
Extended Process Rewrite Systems:

Expressiveness and Reachability?

Mojmı́r Křet́ınský, Vojtěch Řehák??, and Jan Strejček

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republic
{kretinsky,rehak,strejcek}@fi.muni.cz

Abstract. We unify a view on three extensions of Process Rewrite Sys-
tems (PRS) and compare their expressive power with that of PRS. We
show that the class of Petri nets is less expressive up to bisimulation
equivalence than the class of PA processes extended with a finite state
control unit. Further we show our main result that the reachability prob-
lem for PRS extended with a so called weak finite state unit is decidable.

1 Introduction

An automatic verification of current software systems often needs to model them
as infinite-state systems, i.e. systems with an evolving structure and/or operat-
ing on unbounded data types. Infinite-state systems can be specified in a number
of ways with their respective advantages and limitations. Petri nets, pushdown
automata, and process algebras like BPA, BPP, or PA all serve to exemplify this.
Here we employ the classes of infinite-state systems defined by term rewrite sys-
tems and called Process Rewrite Systems (PRS) as introduced by Mayr [May00].
PRS subsume a variety of the formalisms studied in the context of formal veri-
fication (e.g. all the models mentioned above).

A PRS is a finite set of rules t
a
−→ t′ where a is an action under which

a subterm t can be reduced onto a subterm t′. Terms are built up from an empty
process ε and a set of process constants using (associative) sequential “.” and
(associative and commutative) parallel “‖” operators. The semantics of PRS
can be defined by labelled transition systems (LTS) – labelled directed graphs
whose nodes (states of the system) correspond to terms modulo properties of “.”
and “‖” and edges correspond to individual actions (computational steps) which
can be performed in a given state. The relevance of various subclasses of PRS
for modelling and analysing programs is shown e.g. in [Esp02], for automatic
verification see e.g. surveys [BCMS01,Srb02].

? This work has been supported by GAČR, grant No. 201/03/1161.
?? The co-author has been supported by Marie Curie Fellowship of the European

Community Programme Improving the Human Research Potential and the Socio-
economic Knowledge Base under contract number HPMT-CT-2000-00093.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 355–370, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

356 M. Křet́ınský et al.

Mayr [May00] has also shown that the reachability problem (i.e. given terms
t, t′: is t reducible to t′?) for PRS is decidable. Most research (with some re-
cent exceptions, e.g. [BT03,Esp02]) has been devoted to the PRS classes from
the lower part of the PRS hierarchy, especially to pushdown automata (PDA),
Petri nets (PN) and their respective subclasses. We mention the successes of
PDA in modeling recursive programs (without process creation), PN in mod-
eling dynamic creation of concurrent processes (without recursive calls), and
CPDS (communicating pushdown systems [BET03]) modeling both features.
All of these formalisms subsume a notion of a finite state unit (FSU) keeping
some kind of global information which is accessible to the redices (the ready
to be reduced components) of a PRS term – hence a FSU can regulate rewrit-
ing. On the other hand, using a FSU to extend the PRS rewriting mechanism
is very powerful since the state-extended version of PA processes (sePA) has
a full Turing-power [BEH95] – the decidability of reachability is lost for sePA,
including all its superclasses (see Figure 1), and CPDS as well.

This paper presents a hierarchy of PRS classes and their respective extensions
of three types: fcPRS classes ([Str02], inspired by concurrent constraint program-
ming [SR90]), wPRS classes ([KŘS03], PRS systems equipped with weak FSU
inspired by weak automata [MSS92]), and state-extended PRS classes [JKM01].
The classes in the hierarchy (depicted in Figure 1) are related by their expressive
power with respect to (strong) bisimulation equivalence. As the main contribu-
tion of the paper we show that the reachability problem remains decidable for
the very expressive class of wPRS. This result deserves some additional remarks:

– It determines the decidability borderline of the reachability problem in the
mentioned hierarchy; the problem is decidable for all classes except those
with Turing power. In other words, it can be seen as a contribution to studies
of algorithmic boundaries of reachability for infinite-state systems.

– In the context of verification, one often formulates a property expressing
that nothing bad occurs. These properties are called safety properties. The
collection of the most often verified properties [DAC98] contains 41% of such
properties. Model checking of safety properties can be reduced to the reach-
ability problem. Moreover, many successful verification tools concentrate on
reachability only. Therefore, our decidability result can be seen as a contri-
bution to an automatic verification of infinite-state systems as well.

– Given a labelled transition system (S,Act,−→, α0) with a distinguished ac-
tion τ ∈ Act, we define a weak trace set of a state s ∈ S as

wtr(s) = {w ∈ (Act r {τ})∗ | s
w

=⇒ t for some t ∈ S},

where s
w

=⇒ t means that there is some w′ ∈ Act∗ such that s
w′

−→ t and
w is equal to w′ without τ actions. Two systems are weak trace equivalent
if the weak trace sets of their initial states are the same. So far it has been
known that weak trace non-equivalence is semi-decidable for Petri nets (see
e.g. [Jan95]), pushdown processes (due to [Büc64]), and PA processes (due
to [LS98]). Using the decidability result, it is easy to show that the weak

Extended Process Rewrite Systems 357

trace set is recursive for every state of any wPRS. Hence, the weak trace
non-equivalence is semi-decidable for (all subclasses of) wPRS.

– Our decidability result has been recently applied in the area of cryptographic
protocols. Hüttel and Srba [HS04] define a replicative variant of a calculus
for Dolev and Yao’s ping-pong protocols [DY83]. They show that the reach-
ability problem for these protocols is decidable as it can be reduced to the
reachability problem for wPRS.

The outline of the paper is as follows: after some preliminaries we introduce
a uniform framework for specifying all extended PRS formalisms in Section 3 and
compare their relative expressiveness with respect to bisimulation equivalence in
Section 4. Here we also solve (to the best of our knowledge) an open problem
on the relationship between the PN and sePA classes by showing that PN is
less expressive (up to bisimulation equivalence) than sePA. In Section 5 we show
that all classes of our fcPRS and wPRS extensions keep the reachability problem
decidable. The last section summarises our results.

Related Work: In the context of reachability analysis one can see at least two
approaches: (i) abstraction (approximate) analysis techniques on stronger ’mod-
els’ such as sePA and its superclasses with undecidable reachability, e.g. see a
recent work [BET03], and (ii) precise techniques for ’weaker’ models, e.g. PRS
classes with decidable reachability, e.g. [LS98] and another recent work [BT03].
In the latter one, symbolic representations of set of reachable states are built
with respect to various term structural equivalences. Among others it is shown
that for the PAD class and the same equivalence as in this paper, when prop-
erties of sequential and parallel compositions are taken into account, one can
construct nonregular representations based on counter tree automata.

2 Preliminaries

A labelled transition system (LTS) L is a tuple (S,Act,−→, α0), where S is a set
of states or processes, Act is a set of atomic actions or labels, −→⊆ S ×Act× S

is a transition relation (written α
a
−→ β instead of (α, a, β) ∈−→), α0 ∈ S is

a distinguished initial state.
We use the natural generalization α

σ
−→ β for finite sequences of actions

σ ∈ Act∗. The state α is reachable if there is σ ∈ Act∗ such that α0
σ
−→ α.

A binary relation R on set of states S is a bisimulation [Mil89] iff for each
(α, β) ∈ R the following conditions hold:

– ∀α′ ∈ S, a ∈ Act : α
a
−→ α′ =⇒ (∃β′ ∈ S : β

a
−→ β′ ∧ (α′, β′) ∈ R)

– ∀β′ ∈ S, a ∈ Act : β
a
−→ β′ =⇒ (∃α′ ∈ S : α

a
−→ α′ ∧ (α′, β′) ∈ R)

Bisimulation equivalence (or bisimilarity) on a LTS is the union of all bisim-
ulations (i.e. the largest bisimulation).

Let Const = {X, . . .} be a countably infinite set of process constants. The
set T of process terms (ranged over by t, . . .) is defined by the abstract syntax

358 M. Křet́ınský et al.

t = ε | X | t1.t2 | t1‖t2, where ε is the empty term, X ∈ Const is a process
constant (used as an atomic process), ‘‖’ and ‘.’ mean parallel and sequential
compositions respectively.

The set Const(t) is the set of all constants occurring in a process term t.
We always work with equivalence classes of terms modulo commutativity and
associativity of ‘‖’ and modulo associativity of ‘.’ We also define ε.t = t = t.ε

and t‖ε = t.
We distinguish four classes of process terms as:

1 – terms consisting of a single process constant only, in particular ε 6∈ 1,
S – sequential terms - without parallel composition, e.g. X.Y.Z,
P – parallel terms - without sequential composition. e.g. X‖Y ‖Z,
G – general terms with arbitrarily nested sequential and parallel compositions.

Definition 1. Let Act = {a, b, · · · } be a countably infinite set of atomic actions,
α, β ∈ {1, S, P,G} such that α ⊆ β. An (α, β)-PRS (process rewrite system) ∆

is a pair (R, t0), where

– R is a finite set of rewrite rules of the form t1
a
−→ t2, where t1 ∈ α, t1 6= ε,

t2 ∈ β are process terms and a ∈ Act is an atomic action,
– t0 ∈ β is an initial state.

Given PRS ∆ we define Const(∆) as the set of all constants occurring in
the rewrite rules of ∆ or in its initial state, and Act(∆) as the set of all actions

occurring in the rewrite rules of ∆. We sometimes write (t1
a
−→ t2) ∈ ∆ instead

of (t1
a
−→ t2)∈R.

The semantics of ∆ is given by the LTS (S,Act(∆),−→, t0), where S =
{t ∈ β | Const(t) ⊆ Const(∆)} and −→ is the least relation satisfying the
inference rules:

(t1
a
−→ t2) ∈ ∆

t1
a
−→ t2

,
t1

a
−→ t′1

t1‖t2
a
−→ t′1‖t2

,
t1

a
−→ t′1

t1.t2
a
−→ t′1.t2

.

If no confusion arises, we sometimes speak about a “process rewrite system”
meaning a “labelled transition system generated by process rewrite system”.

Some classes of (α, β)-PRS correspond to widely known models as finite state
systems (FS), basic process algebras (BPA), basic parallel processes (BPP), pro-
cess algebras (PA), pushdown processes (PDA, see [Cau92] for justification), and
Petri nets (PN). The other classes were introduced (and named as PAD, PAN,
and PRS) by Mayr [May00]. The correspondence between (α, β)-PRS classes
and acronyms just mentioned can be seen in Figure 1.

3 Extended PRS

In this section we recall the definitions of three different extensions of process
rewrite systems, namely state-extended PRS (sePRS) [JKM01], PRS with a fi-
nite constraint system (fcPRS) [Str02], and PRS with a weak finite-state unit

Extended Process Rewrite Systems 359

(wPRS) [KŘS03]. In all cases, the PRS formalism is extended with a finite state
unit of some kind.

sePRS. State-extended PRS corresponds to PRS extended with a finite state
unit without any other restrictions. The well-known example of this extension is
the state-extended BPA class (also known as pushdown processes).

wPRS. The notion of weakness employed in the wPRS formalism corre-
sponds to that of weak automaton [MSS92] in automata theory. The
behaviour of a weak state unit is acyclic, i.e. states of state unit are ordered
and non-increasing during every sequence of actions. As the state unit is fi-
nite, its state can be changed only finitely many times during every sequence of
actions.

fcPRS. The extension of PRS with finite constraint systems is motivated
by concurrent constraint programming (CCP) (see e.g. [SR90]). In CCP the
processes work with a shared store (seen as a constraint on values that variables
can represent) via two operations, tell and ask. The tell adds a constraint to the
store provided the store remains consistent. The ask is a test on the store – it
can be executed only if the current store implies a specified constraint.

Formally, values of a store form a bounded lattice (called a constraint system)
with the lub operation ∧ (least upper bound), the least element tt, and the
greatest element ff. The execution of tell(n) changes the value of the store from
o to o∧n (provided o∧n 6= ff – consistency check). The ask(m) can be executed
if the current value of the store o is greater than m.

The state unit of fcPRS has the same properties as the store in CCP. We add
two constraints (m,n) to each rewrite rule. The application of a rule corresponds
to the concurrent execution of ask(m), tell(n), and rewriting:

– a rule can be applied only if the actual store o satisfies m ≤ o and o∧n 6= ff,
– the application of the rule rewrites the process term and changes the store

to o ∧ n.

We first define the common syntax of the aforementioned extended PRS and
then we specify the individual restrictions on state units.

Definition 2. Let Act = {a, b, · · · } be a countably infinite set of atomic actions,
α, β ∈ {1, S, P,G} such that α ⊆ β. An extended (α, β)-PRS ∆ is a tuple
(M,≤, R,m0, t0), where

– M is a finite set of states of the state unit,
– ≤ is a binary relation over M ,
– R is a finite set of rewrite rules of the form (m, t1)

a
−→ (n, t2), where t1 ∈ α,

t1 6= ε, t2 ∈ β, m,n ∈M , and a ∈ Act,
– Pair (m0, t0) ∈M × β forms a distinguished initial state of the system.

The specific type of an extended (α, β)-PRS is given by further requirements
on ≤. An extended (α, β)-PRS is

360 M. Křet́ınský et al.

– (α, β)-sePRS without any requirements on ≤.1

– (α, β)-wPRS iff (M,≤) is a partially ordered set.
– (α, β)-fcPRS iff (M,≤) is a bounded lattice. The lub operation (least upper

bound) is denoted by ∧, the least and the greatest elements are denoted by
tt and ff, respectively. We also assume that m0 6= ff.

To shorten our notation we prefer mt over (m, t). As in the PRS case, instead

of (mt1
a
−→ nt2) ∈ R where ∆ = (M,≤, R,m0, t0), we usually write (mt1

a
−→

nt2) ∈ ∆. The meaning of Const(∆) (process constants used in rewrite rules or
in t0) and Act(∆) (actions occurring in rewrite rules) for a given extended PRS
∆ is also the same as in the PRS case.

The semantics of an extended (α, β)-PRS system ∆ is given by the corre-
sponding labelled transition system (S,Act(∆),−→,m0t0), where

2

S = M × {t ∈ β | Const(t) ⊆ Const(∆)}

and the relation −→ is defined as the least relation satisfying the inference rules
corresponding to the application of rewrite rules (and dependent on the concrete
formalism):

sePRS
(mt1

a
−→ nt2) ∈ ∆

mt1
a
−→ nt2

wPRS
(mt1

a
−→ nt2) ∈ ∆

mt1
a
−→ nt2

if n ≤ m

fcPRS
(mt1

a
−→ nt2) ∈ ∆

ot1
a
−→ (o ∧ n)t2

if m ≤ o and o ∧ n 6= ff

and two common inference rules

mt1
a
−→ nt′1

m(t1‖t2)
a
−→ n(t′1‖t2)

,
mt1

a
−→ nt′1

m(t1.t2)
a
−→ n(t′1.t2)

,

where t1, t2, t
′
1 ∈ T and m,n, o ∈M .

Instead of (1, S)-sePRS, (1, S)-wPRS, (1, S)-fcPRS, . . . we use a more natural
notation seBPA, wBPA, fcBPA, etc. The class seBPP is also known as multiset
automata (MSA) or parallel pushdown automata (PPDA), see [Mol96].

4 Expressiveness

Figure 1 describes the hierarchy of PRS classes and their extended counterparts
with respect to bisimulation equivalence. If any process in class X can be also
defined (up to bisimilarity) in class Y we write X ⊆ Y . If additionally Y 6⊆ X

holds, we write X (Y and say X is less expressive than Y . This is depicted by

1 In this case, the relation ≤ can be omitted from the definition.
2 If ∆ is an fcPRS, we eliminate the states with ff from S as they are unreachable.

Extended Process Rewrite Systems 361

sePRS

wPRS

rrrrrrrrrrrrrrrrrrrrrrrr

KKKKKKKKKKKKKKKKKKKKKKK

fcPRS

rrrrrrrrrrrrrrrrrrrrrrrr

KKKKKKKKKKKKKKKKKKKKKK

PRS
(G,G)-PRS

rrrrrrrrrrrrrrrrrrrrrrr

KKKKKKKKKKKKKKKKKKKKKK

sePAD sePAN

wPAD

LLLLLLLLLLLLLLLLLLLLLLLL
wPAN

sssssssssssssssssssssss

fcPAD

LLLLLLLLLLLLLLLLLLLLLLLL
fcPAN

ssssssssssssssssssssss

PAD
(S,G)-PRS

LLLLLLLLLLLLLLLLLLLLLLL

PAN
(P,G)-PRS

ssssssssssssssssssssss

sePA

mmmmmmmmmmmmmmmmmmmm

PPPPPPPPPPPPPPPPPPP

wPA

rrrrrrrrrrrrrrrrrrrrrrrr

JJJJJJJJJJJJJJJJJJJJJJJ

fcPA

rrrrrrrrrrrrrrrrrrrrrrrr

JJJJJJJJJJJJJJJJJJJJJJJ

{se,w,fc}PDA=PDA=seBPA
(S, S)-PRS

PA
(1, G)-PRS

rrrrrrrrrrrrrrrrrrrrrrr

KKKKKKKKKKKKKKKKKKKKKK

{se,w,fc}PN=PN
(P, P)-PRS

seBPP=MSA

wBPA wBPP

fcBPA fcBPP

BPA
(1, S)-PRS

TTTTTTTTTTTTTTTTT
BPP

(1, P)-PRS

kkkkkkkkkkkkkkkk

{se,w,fc}FS=FS
(1, 1)-PRS

Fig. 1. The hierarchy of classes defined by (extended) rewrite formalisms

the line(s) connecting X and Y with Y placed higher than X in Figure 1. The
dotted lines represent the facts X ⊆ Y , where we conjecture that X (Y hold.

Some observations (even up to isomorphism) are immediate, for example

1. the classes FS, PDA and PN coincide with their extended analogues,
2. if e ∈ {se, w, fc} and X ⊆ Y then eX ⊆ eY, and
3. (α, β)-PRS ⊆ (α, β)-fcPRS ⊆ (α, β)-wPRS ⊆ (α, β)-sePRS for all (α, β)-

PRS.

The strictness (‘(’) of the PRS-hierarchy has been proved by Mayr [May00],
that of the corresponding classes of PRS and fcPRS has been proved in [Str02],
and the relations among MSA and the classes of fcPRS and wPRS have been
studied in [KŘS03]. Note that the strictness relations wX (seX hold for all X
= PA, PAD, PAN, PRS due to our reachability result for wPRS given in Sec. 5
and due to the full Turing-power of sePA [BEH95].

362 M. Křet́ınský et al.

These proofs together with Moller’s result establishing MSA (PN [Mol98]
complete the justification of Figure 1 – with one exception, namely the relation
between the PN and sePA classes. Looking at two lines leaving sePA down to
the left and down to the right, we note the “left-part collapse” of (S, S)-PRS and
PDA proved by Caucal [Cau92] (up to isomorphism). The right-part counterpart
is slightly different due to the previously mentioned result that MSA (PN. In the
next subsection we prove that PN (sePA (in fact it suffices to demonstrate PN
⊆ sePA as the strictness is obvious).

4.1 PN (sePA

We now show that Petri nets are less expressive (with respect to bisimilarity)
than sePA processes. In this section, a Petri net ∆ is considered in traditional
notation (see e.g. [Pet81]). Let Const(∆) = {X1, . . . , Xk}, a state X

p1

1 ‖ . . . ‖X
pk

k

of a PN ∆ is written as (p1, . . . , pk) and called marking. Each pi is the number of

tokens at the place Pi. Any rewrite rule X l1
1 ‖ . . . ‖X

lk
k

a
−→ Xr1

1 ‖ . . . ‖X
rk

k (where

li, ri ≥ 0) is written as (l1, . . . , lk)
a
−→ (r1, . . . , rk) and called transition3. The

heart of our argument is a construction of a sePA ∆′ bisimilar to a given PN ∆.
The main difficulty in this construction is to maintain the number of tokens at

the places of a PN. To this end, we may use two types of sePA memory: a finite
control (FSU), which cannot represent an unbounded counter, and a term of
an unbounded length, where just one constant can be rewritten in one step.

Our construction of a sePA ∆′ can be reformulated on intuitive level as fol-
lows. Let a marking (p1, . . . , pk) mean that we have pi units of the i-th currency,

i = 1, . . . , k. An application of a PN transition (l1, . . . , lk)
a
−→ (r1, . . . , rk) has

the effect of a currency exchange from pi to pi − li + ri for all i. A sePA re-
seller ∆′ will have k finite pockets (in its FSU) and k bank accounts (a parallel
composition of k sequential terms ti). The reseller ∆′ maintains an invariant
pi = pocketi + accounti for all i. To mimic a PN transition he must obey sePA
rules, i.e. he may use all his pockets, but just one of his accounts in one ex-
change. A solution is to do pocketi ↔ accounti transfers cyclically, i = 1, . . . , k.
Hence, rebalancing pocketi the reseller ∆′ must be able to perform the next
k − 1 exchanges without accessing accounti (while visiting the other accounts).
Therefore, ∆′ needs sufficiently large (but finite) pockets and sufficiently high
(and fixed) limits for pocketi ↔ accounti transfers. We show these bounds exist.

In one step the amount of the i-th currency cannot be changed by more than
Li = max { |li−ri| ; (l1, . . . , lk)

a
−→ (r1, . . . , rk) is a PN transition}, thus Mi =

k·Li is an upper bound for the total effect of k consecutive steps. Any rebalancing
of pocketi sets its value into {Mi, . . . , 2Mi − 1} (or {0, . . . , 2Mi − 1} if accounti
is empty). Hence, after k transitions the value of pocketi is in {0, . . . , 3Mi − 1}.
In the next rebalancing accounti can be increased or decreased (if it is not empty)
by Mi to get pocketi between Mi (or 0 if accounti is empty) and 2Mi− 1 again.

3 Till now, Xn denoted the parallel composition of n copies of X. In the rest of the
section, it denotes the sequential composition of n copies of X.

Extended Process Rewrite Systems 363

Each state of sePA ∆′ consists of a state of a FSU and a term (parallel
composition of k stacks representing accounts). A state of a FSU is in the product

{1, . . . , k} × {0, . . . , 3M1 − 1} × . . . × {0, . . . , 3Mk − 1}.
update controller pocket1 pocketk

The update controller goes around the range and refers to the account being
updated (rebalanced) in the next step. The value of each pocketi (subsequently
denoted by mi) is equal to the number of tokens at Pi counted modulo Mi.

We define 2k process constants Bi, Xi ∈ Const(∆′), where Bi represents the
bottom of the i-th stack and each Xi represents Mi tokens at place Pi. The i-th
stack ti is of the form Xn

i .Bi, where n ≥ 0.
For a given initial marking α0 = (p1, . . . , pk) of a PN ∆ we construct the

initial state β0 = (1,m1, . . . ,mk) t1‖ · · · ‖tk of the sePA ∆′, where denoting ni =
max(0, (pi div Mi) − 1) we put mi = pi − ni ·Mi and ti = Xni

i .Bi. In other
words we have pi = mi + ni ·Mi and moreover mi ∈ {Mi, . . . , 2Mi − 1} if pi is
big enough (i.e. pi ≥Mi).

For each transition (l1, . . . , lk)
a
−→ (r1, . . . , rk) of the PN ∆ we construct the

set of sePA rules (s,m1, . . . ,mk) t
a
−→ (s′,m′1, . . . ,m

′
k) t
′ such that they obey

the following conditions:

– Update controller conditions: s, s′ ∈ {1, . . . , k} and s′ = (s mod k) + 1.
– The general conditions for pockets (1 ≤ i ≤ k):

• mi,m
′
i ∈ {0, . . . , 3Mi − 1},

• mi ≥ li (i.e. the transition can be performed),
• if i 6= s then m′i = mi − li + ri.

We now specify m′s and the terms t, t′. The first two Bottom rules are the
rules for working with the empty stack. The next three Top rules describe the
rewriting of process constant Xs. Depending on the value of ms = ms − ls + rs,
there are dec, inc, and basic variants manipulating the s-th stack.

Rule t ms ∈ m′s t′

Bottom-basic rule Bs {0, . . . , 2Ms − 1} ms Bs

Bottom-inc rule Bs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Bs

Top-dec rule Xs {0, . . . ,Ms − 1} ms +Ms ε

Top-basic rule Xs {Ms, . . . , 2Ms − 1} ms Xs

Top-inc rule Xs {2Ms, . . . , 3Ms − 1} ms −Ms Xs.Xs

Theorem 1. PN (sePA with respect to bisimulation equivalence.

Proof. (Sketch) Let ∆ is a PN and ∆′ is the sePA constructed as described
above. In the following β refers to a state (s,m1, . . . ,mk)X

n1

1 .B1‖ . . . ‖X
nk

k .Bk

of the sePA ∆′ while α refers to a marking (p1, . . . , pk) of the PN ∆. We show

R = {(α, β) | β is reachable and pi = mi + ni ·Mi for all i = 1, . . . k}

is a bisimulation relation.

364 M. Křet́ınský et al.

Let us assume that (α, β) ∈ R and a transition (l1, . . . , lk)
a
−→ (r1, . . . , rk)

fired in α leads to α′. Exactly one sePA rule derived from this PN transition
(see the table of rules) is applicable on β. (This statement is due to the straight-
forward observations: if ni 6= 0 then mi ≥ Li, hence pi ≥ li iff mi ≥ li.) The

application of this rule on β leads to β′ = (s′,m′1, . . . ,m
′
k)X

n′

1

1 .B1‖ . . . ‖X
n′

k

k .Bk

which satisfies m′i + n′i ·Mi = mi + ni ·Mi − li + ri and 0 ≤ m′i < 3Mi for all i.
Hence, (α′, β′) ∈ R. The symmetric case proceeds in a similar way.

Note that the pair of the initial marking α0 of the PN ∆ and the initial state
β0 of the sePA ∆′ is in R. Hence, ∆ and ∆′ are bisimilar. We have demonstrated
that PN ⊆ sePA (with respect to bisimulation equivalence).

The strictness of this relation follows from two of the results mentioned in the
introduction, namely the full Turing-power of sePA [BEH95] and the decidability
of reachability for PN [May81]. ut

We note that the sePA system constructed by our algorithm does not need
to be isomorphic to the original PN system (e.g. due to the different values of
the update controller).

5 Reachability for wPRS Is Decidable

In this section we show that for a given wPRS ∆ and its states rt1, st2 it is
decidable whether st2 is reachable from rt1 or not (recall that st2 is reachable

from rt1 if a sequence of actions σ such that rt1
σ
−→ st2 exists).

Our proof exhibits a similar structure to the proof of decidability of the
reachability problem for PRS [May00]; first we reduce the general problem to
the reachability problem for wPRS with rules containing at most one occurrence
of a sequential or parallel operator, and then we solve this subproblem using the
fact that the reachability problems for both PN and PDA are decidable [May81,
Büc64]. The latter part of our proof is based on a new idea of passive steps
presented later.

To get just a sketch of the following proof we suggest to read the definitions
and statements (skipping their technical proofs). Some of them are preceded by
comments that provide some intuition.

As the labels on rewrite rules are not relevant here, we omit them in this
section. To distinguish between rules and rewriting sequences we use rt1 Â

∆ st2
to denote that the state st2 is reachable from rt1 in wPRS ∆. Further, states of
weak state unit are called weak states.

Definition 3. Let ∆ be a wPRS. A rewrite rule in ∆ is parallel or sequential
if it has one of the following forms:

parallel rules: pX −→ qY ‖Z pX‖Y −→ qZ pX −→ qY pX −→ qε,
sequential rules: pX −→ qY.Z pX.Y −→ qZ pX −→ qY pX −→ qε,

where X,Y, Z are process constants and p, q are weak states. A rule is trivial if
it is both parallel and sequential (i.e. it has the form pX −→ qY or pX −→ qε).
A wPRS ∆ is in normal form if every rewrite rule in ∆ is parallel or sequential.

Extended Process Rewrite Systems 365

Lemma 1. For a wPRS ∆, terms t1, t2, and weak states r, s, there are terms
t′1, t

′
2 of wPRS ∆′ in normal form satisfying rt1 Â

∆ st2 ⇐⇒ rt′1 Â
∆′

st′2.
Moreover, wPRS ∆′ and terms t′1, t

′
2 can be effectively constructed.

Proof. In this proof we assume that the sequential composition is left-associative.
It means that the term X.Y.Z is (X.Y).Z and so its subterms are X, Y , Z, and
X.Y , but not Y.Z. However, the term Y ‖Z is a subterm of X.(Y ‖Z).

Let size(t) denote the number of sequential and parallel operators in term t.
Given any wPRS ∆, let ki be the number of rules (pt −→ qt′) ∈ ∆ that are
neither parallel nor sequential and size(pt −→ qt′) = i, where size(pt −→ qt′) =
size(t) + size(t′). Thus, ∆ is in normal form iff ki = 0 for every i. In this case,
let n = 0. Otherwise, let n be the largest i such that ki 6= 0 (n exists as the set
of rules is finite). We define norm(∆) to be the pair (n, kn).

We now describe a procedure transforming ∆ (if it is not in normal form) into
a wPRS ∆′ and terms t1, t2 into terms t′1, t

′
2 such that norm(∆′) < norm(∆)

(with respect to the lexicographical ordering) and rt1 Â
∆ st2 ⇐⇒ rt′1 Â

∆′

st′2.
Let us assume that wPRS ∆ is not in normal form. Then there is a rule that

is neither sequential nor parallel and has the maximal size. Take a non-atomic
and proper subterm t of this rule and replace every subterm t in ∆ (i.e. in rewrite
rules and initial term) and in t1 and t2 by a fresh constant X. Then add two
rules pX −→ pt and pt −→ pX for each weak state p. This yields a new wPRS
∆′ and terms t′1 and t′2 where the constant X serves as an abbreviation for the
term t. By the definition of norm we get norm(∆′) < norm(∆). The correctness
of our transformation remains to be demonstrated, namely that

rt1 Â
∆ st2 ⇐⇒ rt′1 Â

∆′

st′2.

The implication⇐= is obvious. For the opposite direction we show that every
rewriting step in ∆ from pl1 to ql2 under the rule (pl −→ ql′) ∈ ∆ corresponds
to a sequence of several rewriting steps in ∆′ leading from pl′1 to ql′2, where
l′1, l
′
2 are equal to l1, l2 with all occurrences of t replaced by X. Let us assume

the rule pl −→ ql′ modifies a subterm t of pl1, and/or a subterm t appears in
ql2 after the rule application (the other cases are trivial). If the rule modifies
a subterm t of l1 there are two cases. Either l includes the whole t and then the
corresponding rule in ∆′ (with t replaced by X) can be applied directly on pl′1,
or, due to the left-associativity of a sequential operator, t is not a subterm of
the right part of any sequential composition in l1 and thus the application of
the corresponding rule in ∆′ on pl′1 is preceded by an application of the added
rule pX −→ pt. The situation when t appears in ql2 after the application of the
considered rule is similar. Either l′ includes the whole t and then the application
of the corresponding rule in ∆′ results directly in ql′2, or t is not a subterm
of the right part of any sequential composition in l2 and thus the application
of the corresponding rule in ∆′ is followed by an application of the added rule
qt −→ qX reaching the state ql′2.

By repeating this procedure we finally get a wPRS ∆′′ in normal form and
terms t′′1 ,t

′′
2 satisfying rt1 Â

∆ st2 ⇐⇒ rt′′1 Â
∆′′

st′′2 . ut

366 M. Křet́ınský et al.

Mayr’s proof for PRS now transforms the PRS ∆ in normal form into the
PRS ∆′ in so-called transitive normal form satisfying (X −→ Y) ∈ ∆′ whenever
X Â∆ Y . This step employs the local effect of rewriting under sequential rules in
a parallel environment and vice versa. Intuitively, whenever there is a rewriting
sequence

X‖Y −→ (X1.X2)‖Y −→ (X1.X2)‖Z −→ X2‖Z

in a PRS in normal form, then the rewriting of each parallel component is inde-
pendent in the sense that there are also rewriting sequences X −→ X1.X2 −→
X2 and Y −→ Z. This does not hold for wPRS in normal form as the rewriting in
one parallel component can influence the rewriting in other parallel components
via a weak state unit. To get this independence back we introduce the concept of
passive steps emulating changes of a weak state produced by the environment.

Definition 4. A finite sequence of weak state pairs PS = {(pi, qi)}
n
i=1 satisfying

p1 > q1 ≥ p2 > q2 ≥ · · · ≥ pn > qn is called passive steps.
Let ∆ be a wPRS and PS be passive steps. By ∆ + PS we denote a system

∆ with an added rule pX −→ qX for each (p, q) in PS and X ∈ Const(∆). For
all terms t1, t2 and weak states r, s we write

rt1 Â
∆+PS

triv st2 iff rt1 Â
∆+PS st2 via trivial rules,

rt1 Â
∆+PS
seq st2 iff rt1 Â

∆+PS st2 via sequential rules,

rt1 Â
∆+PS
par st2 iff rt1 Â

∆+PS st2 via parallel rules.

Informally, rt1 Â
∆+PS st2 means that the state rt1 can be rewritten into

state st2 provided a weak state can be passively changed from p to q for every
passive step (p, q) in PS . Thanks to the finiteness and ‘weakness’ of a weak state
unit, the number of different passive steps is finite.

Definition 5. Let wPRS ∆ be in normal form. If for every X,Y ∈ Const(∆),
weak states r, s, and passive steps PS it holds that

rX Â∆+PS sY =⇒ rX Â∆+PS

triv sY then ∆ is in flatted normal form,

rX Â∆+PS
seq sY =⇒ rX Â∆+PS

triv sY then ∆ is in sequential flatted normal form,

rX Â∆+PS
par sY =⇒ rX Â∆+PS

triv sY then ∆ is in parallel flatted normal form.

The following lemma says that it is sufficient to check reachability via se-
quential rules and via parallel rules in order to construct a wPRS in flatted
normal form. This allows us to reduce the reachability problem for wPRS to the
reachability problems for wPN and wPDA (i.e. to the reachability problems for
PN and PDA).

Lemma 2. If a wPRS is in both sequential and parallel flatted normal form then
it is in flatted normal form as well.

Proof. We assume the contrary and derive a contradiction. Let ∆ be a wPRS in
sequential and parallel flatted normal form. Let us choose passive steps PS and
a rewriting sequence in ∆+PS leading from rX to sY such that rX 6Â∆+PS

triv sY ,

Extended Process Rewrite Systems 367

the number of applications of non-trivial rewrite rules applied in the sequence
is minimal, and all steps of PS are used during the sequence. As the wPRS
∆ is in both sequential and parallel flatted normal form, rX 6Â∆+PS

seq sY and

rX 6Â∆+PS
par sY . Hence, both sequential and parallel operators occur in the rewrit-

ing sequence. There are two cases.

1. Assume that a sequential operator appears first. The parallel operator is
then introduced by the rule in the form pU −→ qT‖S applied to a state
pU.t, where t is a sequential term. From q(T‖S).t Â∆+PS sY and the fact
that at most one process constant can be removed in one rewriting step, it
follows that in the rest of the sequence considered, the term T‖S is rewritten
onto a process constant (say V) and a weak state (say o) first. Let PS ′ be
passive steps of PS between weak states p and o.

2. Assume that a parallel operator appears first. The sequential operator is
then introduced by the rule in the form pU −→ qT.S applied on a state
pU‖t, where t is a parallel term. The rest of the sequence subsumes steps
rewriting the term T.S onto a process constant (say V) and a weak state
(say o). Contrary to the previous case, these steps can be interleaved with
steps rewriting the parallel component t and possibly changing weak state.
Let PS ′ be passive steps of PS (between weak states p and o) merged with
the changes of weak states caused by rewriting of t.

Consequently, we have a rewriting sequence in ∆+ PS ′ from pU to oV with
fewer applications of non-trivial rewrite rules. As the number of applications
of non-trivial rewrite rules used in the original sequence is minimal we get

pU 6Â∆+PS
′

triv oV . This contradicts our choice of rX, sY , and PS . ut

Example 1. Here, we illustrate a possible change of passive steps (PS to PS ′)
described in the second case of the proof above. Let us consider a wPRS ∆ with
weak states r > p > q > t > v > o > s and the following rewrite rules

rX −→ pU‖Z pU −→ qT.S qZ −→ tY vT.S −→ oV oV ‖Y −→ sY

as well as the following sequence rX Â∆+{(t,v)} sY , i.e.

rX −→ pU‖Z −→ q(T.S)‖Z −→ t(T.S)‖Y
passive
−→ v(T.S)‖Y −→ oV ‖Y −→ sY ,

where redices are underlined. The sequence constructed due to the case 2 is as:

pU Â∆+{(q,t),(t,v)} oV , i.e. pU −→ q(T.S)
passive
−→ t(T.S)

passive
−→ v(T.S) −→ oV .

The following lemma employs the algorithms deciding the reachability prob-
lem for PDA and PN. Recall that the classes PDA and PN coincide with the
classes of wPDA and wPN, respectively.

Lemma 3. For every wPRS ∆ in normal form, terms t1, t2 over Const(∆), and
weak states r, s of ∆ a wPRS ∆′ can be constructed such that ∆′ is in flatted
normal form and satisfies rt1 Â

∆ st2 ⇐⇒ rt1 Â
∆′

st2.

368 M. Křet́ınský et al.

Proof. To obtain ∆′ we enrich ∆ by trivial rewrite rules transforming the sys-
tem into sequential and parallel flatted normal forms, which suffices thanks to
Lemma 2. Using algorithms deciding reachability for PDA and PN, our algorithm
checks if there are some weak states r, s, constants X,Y ∈ Const(∆), and pas-
sive steps PS = {(pi, qi)}

n
i=1 (satisfying r ≥ p1 and qn ≥ s as weak states pairs

beyond this range are of no use here) such that rX Â∆+PS
seq sY ∨ rX Â∆+PS

par sY

and rX 6Â∆+PS

triv sY . We finish if the answer is negative. Otherwise we add to ∆

rules rX −→ p1Z1, qiZi −→ pi+1Zi+1 for i = 1, . . . , n − 1, and qnZn −→ sY ,
where Z1, . . . , Zn are fresh process constants (if n = 0 then we add just the rule
rX −→ sY). The algorithm then repeats this procedure on the system with the
added rules with one difference; the X,Y range over the constants of the original
system ∆. This is sufficient as new constants occur only in trivial rules4. The
algorithm terminates as the number of iterations is bounded by the number of
pairs of states rX, sY of ∆, times the number of passive steps PS . The correct-
ness follows from the fact that the added rules have no influence on reachability.

ut
Theorem 2. The reachability problem for wPRS is decidable.

Proof. (Sketch) Let ∆ be a wPRS with states rt1, st2. We want to decide whether
rt1 Â

∆ st2 or not. Clearly rt1 Â
∆ st2 ⇐⇒ rX Â∆′

sY , where X,Y are fresh
constants and ∆′ arises from ∆ by the addition of the rules rX −→ rt1 and
st2 −→ sY 5. Hence we can directly assume that t1, t2 are process constants, say
X,Y . Lemma 1 and Lemma 3 successively reduce the question whether rX Â∆

sY to the question whether rX Â∆′

sY , where ∆′ is in flatted normal form –
note that Lemma 1 does not change terms t1, t2 if they are process constants.
The definition of flatted normal form implies rX Â∆′

sY ⇐⇒ rX Â∆′

triv sY .

Finally the relation rX Â∆′

triv sY is easy to check. ut

6 Conclusions

We have unified a view on some (non-conservative) extensions of Process Rewrite
Systems. Comparing (up to bisimulation equivalence) the mutual expressiveness
of the respective subclasses, we have added some new strict relations, including
the class of Petri nets being less expressive than the class of PA processes ex-
tended with a finite state control unit. Finally, we have shown that a weak state
unit extension (and thus a finite constraint system extension as well) of process
rewrite systems keep the reachability problem decidable.

Acknowledgements. We would like to thank Hans Hüttel and Jǐŕı Srba for dis-
cussions, comments, and pointers; and Luca Aceto for invaluable suggestions.

4 If the system with added rules is not in sequential or parallel flatted normal form,
then there is a counterexample with the constants X,Y of the original system ∆.

5 If t2 = ε then this is not a correct rule. In this case we need to add to ∆′ a rule
pt −→ qY for each rule (pt −→ qε) ∈ ∆.

Extended Process Rewrite Systems 369

References

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem
of nonregular properties for nonregular processes. In LICS’95. IEEE, 1995.

[BET03] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. International Journal
on Foundations of Computer Science, 14(4):551–582, 2003.

[BT03] A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite
Systems. In Proc. of FST&TCS-2003, volume 2914 of LNCS, pages 74–87.
Springer, 2003.

[Büc64] J. R. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundla-
genforschung, 6:91–111, 1964.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theoretical Com-
puter Science, 106:61–86, 1992.

[DAC98] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification
patterns for finite-state verification. In Mark Ardis, editor, Proc. 2nd
Workshop on Formal Methods in Software Practice (FMSP-98), pages 7–
15, New York, 1998. ACM Press.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[Esp02] J. Esparza. Grammars as processes. In Formal and Natural Computing,
volume 2300 of LNCS. Springer, 2002.

[HS04] H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic
protocols. Submitted for publication, 2004.

[Jan95] P. Jančar. High Undecidability of Weak Bisimilarity for Petri Nets. In
Proc. of TAPSOFT, volume 915 of LNCS, pages 349–363. Springer, 1995.

[JKM01] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equiva-
lences with finite-state processes. Theoretical Computer Science, 258:409–
433, 2001.

[KŘS03] M. Křet́ınský, V. Řehák, and J. Strejček. Process Rewrite Systems with
Weak Finite-State Unit. Technical Report FIMU-RS-2003-05, Masaryk
University Brno, 2003. to appear in ENTCS as Proc. of INFINITY 03.

[LS98] D. Lugiez and Ph. Schnoebelen. The regular viewpoint on PA-processes.
In Proc. of CONCUR’98, volume 1466 of LNCS, pages 50–66, 1998.

[May81] E. W. Mayr. An algorithm for the general Petri net reachability problem.
In Proc. of 13th Symp. on Theory of Computing, pages 238–246. ACM,
1981.

[May00] R. Mayr. Process rewrite systems. Information and Computation,
156(1):264–286, 2000.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Mol96] F. Moller. Infinite results. In Proc. of CONCUR’96, volume 1119 of LNCS,

pages 195–216. Springer, 1996.
[Mol98] F. Moller. Pushdown Automata, Multiset Automata and Petri Nets,

MFCS Workshop on concurrency. Electronic Notes in Theoretical Com-
puter Science, 18, 1998.

[MSS92] D. Muller, A. Saoudi, and P. Schupp. Alternating automata, the weak
monadic theory of trees and its complexity. Theoret. Computer Science,
97(1–2):233–244, 1992.

370 M. Křet́ınský et al.

[Pet81] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, 1981.

[SR90] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In
Proc. of 17th POPL, pages 232–245. ACM Press, 1990.

[Srb02] J. Srba. Roadmap of infinite results. EATCS Bulletin, (78):163–175, 2002.
http://www.brics.dk/~srba/roadmap/.

[Str02] J. Strejček. Rewrite systems with constraints, EXPRESS’01. Electronic
Notes in Theoretical Computer Science, 52, 2002.

	Introduction
	Preliminaries
	Extended PRS
	Expressiveness
	PNsePA

	Reachability for wPRS Is Decidable
	Conclusions

