
Sequence Chart Studio

Martin Bezděka, Ondřej Bouda, L’uboš Korenčiak, Matúš Madzin, and Vojtěch Řehák
Faculty of Informatics, Masaryk University, Czech Republic
{xbezdeka, xbouda2, xkorenc, xmadzin, rehak}@fi.muni.cz

Abstract—The Sequence Chart Studio (SCStudio) is a user-
friendly drawing and verification tool for Message Sequence
Charts (MSC). SCStudio supports several checkers that are
able to verify properties such as realizability, time consistency,
equivalence checking between two MSC diagrams, etc. Some
of them are well known, while others are new or non-
trivial extensions of existing ones. The graphical front-end is
implemented as a Microsoft Visio add-on, whereas the checkers
are platform independent. SCStudio is an open source project
that provides an open interface for additional modules.

Keywords-message sequence charts; checkers; transformers;
sequence chart drawing

I. INTRODUCTION

In many areas of computer science nowadays, the late
discovery of a bug may lead to expensive consequences.
Specific area is a development of network protocols, which
are usually long projects. A tool for automated detection of
design flaws can be helpful in these situations.

We have experienced these known facts during our col-
laboration with CMT (Communication, Media, Technology)
department of ANF DATA spol. s r.o. (a subsidiary company
of Siemens AG Austria). At the beginning, our partners
came up with an old communication protocol containing a
flaw that had been discovered only during testing phase (see
Section ?? for more details). When we modeled the protocol
formally, the error was easy to see and even easy to be
automatically detected. Actually, the real problem was a lack
of formal specification – only structured English text was
used in the design phase of protocol development. According
to our experience, there are lots of companies that still do
not formalize their specification because they regard this as
a too expensive and time consuming process. Therefore, in
cooperation with ANF DATA, we have developed Sequence
Chart Studio, a tool intended for such companies.

Sequence Chart Studio (SCStudio) is designed for model-
ing message-based communication expressed in the Message
Sequence Chart formalism. Message Sequence Chart (MSC)
was initially developed by International Telecommunication
Union (ITU) as a graphical language for describing scenar-
ios. MSC offers both textual and graphical representation.
For more information about formal syntax and semantics of
MSC, see, e.g. [?], [?].

SCStudio is a user-friendly drawing and verification tool
that allows its users to start using formal specification and
verification progressively. First, the users will benefit from

drawing aids and boost their textual specification by formal
diagrams of MSC. This will immediatelly save the time of
long textual explanation. SCStudio is a Microsoft Visio add-
on, hence, it fully benefits from the natural incorporation
into Microsoft Office and all native Visio drawing features.
Moreover, SCStudio has a number of its own functions
that speed up drawing, such as automatic drawing of a
message sequence, message flipping, snapping messages to
the nearest instance, redrawing into configurable style, etc.

Later on, the user can employ verification and validation
features of SCStudio (e.g. consistency checking of time
constraints, race checking, etc.). Some of the checking
algorithms are well known in the academic community, some
of them are new or non-trivial extensions of existing ones.
All checkers demonstrate a counterexample if the check
fails. Having lots of MSC diagrams, the company can export
all Visio drawings into textual MSCs and use SCStudio
checkers as stand-alone programs that read textual MSCs
from files. Hence, for textual MSC checking, Visio is no
longer needed and checkers can be executed from command
line or as a batch. As decribed in the User Instructions
document supplied with SCStudio, all stand-alone checkers
may be installed on MS Windows as well as on Unix
platforms.

SCStudio might be very useful also in testing phase. Each
company can easily create textual MSCs from timestamped
logs of the implemented system. These MSCs, representing
executed tests, can be imported to SCStudio and visualized
in graphical form using automatic drawing. Due to SCStudio
Find Flow function, the MSCs from test logs can be checked
whether they follow the specification drawn during the
design phase. The Find Flow function returns coverage of
the specification by the test MSCs found in it, and a list of
the violating MSCs.

To sum up, SCStudio helps companies to gradually
change their own documentation policy and easily benefit
from formal description and verification. For this purpose,
SCStudio has a standard Windows installation package,
well arranged help, a document summarizing basic in-
structions, and an open bug tracking system. SCStudio is
distributed under LGPL license. The installation package
and the User Instructions document can be downloaded from
http://scstudio.sourceforge.net/.

In the following section, we briefly recall the MSC
formalism. In Section ??, we introduce SCStudio front-



end, some functions that allow easy drawing of MSC, and
describe some MSC checkers and transformers. Section ??
lists the most relevant MSC tools and compares them with
SCStudio. Finally, we present future work and conclusions.

II. THE FORMALISM

Message Sequence Chart is a formalism for specifica-
tion of asynchronous message-based communication among
system components. It is standardized by the Interna-
tional Telecommunication Union (ITU) as Recommendation
Z.120 [?]. There are two parts of the specification: Basic
MSC (BMSC) and High-level MSC (HMSC), the former
specifying individual use cases of a subsystem, while the
latter describing higher levels of the system and combining
several BMSC diagrams together. SCStudio and its algo-
rithms work seamlessly both with Basic and High-level
MSCs.

Figure ?? illustrates a basic usage of MSC. Each of
the vertical lines, called instances, represents a system
component. An arrow denotes a message sent between a
pair of instances.

Figure 1. Example of MSC. Figure 2. MSC with time.

Formally, each message consists of a send event on
the sending instance and a receive event on the receiving
instance. Besides, each message has a label. The instance
represents top-down flow of time. However, the relative po-
sitions of events on an instance do not give any quantitative
information about time of their executions. They only imply
the order of events on the instance. In addition, each message
send event must take place earlier than the corresponding
receive event. Sequences of events that satisfy the order
specified in the MSC are called linearizations. Formally, an
MSC specifies a language of linearizations.

The MSC of Figure ?? represents three linearizations.
Denoting s(m) the send event and r(m) the receive event
of a message with label m, the linearizations are:

• s(reg) · r(reg) · s(req) · r(req) · s(ack) · r(ack),
• s(reg) · r(reg) · s(req) · s(ack) · r(req) · r(ack), and
• s(reg) · r(reg) · s(req) · s(ack) · r(ack) · r(req).
To allow for specification of time constraints (like time-

outs or minimal time required for processing a request),
each event is enriched with possible timestamps specifying
when the event may take place during a run of the system.
Then, a time interval may be set for a pair of events,
e.g. see the double-ended arrow in Figure ??. Such an
interval restricts all the possible linearizations, now enriched

with timestamps, to just those having difference between the
two event timestamps within the interval. For example, in
Figure ??, Client expects a response within 5 time units.

More complex specifications are usually expressed by an
HMSC. Intuitively, HMSC can be seen as a finite automaton
where every state is labelled by a BMSC. Each run of the
automaton represents a BMSC which is the concatenation
of the BMSCs along the run. Hence, an HMSC specifies
the set of BMSCs represented by all the (accepting) runs.
More detailed information can be found in ITU standard and
SCStudio documentation.

III. SEQUENCE CHART STUDIO

The SCStudio front-end is an add-on to Microsoft Visio.
The main parts are described in Figure ??.

Figure 3. Screenshot of MS Visio with the SCStudio add-on.

On the left side, Basic and High-level MSC stencils
are available. From the stencils, individual MSC elements
may be dragged and dropped to the diagram. SCStudio
functionality is available via the SCStudio menu, toolbar
and context menus.

The functionality may be divided into several categories:
• Drawing aids for speeding up drawing of MSCs
• Transformers changing the diagram in some way:

– Beautify – redraws the diagram to be well-arranged
– Tighten Time – restricts time intervals to minimal

ranges
– Repaint – removes all marks from the diagram

• Checkers formally verifying the MSC
– Race checker – checks for race conditions
– Time Race checker – checks for race conditions

considering time restrictions
– Time Consistency checker – checks whether the

MSC is time consistent



– Strong Realizability checker – checks whether the
MSC may be implemented [?], [?]

– some trivial checkers used by the checkers stated
above

• Other functions
– Find Flow – checks whether a BMSC is contained

in another MSC
– Monte Carlo simulation – prototype analysis of

stochastic MSCs
While SCStudio works with the graphical representation

of MSCs, it can both import the drawings from and export
them to the textual MSC format defined by the ITU-T [?].
Moreover, if the diagram is strongly realizable, it may be
exported to the DiVinE model checker [?], [?].

The most interesting features are briefly described in the
following text. For even more information, see the SCStudio
documentation.

A. Drawing Aids

In practise, there are many stereotypes in drawing MSC.
SCStudio helps the user simplify repetitive tasks with several
functions that allow to draw some frequently used patterns
automatically. First of them is the Add Instances function
which draws a given number of instances on the active
page of the document with given total width or spacing
between instances. After instances are created it is possible
to generate a sequence of messages among selected instances
in given direction by the Message Sequence function. Uni-
and bidirectional message sequences are both supported. If
the user decides rather to create messages manually, SC-
Studio provides Message Snapping function which removes
the necessity of connecting every message to the instances
manually. If Message Snapping is enabled, all messages
are automatically snapped to the nearest instances from the
mouse position as soon as the mouse button is released. It is
also possible to move or copy messages across instances us-
ing keyboard. Another function is Element Numbering which
can number messages and other types of MSC elements.
After specification of the numbering type (e.g. letters) and
starting index, all selected elements will be numbered from
left to right and from top to bottom. Other drawing aids
can be found in SCStudio help or in the User Instructions
document.

B. Beautify Transformer

It often happens that a specified MSC is too complex and
little redrawing can help with faster and easier understanding
the described scenarios. For this purpose, SCStudio offers its
Beautify transformer that rearranges given MSC according
to the user preferences specified in the configuration dialog.
For example, an MSC is usually more readable if the
order of instances is rearranged such that the number of
crossings among messages and instances is minimal. On the
other hand, having more MSCs describing communication

among the same instances, the user will prefer the same
order in all MSCs. Depending on the user configuration,
Beautify is capable to rearrange the order of instances, align
the length of the instances, and reconcile the slope and
indent of messages. The implemented algorithm is based on
translation of the requested properties into a linear program
which is then solved using an integrated solver. Thanks to
Beautify, SCStudio can easily draw MSCs imported from
textual form where graphical information is missing. For
more information about the translation and all the features
of Beautify, please refer to [?].

C. Tighten Time Transformer

Time intervals specified in an MSC can be unnecessarily
wide. In Figure ??, the time interval [0, 5] says that all the
communication takes at most 5 time units. However, the
other interval causes that the second message is sent after
at least 3 time units. Hence, the communication will take at
least 3 time units and the time interval [0, 5] can be tightened
to [3, 5].

Figure 4. An MSC with a too wide time interval.

The Tighten Time transformer of SCStudio changes all
time intervals of a given MSC to the strictest values such that
the MSC still represents the same set of linearizations. The
Tighten Time function can also be used to get a time duration
between two events. To know a delivering time of the second
message, one would create a new time interval (−inf, inf )
between the message events. By running the Tighten Time
function, the new interval is changed to [0, 2]. This is the
best restriction on the delivering time of the second message
that can be derived from the original MSC.

Suppose we change the time interval [0, 5] in Figure ??
to [0, 1]. Note that there is no time linearization for the new
MSC, as the intervals [3, 4] and [0, 1] are in contradiction
(a communication could not finish within a time of [0, 1] if
its part takes a time of [3, 4]). We call such an MSC time
inconsistent. SCStudio is able to detect time consistency by
the Time Consistency checker.

Tighten Time and Time Consistency implementations use
the results of [?], [?], [?], [?]. For better explanation how
we solve problems connected with these functions, see [?],
[?].

D. Race Condition Checker

An MSC contains a race condition if two events are
ordered in the MSC, but can occur in the opposite order



Figure 5. An MSC containing a race condition.

during an actual system execution. We explain the race
condition problem using the real protocol flaw mentioned in
the introduction. The crucial part of the protocol is depicted
in Figure ??. There are three communicating entities: Client,
Proxy, and Server. Client is registered to Server via Proxy.
After registration, Client can communicate directly with
Server. When the protocol is implemented in a distributed
environment, it can happen that delivering the request mes-
sage from Proxy to Server can take such a long time that the
message from Client to Server arrives earlier. This caused a
real protocol malfunction.

The race condition problem for MSC was introduced and
algorithmically solved in [?]. The Race Condition checker
implements1 a trace-race algorithm of [?]. Trace-race does
not differ from race on BMSCs but can be algorithmically
checked also on HMSCs (with coregions).

E. Time Race Checker

The Race Condition checker ignores time intervals that
can be used to clarify the specification and solve some race
conditions. For example, in the protocol of Figure ??, the
designer could use time intervals to express that the delivery
of the message from Proxy to Client takes at least 8 time
units, while the communication between Proxy and Server is
done within 1 time unit. That would guarantee the race could
not occur. For taking time intervals into account, SCStudio
offers the Time Race checker. For more details, see [?] and
[?].

F. Find Flow Function

Deciding equivalency between two scenarios is useful in
many situations. Suppose we have an MSC Spec describing
some protocol specification and a BMSC Flow representing
a scenario from the protocol implementation. The Find
Flow function indicates whether the specification contains
the flow or not. The most challenging task is to return
a comprehensive and transparent output of the function,
instead of just a simple yes/no answer.

1Contrary to the settings of [?], SCStudio does not allow open coregions
and gates, as all asked industrial partners consider them too complicated
for practical use.

Formally, the find flow problem is to decide whether all
linearizations of Flow are included in the set of lineariza-
tions of Spec. The problem can be split into message order
checking and time constraint checking.

If both Flow and Spec are BMSCs, the message order
checking verifies whether the BMSCs consist of the same
messages and represent the same orders of corresponding
events, i.e. whether Flow and Spec represent the same set
of linearizations. If the sets are not the same, the Find
Flow function returns that the Flow was not found and
provides a reference to Flow with highlighted differences.
To identify the differences, Find Flow implements a non-
trivial modification of the diff algorithm for strings published
in [?]. The Find Flow result for the MSCs of Figure ?? is
shown in Figure ??.

Figure 6. An MSC Spec (left) and an MSC Flow (right).

Figure 7. The output of the Find Flow function for the MSCs depicted in
Figure ??. Red message should be removed and the green one should be
added in Flow to match Spec.

When the message order checking succeeds, the time con-
straint checking compares time intervals of Flow and Spec.
Let Lf and Ls be the sets of timestamped linearizations
of Flow and Spec, respectively. There are three possible
results of the constraint checking. First, if Lf ⊆ Ls, i.e. the
specification Spec contains all runs described in Flow, then
Flow is found in Spec. Second, if Lf ∩ Ls = ∅, i.e. the
specification Spec does not contain any of the runs described
in Flow, then the result refers to Spec with the problematic
time intervals highlighted in red. Third, if Lf 6⊆ Ls and
Lf ∩ Ls 6= ∅, i.e. some of the runs of Flow are included
in Spec while some are missing, then the result refers to
Spec with the intervals causing the missing linearizations
highlighted in blue.

An example, where Flow was not found because of time
constraints, is depicted in Figure ??.

If Spec is an HMSC, the message order checking traverses
the HMSC and searches for a run the BMSC of which has
the same set of linearizations as Flow. If there is no such
run, the Find Flow function returns that Flow was not found
in Spec. Otherwise, the time constraint checking is executed



Figure 8. The BMSC on the right is returned when the Find Flow function
searches the BMSC on the left in the BMSC of Figure ??. The problematic
time interval [3, 4] is highlighted in red.

on Flow and the BMSC of the run found in Spec, and
returns the result as already described above. Additionally,
if Spec contains the Flow, the Find Flow function returns
a reference to a copy of Spec where the visited states are
highlighted and supplemented with a number of visits.

IV. RELATED WORK

There are several tools that work with MSC. The most
relevant to the aspects studied in this paper are academic
tools Mesa, MSCan, MSC plugin to LTSA and Smyle, and
commercial tools Rational Tau, Sandrila SDL and Trace
Modeler. We will first review each tool and then provide
a short discussion about SCStudio compared to these tools.

Mesa [?] provides basic drawing editor for specifying
graphical MSCs, supports specification of time constraints,
import and export of textual format of MSC formalism and
a few verification algorithms. These algorithms check time
consistency, process divergence, and local choice properties.
Mesa is capable of exporting MSC to the Promela language,
which can be used as an input to the SPIN model checker.
However, when exporting model in MSC to Promela, Mesa
ignores specified time constraints.

MSCan [?] provides a large set of verification algorithms
that check properties such as strong and weak local choice,
local and global cooperativity, and regularity. MSCan offers
a counterexample when some of the verified properties
are not satisfied. On the other hand, MSCan lacks the
specification of time and there is no drawing editor – models
are specified in textual form from which they are drawn as
a non-editable picture.

MSC plugin to Labelled Transition System Anal-
yser (LTSA) [?] allows for creating MSC specifications in a
simple graphical editor, obtaining feedback on scenarios that
are missing (e.g. due to non-local choice), and adding them
as positive or negative scenarios. The plugin is capable of
translating an MSC model to the labelled transition system
[?]. Models can be viewed, edited, analyzed and animated
in LTSA. The plugin does not support modeling of any time
constructs and, contrary to the ITU recommendation, the
messages represent hand-shake communication.

Smyle [?] provides an innovative way to design commu-
nicating systems. Firstly, the user submits a few examples
of valid communication. After that, Smyle tool generates

examples and the user decides whether they are valid behav-
iors of the intended system. In the end, Smyle synthesizes
a system model. However, Smyle completely lacks support
for time constructs and possibility to check timing aspects
of modeled system.

Rational Tau [?] is the most advanced of all the MSC
tools. It was previously developed by Telelogic, but now
it is a commercial product of IBM. Rational Tau supports
not only MSCs but also SDL, UML and SOA. It has a
good drawing editor and a set of verification algorithms
based on state space exploration and simulation of traces of
modeled system. It supports specification of time constraints,
but we were not able to find any time verification features.
Rational Tau supports export of specified models to various
programming languages, such as C, C++, C# and Java. It is
also capable of importing and exporting MSC models from
the Z.120 textual form.

Sandrila SDL [?] is very similar to SCStudio. It is also an
add-on to MS Visio. It is capable of user friendly drawing of
UML, UML2, and ITU-T standardized MSC, SDL, TTCN
and URN diagrams. It also supports automated drawing,
drawing of timers and time constraints, import and export to
standardized MSC textual format. It contains two verification
algorithms: a syntax check and a state analysis of process
diagrams.

Trace Modeler [?] has a user friendly drawing editor for
MSCs. It does not support time constructs and verification
algorithms. It provides import and export to textual file, but
not in standardized textual format of MSC.

Some of the tools contain functions that are same or
very similar to the functions of SCStudio. However, none of
the tools is a direct competitor to SCStudio in the field of
lightweight modeling and verification tools. The commercial
tools are really good in drawing MSCs but they are weaker
when comparing the verification capabilities. Most of the
academic tools are very good in verification because of
the fact that most of them support translation of MSCs
into other well known formalisms – usually some kind
of communicating finite machines. For these formalisms,
there are excellent verification tools which can easily detect
various design flaws. Usually, the academic tools were
developed for this purpose as a proof of concept, that
such translation or other functionality is feasible. Because
most of the academic tools have not been developed for
easy drawing, they have either poor or no drawing support.
Almost all of the above-mentioned tools provide no time
constructs and no counterexamples when flaw is detected in
MSC models.

Obviously, there are tools which also provide functionality
not supported by SCStudio. For instance, Smyle supports
specification using dedicated learning techniques, or IBM
Rational Tau is capable of generating code in various
programming languages from the model. We have evidence
from companies we were working with that this function-



ality is not crucial for the use case for which SCStudio
is developed (specified in the introduction). However, this
functionality may be very helpful in some specific cases. In
such situations the users of SCStudio can easily export their
diagrams from SCStudio to the textual file, which can be
imported by the other tools and their functions can be used.

V. CONCLUSIONS AND FUTURE WORK

SCStudio is a drawing and verification tool for MSC. The
intention of this tool is to promote formal documentation and
verification in industry. Combining a user-friendly editor,
functionality supporting correct design and testing, and
features requested by industry, it strives to be used as a
basic tool for communication protocols development. Its
integration with MS Office enables a company to engage
formal mechanisms into existing development processes
gradually and without too much effort.

There are various possibilities to further target real-world
deployment. One of them could be to implement import
from pcap format to allow analysis of traffic captured from
network devices. Another point of extension could be a
possibility to export a drawing to LATEX source code. The
Beautify transformer might be extended to allow for stor-
ing configuration profiles, which could be easily switched.
Regarding the support of MSC elements, inline expres-
sions could be provided to further simplify drawing MSCs.
Moreover, conditions are ignored by current checkers and
transformers, even though they might be evaluated and a
condition checker could be developed.

Acknowledgements
We thank Petr Gotthard, Radek Sedláček, Jindřich Babica,

Martin Chmelı́k, Václav Vacek, Ondřej Kocian, Milan Mal-
ota, Martin Vodila, Zuzana Pekarčı́ková, and other SC-
Studio developers, testers and collaborators. The work
was supported by the Czech Science Foundation, grant
No. P202/112/P612.

REFERENCES

[1] R. Alur, G. J. Holzmann, and D. Peled. An Analyzer for
Message Sequence Charts. In TACAS’96, volume 1055 of
LNCS, pages 35–48. Springer, 1996.

[2] J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE:
Parallel Distributed Model Checker. In HiBi/PDMC 2010,
pages 4–7. IEEE, 2010. SW retrieved 19-March-2012 from
http://divine.fi.muni.cz/.

[3] H. Ben-Abdallah and S. Leue. Mesa: Support for scenario-
based design of concurrent systems. In TACAS’98,
volume 1384 of LNCS, pages 118–135. Springer,
1998. SW retrieved 23-January-2012 from http://
tele.informatik.uni-freiburg.de/Mesa/.

[4] B. Bollig, J. P. Katoen, C. Kern, and M. Leucker. Smyle:
A tool for synthesizing distributed models from scenarios
by learning. In CONCUR’08, volume 5201 of LNCS, pages
162–166. Springer, 2008. SW retrieved 23-January-2012 from
http://www.smyle-tool.org/.

[5] B. Bollig, C. Kern, M. Schlütter, and V. Stolz. MSCan
– A Tool for Analyzing MSC Specifications. In
TACAS’06, volume 3920 of LNCS, pages 455–458. Springer,
2006. SW retrieved 23-January-2012 from http://
aprove.informatik.rwth-aachen.de/∼kern/.

[6] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-
State High-Level MSCs: Model-Checking and Realizability.
Journal of Computer and System Sciences, 72(4):617–647,
2006.

[7] IBM. Rational Tau (Version 4.3) [Software].
Retrieved 23-January-2012 from http://
www-01.ibm.com/software/awdtools/tau/.

[8] Y. Inghelbrecht. Object-oriented design with trace
modeler and Trace4J. SIGCSE Bull., 41(3):375–
375, July 2009. SW retrieved 19-March-2012 from
http://www.tracemodeler.com/.

[9] ITU Telecommunication Standardization Sector - Study group
17. Recommendation ITU-T Z.120: Message Sequence
Charts (MSC), 2011.

[10] R. M. Keller. Formal verification of parallel programs.
Communications of the ACM, 19(7):371–384, 1976.

[11] Sandrila Ltd. Sandrila SDL (Version 4.3)
[Software]. Retrieved 23-January-2012 from
http://www.sandrila.co.uk/visio-sdl/.

[12] W. Miller and E. W. Myers. A file comparison program.
Software: Practice and Experience, 15(11):1025–1040, 1985.

[13] Z. Pekarčı́ková. Computer aided layout of message sequence
charts. Bachelor’s thesis, Masaryk University, 2011.

[14] L. R. Planken, M. M. de Weerdt, and R. P. J. van der Krogt.
P3C: A New Algorithm for the Simple Temporal Problem.
In ICAPS 2008, pages 256–263. AAAI Press, 2008.

[15] V. Řehák, P. Slovák, J. Strejček, and L. Hélouët. Decidable
Race Condition and Open Coregions in HMSC. Electronic
Communications of the EASST, 29:12, 2010.

[16] M. A. Reniers. Message Sequence Charts: Syntax and
Semantics. PhD thesis, Eindhoven University of Technology,
1999.

[17] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. LTSA-MSC:
Tool support for behaviour model elaboration using implied
scenarios. In TACAS’03, volume 2619 of LNCS, pages 597–
601. Springer, 2003. SW retrieved 23-January-2012 from
http://www.doc.ic.ac.uk/ltsa/msc/.

[18] V. Vacek. New checkers for sequence chart studio. Master’s
thesis, Masaryk University, 2011.

[19] L’. Korenčiak. Time Extension of Message Sequence Chart.
Bachelor’s thesis, Masaryk University, 2009.

[20] L’. Korenčiak. Effective Algorithms for Time Relation Check-
ing in Message Sequence Charts. Master’s thesis, Masaryk
University, 2011.


