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Abstract. Research in student modeling often leads to only small im-
provements in predictive accuracy of models. The importance of such
improvements is often hard to assess and has been a frequent subject of
discussions in student modeling community. In this work we use simu-
lated students to study the role of small differences in predictive accuracy.
We study the impact of such differences on behavior of adaptive educa-
tional systems and relation to interpretation of model parameters. We
also point out a feedback loop between student models and data used for
their evaluation and show how this feedback loop may mask important
differences between models.

1 Introduction

In student modeling we mostly evaluate models based on the quality of their
predictions of student answers as expressed by some performance metric. Re-
sults of evaluation often lead to small differences in predictive accuracy, which
leads some researchers to question the importance of model improvements and
meaningfulness of such results [1]. Aim of this paper is to explore the impact and
meaning of small differences in predictive accuracy with the use simulated data.
For our discussion and experiments in this work we use a single performance
metric – Root Mean Square Error (RMSE), which is a common choice (for ra-
tionale and overview of other possible metrics see [15]). The studied questions
and overall approach are not specific to this metric.

Simulated students provide a good way to study methodological issues in
student modeling. When we work with real data, we can use only proxy meth-
ods (e.g., metrics like RMSE) to evaluate quality of models. With simulated
data we know the “ground truth” so we can study the link between metrics and
the true quality of models. This enables us to obtain interesting insight which
may be useful for interpretation of results over real data and for devising exper-
iments. Similar issues are studied and explored using simulation in the field of
recommender systems [7, 17].

We use a simple setting for simulated experiments, which is based on an
abstraction of a real system for learning geography [12]. We simulate an adaptive
question answering system, where we assume items with normally distributed
difficulties, students with normally distributed skills, and probability of correct



answer given by a logistic function of the difference between skill and difficulty
(variant of a Rasch model). We use this setting to study several interrelated
question.

1.1 Impact on Student Practice

What is the impact of prediction accuracy (as measured by RMSE) on the be-
havior of an adaptive educational system and students’ learning experience?

Impact of small differences in predictive performance on student under-
practice and over-practice (7-20%) has been demonstrated using real student
data [18], but insight from a single study is limited. The relation of RMSE to
practical system behavior has been analyzed also in the field of recommender
systems [2] (using offline analysis of real data). This issue has been studied be-
fore using simulated data is several studies [5, 6, 10, 13]. All of these studies use
very similar setting – they use Bayesian Knowledge Tracing (BKT) or its ex-
tensions and their focus is on mastery learning and student under-practice and
over-practice. They differ only in specific aspects, e.g., focus on setting thresh-
olds for mastery learning [5] or relation of moment of learning to performance
metrics [13]. In our previous work [16] have performed similar kind of simulated
experiments (analysis of under-practice and over-practice) both with BKT and
with student models using logistic function and continuous skill.

In this work we complement these studies by performing simulated experi-
ments in slightly different setting. Instead of using BKT and mastery learning,
we use (variants of) the Rasch model and adaptive question answering setting.
We study different models and the relation between their prediction accuracy
and the set of items used by the system.

1.2 Prediction Accuracy and Model Parameters

Can RMSE be used to identify good model parameters? What is the relation of
RMSE to the quality of model parameters?

In student modeling we often want to use interpretable models since we are
interested not only in predictions of future answers, but also in reconstructing
properties of students and educational domains. Such outputs can be used to
improve educational systems as was done for example by Koedinger at al. [9].
When model evaluation shows that model A achieves better prediction accuracy
(RMSE) then model B, results are often interpreted as evidence that model
A better reflects “reality”. Is RMSE a suitable way to find robust parameters?
What differences in metric value are meaningful, i.e., when we can be reasonably
sure that the better model really models reality in better way? Is statistical
significance of differences enough? In case of real data it is hard to answer these
question since we have no direct way to evaluate the relation of a model to
reality. However, we can study these questions with simulated data, where we
have access to the ground truth parameters. Specifically, in our experiments
we study the relation of metric values with the accuracy of reconstructing the
mapping between items and knowledge components.
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1.3 Feedback between Data Collection and Evaluation

Can the feedback loop between student models and adaptive choice of items in-
fluence evaluation of student models?

We also propose novel use of simulated students to study a feedback loop
between student models and data collection. The data that are used for model
evaluation are often collected by a system which uses some student model for
adaptive choice of items. The same model is often used for data collection and
during model evaluation. Such evaluation may be biased – it can happen that
the used model does not collect data that would show its deficiencies. Note that
the presence of this feedback loop is an important difference compared to other
forecasting domains. For example in weather forecasting models do not directly
influence the system and cannot distort collected data. In student modeling they
can.

So far this feedback has not been thoroughly studied in student modeling.
Some issues related to this feedback have been discussed in previous work on
learning curves [6, 11, 8]. When a tutoring system uses mastery learning, students
with high skill drop out earlier from the system (and thus from the collected
data), thus a straightforward interpretation of aggregated learning curves may
be misleading. In this work we report experiment with simulated data which
illustrate possible impact of this feedback loop on model evaluation.

2 Methodology

For our experiments we use a simulation of a simplified version of an adaptive
question answering systems, inspired by our widely used application for learning
geography [12]. Fig. 1 presents the overall setting of our experiments. System
asks students about items, answers are dichotomous (correct/incorrect), each
student answers each item at most once. System tries to present items of suitable
difficulty. In evaluation we study both the prediction accuracy of models and also
sets of used items. This setting is closely related to item response theory and
computerized adaptive testing, specifically to simulated experiments with Elo-
type algorithm reported by Doebler et al. [3].

Simulated Students and Items We consider a set of simulated students and
simulated items. To generate student answers we use logistic function (basically
the Rasch model, respectively one parameter model from item response theory):
P (correct |θs, di) = 1/(1 + e−(θs−di)), where θs is the skill of a student s and di
is difficulty of an item i.

To make the simulated scenarios more interesting we also consider multiple
knowledge components. Items are divided into disjoint knowledge components
and students have different skill for each knowledge component. Student skills
and item difficulties are sampled from a normal distribution. Skills for individual
knowledge components are independent from one another.
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Fig. 1. Setting of our experiments

Item Selection Algorithm The item selection algorithm has as a parameter
a target success rate t. It repeatedly presents items to a (simulated) student, in
each step it selects an item which has the best score with respect to the distance
of the predicted probability of correct answer p and the target rate t (illustrated
by gray dashed line in Fig. 3). If there are multiple items with the same score,
the algorithm randomly selects one of them.

Student Models Predictions used by the item selection algorithm are provided
by a student model. For comparison we consider several simple student models:

– Optimal model – Predicts the exact probability that is used to generate the
answer (i.e., a “cheating” model that has access to the ground truth student
skill and item difficulty).

– Optimal with noise – Optimal model with added (Gaussian) noise to the
difference θs − di (before we apply logistic function).

– Constant model – For all students and items it provides the same prediction
(i.e., with this model the item selection algorithm selects items randomly).

– Naive model – Predicts the average accuracy for each item.

– Elo model – The Elo rating system [4, 14] with single skill. The used model
corresponds to the version of the system as described in [12] (with slightly
modified uncertainty function).

– Elo concepts – The Elo system with multiple skills with correct mapping of
items to knowledge components.
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– Elo wrong concepts – The Elo system with multiple skills with wrong map-
ping of items to knowledge components. The wrong mapping is the same as
the correct one, but 50 (randomly choosen) items are classified incorrectly.

Data We generated 5,000 students and 200 items. Items are divided into 2
knowledge components, each user has 2 skills corresponding to the knowledge
components and each item has a difficulty. Both skills and difficulties were sam-
pled from standard normal distribution (the data collected from the geogra-
phy application suggests that these parameters are approximately normally dis-
tributed). The number of items in a practice session is set to 50 unless otherwise
noted.

3 Experiments

We report three types of experiments, which correspond to the three types of
questions mentioned in the introduction.

3.1 Impact on Student Practice

Our first set of experiments studies differences in the behavior of the simulated
system for different models. For the evaluation of model impact we compare the
sets of items selected by the item selection algorithm. We make the assumption
that the algorithm for item selection using the optimal model generates also the
optimal practice for students. For each user we simulate practice of 50 items
(each item is practiced at most once by each student). To compare the set of
practiced items between those generated by the optimal model and other models
we look at the size of the intersection. We assume that bigger intersection with
the set of practiced items using the optimal model indicates better practice.
Since the intersection is computed per user, we take the mean.

This is, of course, only a simplified measure of item quality. It is possible that
an alternative model selects completely different set of items (i.e., the intersection
with the optimal set is empty) and yet the items are very similar and their
pedagogical contribution is nearly the same. However, for the current work this
is not probable since we are choosing 50 items from a pool of only 200 items. For
future work it would be interesting to try to formalize and study the “utility”
of items.

Noise Experiment The optimal model with noise allows us to easily manipu-
late differences in predictive accuracy and study their impact on system behavior.
Experiment reported in the left side of Fig. 2 shows both the predictive accuracy
(measured by RMSE) and the impact on system behavior (measured by the size
of the intersection with the optimal practiced set as described above) depending
on the size of noise (we use Gaussian noise with a specified standard deviation).
The impact of noise on RMSE is approximately quadratic and has a slow rise –
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Fig. 2. Size of the intersection with the optimal practiced set of items and RMSE
depending on Guassian noise in optimal model (left side). Distribution of answers over
the items based on the given model (right side).

this is a direct consequence of the quadratic nature of the metric. The impact
on used items is, however, approximately linear and rather steep. The most in-
teresting part is for noise values in the interval [0, 0.1]. In this interval the rise
in RMSE values is very small and unstable, but the impact on used items is
already high.

Model Comparison Right side of the Fig. 2 shows the distribution of the
number of answers per item for different models. The used models have similar
predictive accuracy (specific values depend on what data we use for their eval-
uation, as discussed below in Section 3.3), yet the used model can dramatically
change the form of the collected data.

When we use the optimal model, the collected data set covers almost fairly
most items from the item pool. In the case of worse models the use of items
is skewed (some items are used much more frequently than others). Obvious
exception is the constant model for which the practice is completely random.
The size of the intersection with the optimal practiced set for these models is
– Constant: 12.5; Elo: 24.2; Elo, Concepts: 30.4; Elo, Concepts (wrong): 28.5;
Naive: 12.0. Fig. 3 presents a distribution of answers according to the true prob-
ability of their correctness (given by the optimal model). Again there is a huge
difference among the given models, especially between simple models and those
based on Elo.

3.2 Prediction Accuracy and Model Parameters

Metrics of prediction accuracy (e.g., RMSE) are often used for model selection.
Model that achieves lower RMSE is assumed to have better parameters (or
more generally better “correspondence to reality”). Parameters of a selected
model are often interpreted or taken into account in improvement of educational
systems. We checked validity of this approach using experiments with knowledge
components.

We take several models with different (random) mappings of items to knowl-
edge components and evaluate their predictive accuracy. We also measure the
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Fig. 3. Distribution of answers according to the true probability of correct answer. The
gray dashed line stands for the score function used by the algorithm for item selection.

quality of the used mappings – since we use simulated data, we know the ground
truth mapping and thus can directly measure the quality of each mapping. Qual-
ity is expressed as the portion of items for which the mapping agrees with the
ground truth mapping. The names of the knowledge components are irrelevant
in this setting. Therefore, we compute quality for each one-to-one mapping from
the names of the components in the model to the names of the components in the
ground truth. We select the highest quality as the quality of the model’s item-
to-component mapping. To focus only on quality of knowledge components, we
simplify other aspects of evaluation, specifically each student answers all items
and their order is selected randomly.

These experiments do not show any specific surprising result, so we provide
only general summary. Experiments show that RMSE values correlate well with
the quality of mappings. In case of small RMSE differences there may be “swaps”,
i.e., a model with slightly higher RMSE reflects reality slightly better. But such
results occur only with insufficiently large data and are unstable. Whenever
the differences in RMSE are statistically significant (as determined by t-test
over different test sets), even very small differences in RMSE correspond to
improvement in the quality of the used mappings. These results thus confirm
that it is valid (at least in the studied setting) to argue that a model A better
corresponds to reality than a model B based on the fact that the model A
achieves better RMSE than the model B (as long as the difference is statistically
significant). It may be useful to perform this kind of analysis for different settings
and different performance metrics.

3.3 Feedback between Data Collection and Evaluation

To study feedback between the used student model and collected data (as is
described in subsection 1.3) we performed the following experiment: We choose
one student model and use it as an input for adaptive choice of items. At the
same time we let all other models do predictions as well and log answers together
with all predictions.

Fig. 4 shows the resulting RMSE for each model in individual runs (data
collected using specific model). The figure shows several interesting results. When
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Model used for item selection

Fig. 4. RMSE comparison over data collected using different models.

the data are collected using the optimal model, the RMSE values are largest
and closest together; even the ordering of models is different from other cases.
In this case even the constant model provides comparable performance to other
models – but it would be very wrong to conclude that “predictive accuracy of
models is so similar that the choice of model does not matter”. As the above
presented analysis shows, different models lead to very different choice of items
and consequently to different student experience. The reason for small differences
in RMSE is not similarity between models, but characteristics of data (“good
choice of suitable items”), which make predictions difficult and even a naive
predictor comparatively good.

Another observation concerns comparison between the “Elo concepts” and
“Elo concepts (wrong)” models. When data are collected by the “Elo concepts
(wrong)” model, these two models achieve nearly the same performance, i.e.,
models seem to be of the same quality. But the other cases show that the “Elo
concepts” model is better (and in fact it is by construction a better student
model).

4 Conclusions

We have used simulated data to show that even small differences in predictive
accuracy of student models (as measured by RMSE) may have important impact
on behavior of adaptive educational systems and for interpretation of results of
evaluation. Experiments with simulated data, of course, cannot demonstrate the
practical impact of such small differences. We also do not claim that small differ-
ences in predictive accuracy are always important. However, experiments with
simulated data are definitely useful, because they clearly illustrate mechanisms
that could play role in interpretation of results of experiments with real student
data. Simulated data also provide setting for formulation of hypotheses that
could be later evaluated in experiments with real educational systems.

Simulated data also enable us to perform experiments that are not practical
for realization with actual educational systems. For example in our experiment
with the “feedback loop” we have used different student models as a basis for
item selection. Our set of models includes even a very simple “constant model”,
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which leads to random selection of practiced item. In real setting we would be
reluctant to apply such a model, as it is in contrary with the advertised intelligent
behavior of our educational systems. However, experiments with this model in
simulated setting provide interesting results – they clearly demonstrate that
differences in predictive accuracy of models do not depend only on the intrinsic
quality of used student models, but also on the way the data were collected.

Our analysis shows one particularly interesting aspect of student modeling.
As we improve student models applied in educational systems, we should expect
that evaluations of predictive accuracy performed over these data will show
worse absolute values of performance metrics and smaller and smaller differences
between models (even if models are significantly different), just because virtues
of our models enable us to collect less predictable data.
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