
Formal Verification of a FIFO Component in Design of

Network Monitoring Hardware
�

Tomáš Kratochvı́la, Vojtěch Řehák, and David Šafránek

Faculty of Informatics, Masaryk University Brno

Botanická 68a, 602 00 Brno, Czech Republic�
krata, rehak, dawe � @liberouter.org

Abstract. The paper presents our approach of using a formal verification method,

the model checking, to verify whether a particular component of hardware design

matches its specification. We have applied this approach in the Liberouter project,

which is aimed to develop an FPGA based high-speed network monitoring and

routing hardware. In the paper, we focus on a FIFO component – the process of

its verification, detected errors, and the way of their correction.

1 Introduction

To maximize efficiency of the hardware development process it is necessary to detect

the most of potential errors in the design as soon as possible. In addition to classical

simulation and testing methods, we successfully use the state-of-the-art automatic for-

mal verification methods. More particularly, we use the model checking technique [1],

which takes into account all the possible behavior of the design. The other advantages

of this technique are simple reusability in newer versions of the design and counterex-

ample generation showing wrong behavior which helps to fix bugs in the design. With

respect to the nature of the Liberouter design, we use tools based on the symbolic model

checking algorithms [2].

The essential prerequisite of the model checking technique is formal specification

of verified properties. For this purpose, we use suitable temporal logics [3]. Strong ex-

pressiveness of these logics allows us to express all the typical requirements on the

component behavior. We perform a special kind of assertion-based verification. Com-

monly used assertion languages, such as PSL [4], do not have the power of temporal

logics. On the other hand, the advantage of assertion languages is availability of asser-

tion libraries like OVL [5] or 0-in CheckerWare [6]. However, properties expressed in

assertion languages can be easily translated into formulae of some temporal logic.

The temporal logic formulae we use are typically made from the specification and

also from the assertions put in HDL codes. Unfortunately, a nontrivial effort is required

�
This research has been partially supported by the FP5 projects No. IST-2001-32603 and IST-

2001-32404, and by the CESNET activity “Programmable hardware”. The author Tomáš Kra-

tochvı́la has been partially supported by the Academy of Sciences of the Czech Republic grant

No. 1ET408050503. Vojtěch Řehák has been partially supported by the research centre “Insti-

tute for Theoretical Computer Science (ITI)”, project No. 1M0021620808, and David Šafránek

has been supported by the Grant Agency of Czech Republic grant No. 201/06/1168.

to use model checking tools to verify such formulae on a very complex design. A lot of

expert work has to be done manually to suitably simplify the design – sophisticated ab-

stractions have to be employed. For this reason, model checking is not yet the standard

method of verification in projects of this kind. In our project, we have set up a team of

experts, who specialize in the formal verification.

This paper describes our approach of utilizing the model checking method to ver-

ify a FIFO component implemented using Xilinx Virtex �
�

-II block RAM [7]. The

component is a part of an FPGA-based PCI card, COMBO6, which is the pillar of the

Liberouter [8] project. The main aim of the Liberouter project is to develop a high-speed

network monitoring and routing hardware with entirely open design [9].

The structure of the paper is the following. The Section 2 give a brief overview of

the formal verification process we use. In Section 3, the specification of the verified

component FIFO BRAM and related modeling and verification details are given. Sec-

tion 4 shows how the specification is formalized using the temporal logic formulae.

Finally, the Section 5 describes detected errors, shows the way of their correction, and

highlights the benefits regarding reuse of the verification framework each time the new

version of the component is developed.

2 Overview of the Verification Process

Before we can apply model checking, we have to formalize the model of the system

on the one hand and its specification on the other hand. specification to use model

checking.

Input for the verified model is taken from the source codes of the design components

that is written in VHDL. These source codes are then automatically translated into the

input language of the Cadence SMV model checker [10]. Using the Mentor Graphics

LeonardoSpectrum or Precision tools [11], VHDL source codes are synthesized into

the Verilog HDL. The Cadence SMV includes translator of Verilog HDL source codes

into its native SMV language. In essence, Verilog HDL and SMV languages are syntac-

tically very similar. The scheme of the translation process is depicted in Figure 1 and

more detailed information can be found in [12].

In general, we specify the properties of verified components using the SMV lan-

guage. More particularly, the properties are encoded as formulae of LTL (Linear Tempo-

ral Logic) or CTL (Computation Tree Logic) [3]. They are taken mostly from the spec-

ification of the component behavior. Other properties are given by VHDL designers –

either verbal descriptions or assertions written as comments in VHDL source codes [12].

Once we have obtained an SMV code, its verification is performed. Results of the

verification are then reported to developers. The verification process is applied incre-

mentally, i.e. the results achieved after changing some steps of the process are compared

with the previous results. For this purpose, a lot of information is included in each verifi-

cation result – VHDL code used, parameters of translation to SMV, and preconditions of

the verified properties. An XML structure has been defined to store all the result infor-

mation in the form of a verification report [13]. However, it has appeared very inefficient

to write the XML documents by hand. Therefore, we have developed an user-friendly

verification environment called Verunka [14]. The main features of this environment are

Fig. 1. From VHDL to SMV language

proper calling of the Cadence SMV model checker and automatic generation of XML

verification reports.

3 FIFO BRAM Component Verification

Data buffering and queuing are common challenges in high-speed network systems.

FIFOs are commonly used to connect components to increase the overall performance.

This section shows the verification of a particular design component, FIFO BRAM,

with respect to its specification.

3.1 Specification

The FIFO BRAM component implements a FIFO using internal Virtex �
�

-II block

RAM memories [15]. The component is described in the Liberouter CVS [8] directory

vhdl design/units/common/fifo bram/ �

The size of the FIFO is parametrized by the generic parameter ITEMS. Items in

the FIFO are divided into blocks and the component allows detection of the situation

when only the last free block of the FIFO is available. The number of items in one

block is set by the BLOCK SIZE constant. For details, see the documentation of the

component [16].

The component is shown as a black box with input and output ports in Figure 2.

There are the following four regular input ports in the component interface:

– CLK is a port of the Clock signal

– RESET is a port of the Reset signal

– WR is the Write Request port

– RD is the Read Request port

The data ports of the component are the following:

– DO is 16bit Data Output port

– DI is 16bit Data Input port

FULL

LSTBLK

DV

EMPTYDO

RD

DI

WR

RESET

CLK

Fig. 2. BRAM FIFO component

And the output ports are defined as follows.

– EMPTY transmits the signal which is active if and only if the FIFO is empty.

– FULL transmits the signal which is active if and only if the FIFO is full.

– LSTBLK transmits the last block detection signal which is active if and only if the

FIFO contains just BLOCK SIZE or less than BLOCK SIZE number of free items.

– DV transmits the data valid signal which is active as soon as the valid output data

are available on the DO port.

Since the FIFO BRAM component is parametrized in actual versions the output

of the verification is some subset of possible parameter values for which the property

is satisfied. It has four generic parameters (ITEMS, BLOCK SIZE, BRAM TYPE, and

DATA WIDTH). We have verified VHDL codes for each purposeful combination of these

parameters. To save our computational resources while covering almost all the hardware

designers needs, we have considered the ITEMS parameter restricted. The restricted

ITEMS parameter puts a limit to other parameters. This limitation is necessary because

the verification process cannot be executed for infinitely many values of the parameters.

We do not use parametrized verification techniques [17, 18], because they consume too

many time and space resources for verification of such a complex code. However, it

suffices to verify the design only for some choices of parameter values. A lot of design

errors can be still investigated following this way.

3.2 Modeled Environment

To verify the component, a process which represents behavior of the component envi-

ronment has to be modeled. We have modeled such an environment process using the

Cadence SMV language. In our verification we focus mainly on the values of the con-

trol signals EMPTY, FULL, and LSTBLK. To enable checking of these signals behavior,

we have to observe the FIFO behavior from the outer view and maintain in the envi-

ronment model the necessary information about the FIFO processing. Therefore, the

environment model contains the variable counter which saves the actual number of

items in the FIFO. Moreover, the environment process is able to detect when the FIFO

items are being read or written.

Two registers, MINUS and PLUS, have been defined to manage the value of counter.

The MINUS register is defined to become active just after the moment in which an item

has been successfully read from the FIFO. This situation is emerged when the signal RD

is active and the EMPTY signal is not active. Similarly, the PLUS register is defined to

become active when an item has been successfully written to the FIFO. This situation

corresponds to the behavior of the WD and FULL signals.

4 Verified Properties

This section describes the verified properties of the FIFO component. Each property is

presented here as an natural language sentence followed with its formalization in the

form of a CTL formula. Explanation of the CTL logic is not the topic of this paper.

Readers, who are not familiar with CTL, can skip the formulae without any lost of

understanding.

We categorize the verified properties into two groups – generic properties and spe-

cific properties. The generic properties are general requirements on the FIFO behavior.

The specific properties are derived from the component specification.

4.1 Generic Properties

Some common properties are applicable to any FIFO equipped with FULL and EMPTY

signals and with the counter of items.

The generic properties we have considered are the following:

(1) The FIFO is always eventually full:

AG EF (counter = ITEMS)

(2) The FIFO is always eventually empty:

AG EF (counter = 0)

(3) The FIFO is full iff the FULL signal is active:

AG((full <-> counter = ITEMS))

(4) The FIFO is empty if and only if the EMPTY signal is active:

AG((empty <-> counter = 0))

(5) The counter does not overflow:

AG(! (counter = ITEMS + 1))

(6) The counter does not underflow:

AG(! (counter = -1))

(7) It is not possible to read from and write to the same address at the same time:

AG (! (MINUS & PLUS

& reg_write_addr0 = reg_read_addr0

& reg_write_addr1 = reg_read_addr1

& reg_write_addr2 = reg_read_addr2

& reg_write_addr3 = reg_read_addr3

& reg_write_addr4 = reg_read_addr4

& reg_write_addr5 = reg_read_addr5

))

The last property is not satisfied only when the read and write addresses are the same

(the read registers of the form reg write addr * equals to the write registers of the

formreg read addr *) and an item is read from and written to the FIFO at the same

time (which corresponds to the formula MINUS & PLUS). These generic properties

are used also for verification of other FIFO components. We have successfully verified

that all these generic properties hold in every version of the FIFO BRAM component.

4.2 Specific Properties

An important liveness property of the FIFO is that it should eventually reach the state,

in which the LSTBLK signal is active. To check whether the signal LSTBLK satisfies at

least this functionality the following property has to be employed:

(8) The LSTBLK signal is always eventually active.
AG EF (LSTBLK)

This property was satisfied in every version of the FIFO BRAM component. The fol-

lowing ”last free block” property is taken from the specification (as it has been already

stated in Section 3.1):

The LSTBLK signal is asserted if and only if the FIFO contains BLOCK SIZE

or less than BLOCK SIZE free items.

This property should be more formally formulated as:

In every possible execution of the system, the number of free items in the FIFO

is less than or equal to the size of a block if and only if the LSTBLK signal is

active.

The number of free items in the FIFO is the value of the expression (ITEMS - counter).

Then the corresponding formula in the CTL form is the following:

(9) AG(((ITEMS-counter) <= BLOCK_SIZE)

<->

LSTBLK)

Using Cadence SMV it has been shown that this formula holds in the actual version

of the component. In the previous versions, its validity was violated. In the next section,

the explanation of what kind of errors were found and how they were corrected will be

delivered.

5 Evolution of the Component

In this section, the evolution of the FIFO BRAM component is presented. Moreover,

we show the consequences of the fact that the specification of this hardware component

was not originally implemented correctly.

In general, it is a harder task to achieve the required functionality in the hardware

than in the software. The main reason is that concurrency, speed, and sophisticated

resource consumption are very critical properties of such a hardware system. More

particularly, it is usually very difficult to instantly change the value of a simple signal

such as LSTBLK before the next clock tick comes.

5.1 Earliest Versions

The LSTBLK signal in the FIFO BRAM component could not be directly computed

in the hardware without a significant increase in resource consumption. In the earliest

versions of the component, the block referred by the read or write address register was

being determined using the highest bits of the address. The LSTBLK signal was raised

whenever the read address was referring to the block placed just next to the block re-

ferred by the write address (modulo the number of blocks). This FIFO implementation

is illustrated on a simple example which follows.

Assume, e.g., that BLOCK SIZE ��� . In other words, we suppose the number of

items in one block to be set to � . In this situation, when the number of free items in

the FIFO is lower than or equal to � , the LSTBLK signal should be active according to

the specification. This example is illustrated in Figure 3. There is shown the part of the

FIFO with the engaged items marked with x and the free items represented as empty

boxes. Read and write address registers are depicted as arrows referring to the relevant

items.

X X X X X X XXX

write address read address

block of items

Fig. 3. Read and write address registers refer to items in FIFO with blocks of size 4

The implementation described above is simple and saves a lot of hardware re-

sources. But we have encountered an inaccuracy which has later turned to be a signifi-

cant problem. The LSTBLK signal was not being generated just when the last BLOCK SIZE

number of free items was remaining in the FIFO. We have verified the intended behav-

ior using the following properties which restrict the interval when the LSTBLK signal

should be raised.

The VHDL designers focused mainly to save the hardware resources at the ex-

pense of accuracy. They believed that the LSTBLK signal was raised when at most���
BLOCK SIZE and at least BLOCK SIZE number of free items was remaining. We

have set up the following two formulae to verify the behavior of the LSTBLK signal:

���
	
The LSTBLK signal is not active if the number of empty items is greater than the

size of two blocks.

AG((ITEMS-counter) > (2*BLOCK_SIZE)

-> ˜LSTBLK

)

�����
	
The LSTBLK signal is active if the number of empty items is smaller than the size

of one block.

AG((ITEMS-counter) < BLOCK_SIZE

-> LSTBLK

)

The formula
���
	

has been satisfied in every version of the FIFO BRAM component

which means that the LSTBLK is never active when there are more than two free blocks.

On the contrary, a critical error has been found using the formula
��� � 	

. This formula

did not hold in the earliest versions of the FIFO. More specifically, the LSTBLK signal

turned to zero when the number of empty items became smaller than the size of one

block.

Fig. 4. Timing diagram showing the wrong behavior of the FIFO component

The corresponding counterexample generated by the model checker is shown in

Figure 4. Only the signals LSTBLK, CLK, and FULL and the read and write address

registers are significant for the observed anomaly. The read address register refers to

the same item all the clock ticks while the write address register is increased with each

rising CLK edge. The content of the FIFO is observed in three different instants indi-

cated in the figure.

In the first instant, the FIFO contains seven free items. At the same time, the highest

bits of the write address, incremented by one, equal to the highest bits of the read

address, and hence the LSTBLK signal is changed by the next rising CLK edge. In the

next four clock ticks, four items are written to the FIFO.

Subsequently, the second indicated instant comes. At this instant, the highest bits of

the write address equal to the highest bits of the read address. This makes the LSTBLK

signal to be changed to zero with the next rising CLK edge. This is the incorrect behavior

which contradicts the formula
�����
	

.

The last indicated instant is reached just after the next three items are written to the

FIFO. In that moment, the FULL signal is raised while the LSTBLK signal is still not

active. Now the FIFO is in the state in which, with respect to the LSTBLK signal, it is

able to accept some block of items, but in fact it cannot accept any.

A necessary precondition for correctness of this implementation is expressed by the

following property:

��� ���
	
The LSTBLK signal is active before the number of empty items is smaller than

the size of one block. The formula checks whether the FIFO can reach the state in

which less than one free block is available without the rising of LSTBLK signal.

The operators G, U, and | stand for globally, until, and or respectively.

((ITEMS-counter) >=

BLOCK_SIZE U LSTBLK)

|

G (ITEMS-counter) >= BLOCK_SIZE

The formula
��� � �
	

has been satisfied in earliest versions. In further versions, the

validity of this formula has been violated as it is shown in the next subsection.

5.2 Wrong Block Size

The hardware designers have reimplemented the component. Unfortunately, the im-

provement has been achieved at the expense of consumption of more hardware re-

sources. In more detail, the register cnt diff, showing the difference between the

read and write address registers, has been added. Hence, in this register the number of

free items is being stored. The LSTBLK signal is controlled in the way very similar to

the previous case – it is active when the highest bits of the cnt diff register are equal

to zero. When the implementation was changed we verified the new VHDL sources

using the same properties.

The last block formula
��� � 	

was not satisfied again and, moreover, the last block

formula
��� � � 	

was not satisfied in spite of that it had been satisfied before. The Cadence

SMV tool generated the counterexample which showed that the behavior of the new

FIFO implementation corresponded to the case of the FIFO with the block size one

item smaller. More particularly, the highest bits were equal to zero when the cnt diff

register value was smaller than or equal to
� �����

, where � ���	��
� BLOCK SIZE.

We reuse the established verification framework each time a change in source codes

or in the specification appears. This process is in most cases very easy and quick (it

typically takes minutes of manual work plus time spent on automatic computation).

When the specification is changed the corresponding properties have to be changed too.

6 Conclusion

We have demonstrated the way how a very significant bug can be found in the FPGA

design using the model checking method. It is worth noting that it could be very unlikely

to discover such a bug using standard simulation or testing methods.

Moreover, the verification framework established during this verification process

(i.e. the formal CTL specification of FIFO properties) can be suitably reused in future

verification of new versions of this component and also in verification of other similar

FIFO components. FIFO components are used very frequently in FPGA designs and we

have established a base for a library of formal properties which should be checked to

ensure that the FIFO design behaves correctly.

In comparison to simulation, which suffers the drawback of being incomplete, for-

mal verification of FIFO implementations with respect to the rigorous specification

stated in this paper brings designers another tool which can help them to purify the

code and to ensure its correctness. Furthermore, such a process of verification can also

lead to backward refinement of component specification, which is contributive to future

reuse of the design.

There is another way of using formal verification in projects of this kind. An exten-

sive method is creation of an abstract model of the design. We also apply this approach

in our project [19, 14]. The problem of this approach is to ensure the abstract model to

be sound. In comparison, the code-level way of verification presented in this paper has

the advantage of being very accurate. Our current experiences show that it is useful to

combine both approaches.

References

1. E. M. Clarke, O.G., Peled, D.A.: Model Checking. Cambridge, MIT Press (1999)

2. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)

3. Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer Science:

Formal Models and Semantics. Volume B. MIT Press (1990) 995–1072

4. Foster, H., Marschner, E., Wolfsthal, Y.: IEEE 1850 PSL: The Next Generation (2005)

http://www.pslsugar.org.

5. Accellera: Accelera Open Verification Library (2005) http://www.eda.org/ovl/.

6. Mentor Graphics: CheckerWare Datasheet (2005) http://www.0-in.com.

7. Xilinx: Xilinx, Inc. (2005) http://www.xilinx.com.

8. Liberouter: Liberouter Project (2005) http://www.liberouter.org.

9. Novotný, J., Fučı́k, O., Antoš, D.: Project of IPv6 Router with FPGA Hardware Accelerator.

In: Field-Programmable Logic and Applications. Volume 2778 of LNCS., Springer (2003)

964–967

10. Cadence: Cadence SMV tool home page (2005) http://www-

cad.eecs.berkeley.edu/ � kenmcmil/smv/.

11. Mentor: Mentor Graphics (2005) http://www.mentor.com.

12. Holeček, J., Kratochvı́la, T., Řehák, V., Šafránek, D., Šimeček, P.: Verification Results in

Liberouter Project. Technical Report 03/2004, CESNET z.s.p.o. (2004)

13. Kratochvı́la, T., Řehák, V., Šimeček, P.: Verification of COMBO6 VHDL Design. Technical

Report 17/2003, CESNET z.s.p.o. (2003)

14. Holeček, J., Kratochvı́la, T., Řehák, V., Šafránek, D., Šimeček, P.: Verification Process of

Hardware Design in Liberouter Project. Technical Report 05/2004, CESNET z.s.p.o. (2004)

15. Xilinx, Inc.: XAPP258 - FIFOs Using Virtex-II Block RAM Application Note. (2005)

http://direct.xilinx.com/bvdocs/appnotes/xapp258.pdf.

16. Martı́nek, T.: Basic Documentation of FIFO BRAM Component (2005)

http://www.liberouter.org/cgi � bin2/cvsweb.cgi/liberouter/vhdl

design/units/common/fifo bram/doc/.

17. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with

rich ssertional languages. In: CAV ’97: Proceedings of the 9th International Conference on

Computer Aided Verification, London, Springer (1997) 424–435

18. Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling global conditions in param-

eterized system verification. In: CAV ’99: Proceedings of the 11th International Conference

on Computer Aided Verification, London, Springer (1999) 134–145

19. Antoš, D., Řehák, V., Kořenek, J.: Hardware Router’s Lookup Machine and its Formal

Verification. In: ICN’2004 Conference Proceedings. Gosier, Guadeloupe, French Caribbean.

(2004) 1002–1007

