X] is the indicator function and ν′ is the valuation after the transition,
i.e. ν′(e) is ⊥, or ν(e) + t, or 0 for each old, or inherited, or new event e, respec-
tively; and ν′(M) = t. The most complicated part is the definition of Win(E, t) which
intuitively corresponds to the probability that E is the set of events “winning” the
competition among the events scheduled in s at time t. First, we define a “shifted”
density function fe|ν(e) that takes into account that the time ν(e) has already elapsed.
Formally, for a variable-delay event e and any elapsed time ν(e) < ue, we define

fe|ν(e)(x) =
fe(x + ν(e))∫ ∞
ν(e) fe(y) dy

if x ≥ 0.

2 Precisely, transition kernel is a function P : Γ × G → [0, 1] such that P(z, ·) is a probability
measure over (Γ,G) for each z ∈ Γ; and P(·, A) is a measurable function for each A ∈ G.
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Otherwise, we define fe|ν(e)(x) = 0. The denominator scales the function so that
fe|ν(e) is again a density function. Finally,

Win(E, t) =


fe|ν(e)(t) ·

∏
c∈V\E

∫ ∞
t fc|ν(c)(y) dy if E = {e} ⊆ V∏

c∈V

∫ ∞
t fc|ν(c)(y) dy if E = F′ ⊆ F

0 otherwise.

A run of the Markov chain is an infinite sequence σ = z0 z1 z2 · · · of configurations.
The Markov chain is defined on the probability space (Ω,F ,P) where Ω is the set of
all runs, F is the product σ-field

⊗∞

i=0 G, and P is the unique probability measure such
that for every finite sequence A0, · · · , An ∈ G we have that

P(Φ0∈A0, · · · , Φn∈An) =

∫
z0∈A0

· · ·

∫
zn−1∈An−1

µ(dz0) · P(z0, dz1) · · · P(zn−1, An)

where each Φi is the i-th projection of an element in Ω (the i-th configuration of a run).
Finally, we define an m-step transition kernel Pm inductively as P1(z, A) = P(z, A)

and Pi+1(z, A) =
∫
Γ

P(z, dy) · Pi(y, A).

2.2 Frequency measures

Our attention focuses on frequencies of a fixed state s̊ ∈ S in the runs of the Markov
chain. Let σ = (s0, ν0) (s1, ν1) · · · be a run. We define

d(σ) = lim
n→∞

∑n
i=0 δ(si)

n
c(σ) = lim

n→∞

∑n
i=0 δ(si) · νi+1(M)∑n

i=0 νi+1(M)

where δ(si) is equal to 1 when si = s̊, and 0 otherwise. We recall that νi+1(M) is the
time spent in state si before moving to si+1. We say that the random variable d or c is
well-defined for a run σ if the corresponding limit exists for σ. Then, d corresponds to
the frequency of discrete visits to the state s̊ and c corresponds to the ratio of time spent
in the state s̊.

2.3 Region graph

In order to state the results in a simpler way, we introduce the region graph, a standard
notion from the area of timed automata [5]. It is a finite partition of the uncountable set
of configurations. First, we define the region relation ∼. For a, b ∈ R, we say that a and
b agree on integral part if int(a) = int(b) and neither or both a, b are integers. Further,
we set the bound B = max

(
{`e, ue | e ∈ E} \ {∞}

)
. Finally, we put (s1, ν1) ∼ (s2, ν2) if

– s1 = s2;
– for all e ∈ E(s1) we have that ν1(e) and ν2(e) agree on integral parts or are both

greater than B;
– for all e, f ∈ E(s1) with ν1(e) ≤ B and ν1( f ) ≤ B we have that frac(ν1(e)) ≤

frac(ν1( f )) iff frac(ν2(e)) ≤ frac(ν2( f )).
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Fig. 2. A GSMP of a producer-consumer system. The events p, t, and c model that a packet
production, transport, and consumption is finished, respectively. Below each state label, there is
the set of scheduled events. The fixed-delay events p and c have lp = up = lc = uc = 1 and the
uniformly distributed variable-delay event t has lt = 0 and ut = 1.

Note that ∼ is an equivalence with finite index. The equivalence classes of ∼ are called
regions. We define a finite region graph G = (V, E) where the set of vertices V is the set
of regions and for every pair of regions R,R′ there is an edge (R,R′) ∈ E iff P(z,R′) > 0
for some z ∈ R. The construction is correct because all states in the same region have
the same one-step qualitative behavior (for details, see [10]).

3 Two fixed-delay events

Now, we explain in more detail what problems can be caused by fixed-delay events. We
start with an example of a GSMP with two fixed-delay events for which it is not true
that the variables d and c are well-defined for almost all runs. Then we show some other
examples of GSMP with fixed-delay events that disprove some results from literature.
In the next section, we provide positive results when the number and type of fixed-delay
events are limited.

When the frequencies d and c are not well-defined

In Figure 2, we show an example of a GSMP with two fixed-delay events and one
variable-delay event for which it is not true that the variables d and c are well-defined
for almost all runs. It models the following producer-consumer system. We use three
components – a producer, a transporter and a consumer of packets. The components
work in parallel but each component can process (i.e. produce, transport, or consume)
at most one packet at a time.

Consider the following time requirements: each packet production takes exactly
1 time unit, each transport takes at most 1 time unit, and each consumption takes again
exactly 1 time unit. As there are no limitations to block the producer, it is working for all
the time and new packets are produced precisely each time unit. As the transport takes
shorter time than the production, every new packet is immediately taken by the trans-
porter and no buffer is needed at this place. When a packet arrives to the consumer, the
consumption is started immediately if the consumer is waiting; otherwise, the packet

8



Init
{p}

C-waiting
{p, t, t′}

Consuming
{p, c}

Consuming
Transporting
{p, t, c}

Buffering
Consuming
{p, c}

Sink
{p}

p

t′

p

t

p

t

cc

Fig. 3. A GSMP with two fixed-delay events p and c (with lp = up = lc = uc = 1), a uniformly
distributed variable-delay events t, t′ (with lt = lt′ = 0 and ut = ut′ = 1).

is stored into a buffer. When the consumption is finished and the buffer is empty, the
consumer waits; otherwise, a new consumption starts immediately.

In the GSMP in Figure 2, the consumer has two modules – one is in operation and
the other idles at a time – when the consumer enters the waiting state, it switches the
modules. The labels 1 and 2 denote which module of the consumer is in operation.

One can easily observe that the consumer enters the waiting state (and switches the
modules) if and only if the current transport takes more time than it has ever taken. As
the transport time is bounded by 1, it gets harder and harder to break the record. As
a result, the system stays in the current module on average for longer time than in the
previous module. Therefore, due to the successively prolonging stays in the modules,
the frequencies for 1-states and 2-states oscillate. For precise computations, see [10].
We conclude the above observation by the following theorem.

Theorem 1. There is a GSMP (with two fixed-delay events and one variable-delay
event) for which it is not true that the variables c and d are almost surely well-defined.

Counterexamples

In [3, 4] there are algorithms for GSMP model checking based on the region construc-
tion. They rely on two crucial statements of the papers:

1. Almost all runs end in some of the bottom strongly connected components (BSCC)
of the region graph.

2. Almost all runs entering a BSCC visit all regions of the component infinitely often.

Both of these statements are true for finite state Markov chains. In the following,
we show that neither of them has to be valid for region graphs of GSMP.

Let us consider the GSMP depicted in Figure 3. This is a producer-consumer model
similar to the previous example but we have only one module of the consumer here.
Again, entering the state C-waiting indicates that the current transport takes more time
than it has ever taken. In the state C-waiting, an additional event t′ can occur and move
the system into a state Sink. One can intuitively observe that we enter the state C-waiting
less and less often and stay there for shorter and shorter time. Hence, the probability
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that the event t′ occurs in the state C-waiting is decreasing during the run. For precise
computations proving the following claim, see [10].

Claim. The probability to reach Sink from Init is strictly less than 1.

The above claim directly implies the following theorem thus disproving statement 1.

Theorem 2. There is a GSMP (with two fixed-delay and two variable delay events)
where the probability to reach any BSCC of the region graph is strictly smaller than 1.

Now consider in Figure 3 a transition under the event p from the state Sink to the
state Init instead of the self-loop. This turns the whole region graph into a single BSCC.
We prove that the state Sink is almost surely visited only finitely often. Indeed, let
p < 1 be the original probability to reach Sink guaranteed by the claim above. The
probability to reach Sink from Sink again is also p as the only transition leading from
Sink enters the initial configuration. Therefore, the probability to reach Sink infinitely
often is limn→∞ pn = 0. This proves the following theorem. Hence, the statement 2
of [3, 4] is disproved, as well.

Theorem 3. There is a GSMP (with two fixed-delay and two variable delay events)
with strongly connected region graph and with a region that is reached infinitely often
with probability 0.

4 Single-ticking GSMP

First of all, motivated by the previous counterexamples, we identify the behavior of the
fixed-delay events that may cause d and c to be undefined. The problem lies in fixed-
delay events that can immediately schedule themselves whenever they occur; such an
event can occur periodically like ticking of clocks. In the example of Figure 3, there are
two such events p and c. The phase difference of their ticking gets smaller and smaller,
causing the unstable behavior.

For two fixed-delay events e and e′, we say that e causes e′ if there are states s, s′

and a set of events E such that Succ(s, E)(s′)>0, e ∈ E, and e′ is newly scheduled in s′.

Definition 2. A GSMP is called single-ticking if either there is no fixed-delay event
or there is a strict total order < on fixed-delay events with the least element e (called
ticking event) such that whenever f causes g then either f < g or f = g = e.

From now on we restrict to single-ticking GSMP and prove our main positive result.

Theorem 4. In single-ticking GSMP, the random variables d and c are well-defined
for almost every run and admit only finitely many values. Precisely, almost every run
reaches a BSCC of the region graph and for each BSCC B there are values d, c ∈ [0, 1]
such that d(σ) = d and c(σ) = c for almost all runs σ that reach the BSCC B.

The rest of this section is devoted to the proof of Theorem 4. First, we show that
almost all runs end up trapped in some BSCC of the region graph. Second, we solve
the problem while restricting to runs that start in a BSCC (as the initial part of a run
outside of any BSCC is not relevant for the long run average behavior). We show that in
a BSCC, the variables d and c are almost surely constant. The second part of the proof
relies on several standard results from the theory of general state space Markov chains.
Formally, the proof follows from Propositions 1 and 2 stated below.

10



4.1 Reaching a BSCC

Proposition 1. In single-ticking GSMP, almost every run reaches a BSCC of the region
graph.

The proof uses similar methods as the proof in [4]. By definition, the process moves
along the edges of the region graph. From every region, there is a minimal path through
the region graph into a BSCC, let n be the maximal length of all such paths. Hence, in
at most n steps the process reaches a BSCC with positive probability from any config-
uration. Observe that if this probability was bounded from below, we would eventually
reach a BSCC from any configuration almost surely. However, this probability can be
arbitrarily small. Consider the following example with event e uniform on [0, 1] and
event f uniform on [2, 3]. In an intuitive notation, let R be the region [0 < e < f < 1].
What is the probability that the event e occurs after the elapsed time of f reaches 1
(i.e. that the region [e = 0; 1 < f < 2] is reached)? For a configuration in R with val-
uation ((e, 0.2), ( f , 0.7)) the probability is 0.5 but for another configuration in R with
((e, 0.2), ( f , 0.21)) it is only 0.01. Notice that the transition probabilities depend on the
difference of the fractional values of the clocks, we call this difference separation. Ob-
serve that in other situations, the separation of clocks from value 0 also matters.

Definition 3. Let δ > 0. We say that a configuration (s, ν) is δ-separated if for every
x, y ∈ {0} ∪ {ν(e) | e ∈ E(s)}, we have either |frac(x) − frac(y)| > δ or frac(x) = frac(y).

We fix a δ > 0. To finish the proof using the concept of δ-separation, we need two
observations. First, from any configuration we reach in m steps a δ-separated configura-
tion with probability at least q > 0. Second, the probability to reach a fixed region from
any δ-separated configuration is bounded from below by some p > 0. By repeating
the two observations ad infinitum, we reach some BSCC almost surely. Let us state the
claims. For proofs, see [10].

Lemma 1. There is δ > 0, m ∈ N and q > 0 such that from every configuration we
reach a δ-separated configuration in m steps with probability at least q.

Lemma 2. For every δ > 0 and k ∈ N there is p > 0 such that for any pair of regions R,
R′ connected by a path of length k and for any δ-separated z ∈ R, we have Pk(z,R′) > p.

Lemma 2 holds even for unrestricted GSMP. Notice that Lemma 1 does not. As in
the example of Figure 3, the separation may be non-increasing for all runs.

4.2 Frequency in a BSCC

From now on, we deal with the bottom strongly connected components that are reached
almost surely. Hence, we assume that the region graph G is strongly connected. We
have to allow an arbitrary initial configuration z0 = (s, ν); in particular, ν does not have
to be a zero vector.3

3 Technically, the initial measure is µ(A) = 1 if z0 ∈ A and µ(A) = 0, otherwise.
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Proposition 2. In a single-ticking GSMP with strongly connected region graph, there
are values d, c ∈ [0, 1] such that for any initial configuration z0 and for almost all runs
σ starting from z0, we have that d and c are well-defined and d(σ) = d and c(σ) = c.

We assume that the region graph is aperiodic in the following sense. A period p
of a graph G is the greatest common divisor of lengths of all cycles in G. The graph
G is aperiodic if p = 1. Under this assumption4, the chain Φ is in some sense stable.
Namely, (i) Φ has a unique invariant measure that is independent of the initial measure
and (ii) the strong law of large numbers (SLLN) holds for Φ.

First, we show that (i) and (ii) imply the proposition. Let us recall the notions. We
say that a probability measure π on (Γ,G) is invariant if for all A ∈ G

π(A) =

∫
Γ

π(dx)P(x, A).

The SLLN states that if h : Γ → R satisfies Eπ[h] < ∞, then almost surely

lim
n→∞

∑n
i=1 h(Φi)

n
= Eπ[h], (1)

where Eπ[h] is the expected value of h according to the invariant measure π.
We set h as follows. For a run (s0, ν0)(s1, ν1) · · · , let h(Φi) = 1 if si = s̊ and 0,

otherwise. We have Eπ[h] < ∞ since h ≤ 1. From (1) we obtain that almost surely

d = lim
n→∞

∑n
i=1 h(Φi)

n
= Eπ[h].

As a result, d is well-defined and equals the constant value Eπ[h] for almost all runs.
We treat the variable c similarly. Let W((s, ν)) denote the expected waiting time of the
GSMP in the configuration (s, ν). We use a function τ((s, ν)) = W((s, ν)) if s = s̊ and
0, otherwise. Since all the events have finite expectation, the functions W and τ are
bounded and we have Eπ[W] < ∞ and Eπ[τ] < ∞. We show in [10] that almost surely

c = lim
n→∞

∑n
i=1 τ(Φi)∑n

i=1 W(Φi)
=

Eπ[τ]
Eπ[W]

.

Therefore, c is well-defined and equals the constant Eπ[τ]/Eπ[W] for almost all runs.
Second, we prove (i) and (ii). A standard technique of general state space Markov

chains (see, e.g., [24]) yields (i) and (ii) for chains that satisfy the following condition.
Roughly speaking, we search for a set of configurations C that is visited infinitely often
and for some ` the measures P`(x, ·) and P`(y, ·) are very similar for any x, y ∈ C. This
is formalized by the following lemma.

Lemma 3. There is a measurable set of configurations C such that

1. there is k ∈ N and α > 0 such that for every z ∈ Γ we have Pk(z,C) ≥ α, and

4 If the region graph has period p > 1, we can employ the standard technique and decompose the
region graph (and the Markov chain) into p aperiodic components. The results for individual
components yield straightforwardly the results for the whole Markov chain, see, e.g., [9].
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2. there is ` ∈ N, β > 0, and a probability measure κ such that for every z ∈ C and
A ∈ G we have P`(z, A) ≥ β · κ(A).

Proof (Sketch). Let e be the ticking event and R some reachable region where e is the
event closest to its upper bound. We fix a sufficiently small δ > 0 and choose C to be the
set of δ-separated configurations of R. We prove the first part of the lemma similarly to
Lemmata 1 and 2. As regards the second part, we define the measure κ uniformly on a
hypercube X of configurations (s, ν) that have ν(e) = 0 and ν( f ) ∈ (0, δ), for f , e. First,
assume that e is the only fixed-delay event. We fix z = (s′, ν′) in R; let d = ue−ν

′(e) > δ
be the time left in z before e occurs. For simplicity, we assume that each variable-delay
events can occur after an arbitrary delay x ∈ (d − δ, d). Precisely, that it can occur in
an ε-neighborhood of x with probability bounded from below by β · ε where β is the
minimal density value of all E. Note that the variable-delay events can be “placed” this
way arbitrarily in (0, δ). Therefore, when e occurs, it has value 0 and all variable-delay
events can be in interval (0, δ). In other words, we have P`(z, A) ≥ β · κ(A) for any
measurable A ⊆ X and for ` = |E|.

Allowing other fixed-delay events causes some trouble because a fixed-delay event
f , e cannot be “placed” arbitrarily. In the total order <, the event f can cause
only strictly greater fixed-delay events. The greatest fixed-delay event can cause only
variable-delay events that can be finally “placed” arbitrarily as described above. ut

5 Approximations

In the previous section we have proved that in single-ticking GSMP, d and c are al-
most surely well-defined and for almost all runs they attain only finitely many values
d1 . . . , dk and c1, . . . , ck, respectively. In this section we show how to approximate di’s
and ci’s and the probabilities that d and c attain these values, respectively.

Theorem 5. In a single-ticking GSMP, let d1, . . . , dk and c1, . . . , ck be the discrete and
timed frequencies, respectively, corresponding to BSCCs of the region graph. For all
1 ≤ i ≤ k, the numbers di and ci as well as the probabilities P(d = di) and P(c = ci)
can be approximated up to any ε > 0.

Proof. Let X1, . . . , Xk denote the sets of configurations in individual BSCCs and di and
ci correspond to Xi. Since we reach a BSCC almost surely, we have

P(d = di) =

k∑
j=1

P(d = di | Reach(X j)) · P(Reach(X j)) =

k∑
j=1

1[d j = di] · P(Reach(X j))

where the second equality follows from the fact that almost all runs in the j-th BSCC
yield the discrete frequency d j. Therefore, P(d = di) and di can be approximated as
follows using the methods of [25].

Claim. Let X be a set of all configurations in a BSCC B, Xs̊ ⊆ X the set of config-
urations with state s̊, and d the frequency corresponding to B. There are computable
constants n1, n2 ∈ N and p1, p2 > 0 such that for every i ∈ N and zX ∈ X we have

|P(Reach(X)) − Pi(z0, X)| ≤ (1 − p1)bi/n1c

|d − Pi(zX , Xs̊)| ≤ (1 − p2)bi/n2c
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Further, we want to approximate ci = Eπ[τ]/Eπ[W], where π is the invariant measure
on Xi. In other words, we need to approximate

∫
Xi
τ(x)π(dx) and

∫
Xi

W(x)π(dx). An n-
th approximation wn(x) of W(x) can be gained by discretizing the regions into, e.g.,
1/n-large hypercubes. If W is continuous, then (wn)∞n=1 is its pointwise approximation.
Moreover, if W is bounded, then it is dominated by the approximation function wn.
Hence the approximation is correct by the dominated convergence theorem. Note that τ
only differs from W in being identically zero on some regions. Therefore, the following
claim concludes the proof. For details, see [10].

Claim. On each region, W is continuous and bounded and can be approximated.

6 Conclusions, future work

We have studied long run average properties of generalized semi-Markov processes
with both fixed-delay and variable-delay events. We have shown that two or more (un-
restricted) fixed-delay events lead to considerable complications regarding stability of
GSMP. In particular, we have shown that the frequency of states of a GSMP may not be
well-defined and that bottom strongly connected components of the region graph may
not be reachable with probability one. This leads to counterexamples disproving sev-
eral results from literature. On the other hand, for single-ticking GSMP we have proved
that the frequencies of states are well-defined for almost all runs. Moreover, we have
shown that almost every run has one of finitely many possible frequencies that can be
effectively approximated (together with their probabilities) up to a given error tolerance.

In addition, the frequency measures can be easily extended into the mean payoff

setting. Consider assigning real rewards to states. The mean payoff then corresponds to
the frequency weighted by the rewards.

Concerning future work, the main issue is efficiency of algorithms for computing
performance measures for GSMP. We plan to work on both better analytical methods
as well as practicable approaches to Monte Carlo simulation. One may also consider
extensions of our positive results to controlled GSMP and games on GSMP.
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