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ABSTRACT
Educational systems typically contain a large pool of items
(questions, problems). Using data mining techniques we can
group these items into knowledge components, detect du-
plicated items and outliers, and identify missing items. To
these ends, it is useful to analyze item similarities, which can
be used as input to clustering or visualization techniques.
We describe and evaluate different measures of item similar-
ity that are based only on learners’ performance data, which
makes them widely applicable. We provide evaluation using
both simulated data and real data from several educational
systems. The results show that Pearson correlation is a suit-
able similarity measure and that response times are useful
for improving stability of similarity measures when the scope
of available data is small.

1. INTRODUCTION
Interactive educational systems offer learners items (prob-
lems, questions) for solving. Realistic educational systems
typically contain a large number of such items. This is par-
ticularly true for adaptive systems, which try to present suit-
able items for different kinds of learners. The management
of a large pool of items is difficult. However, educational
systems collect data about learners’ performance and the
data can be used to get insight into item properties. In this
work we focus on methods for computing item similarities
based on learners’ performance data, which consists of bi-
nary information about the answers (correct/incorrect).

Automatically detected item similarities are the first and
necessary step in further analysis such as clustering of the
items, which is useful in several ways, with one particular
application being learner modeling [9]. Learner models es-
timate knowledge and skills of learners and are the basis
of adaptive behavior of educational systems. A learner’s
models requires a mapping of items into knowledge compo-
nents [17]. Item clusters can serve as a basis for knowledge
component definition or refinement. The specified knowl-
edge components are relevant not only for modeling, but

they are typically directly visible to learners in the user in-
terface of a system, e.g., in a form of open learner model
visualizing the estimated knowledge state, or in a personal-
ized overview of mistakes, which is grouped by knowledge
components.

Information about items is also very useful for management
of the content of educational systems – preparation of new
items, filtering of unsuitable items, preparation of explana-
tions, and hint messages. Information about item similari-
ties and clusters can be also relevant for teachers as it can
provide them an inspiration for “live” discussions in class.
This type of applications is in line with Baker’s argument [1]
for focusing on the use of learning analytics for “leveraging
human intelligence” instead of its use for automatic intelli-
gent methods.

Item similarities and clusters are studied not only in ed-
ucational data mining but also in a closely related area of
recommender systems. The setting of recommender systems
is in many aspects very similar to educational systems – in
both cases we have users and items, just instead of “perfor-
mance” (the correctness of answers, the speed of answers)
recommender systems consider “ratings” (how much a user
likes an item). Item similarities and clustering techniques
have thus been also considered in the recommender systems
research (we mention specific techniques below). There is a
slight, but important difference between the two areas. In
recommender systems item similarities and clusterings are
typically only auxiliary techniques hidden within a “recom-
mendation black box”. In educational system, it is useful to
make these results explicitly available to system developers,
curriculum production teams, or teachers.

There are two basic approaches to dealing with item similar-
ities and knowledge components: a “model based approach”
and an “item similarity approach”. The basic idea of the
model based approach is to construct a simplified model that
explains the observed data. Based on a matrix of learners’
answers to items we construct a model that predicts these
answers. Typically, the model assigns several latent skills to
learners and uses a mapping of items to corresponding latent
factors. This kind of models can often be naturally expressed
using matrix multiplication, i.e., fitting a model leads to ma-
trix factorization. Once we fit the model to data, items that
have the same value of a latent factor can be denoted as
“similar”. This approach leads naturally to multiple knowl-
edge components per skill. The model is typically computed



using some optimization technique that leads only to local
optima (e.g., gradient descent). It is thus necessary to ad-
dress the role of initialization, and parameter setting of the
search procedure. In recommender systems this approach is
used for implementation of collaborative filtering; it is often
called “singular value decomposition” (SVD) [18]. In edu-
cational context many variants of this approach have been
proposed under different names and terminology, e.g., Q-
matrix [3], non-negative matrix factorization techniques [8],
sparse factor analysis [19], or matrix refinement [10].

With the item similarity approach we do not construct an
explicit model of learners’ behavior, but we compute directly
a similarity measure for each pairs of items. These similar-
ities are then used to compute clusters of items, to project
items into a plane, or for other analysis (e.g., for each item
listing the 3 most similar items). This approach naturally
leads to a mapping with a single knowledge component per
item (i.e., different kind of output from most model based
methods). One advantage of this approach is easier inter-
pretability. In recommender system research this approach
is called neighborhood-based methods [11] or item-item col-
laborative filtering [7]. Similarity has been used for clus-
tering of items [23, 24] and also for clustering of users [29].
In educational setting item similarity has been analyzed us-
ing correlation of learners’ answers [22] and problem solving
times [21], and also using learners’ wrong answers [25].

So far we have discussed methods that are based only on
data about learners’ answers. Often we have some additional
information about items and their similarities, e.g., a man-
ual labeling or data based on syntactic similarity of items
(text of questions). For both model based and item similar-
ity approaches previous research has studied techniques for
combination of these different types of inputs [10, 21].

In this work we focus on the item similarity approach, be-
cause in the educational setting this approach is less ex-
plored than the model based approach. We discuss specific
techniques, clarify details of their usage, and provide evalua-
tion using both data from real learners and simulated data.
Simulated data are useful for evaluation of the considered
unsupervised machine learning tasks, because in the case of
real-world data we do not know the “ground truth”.

The specific contributions of this work are the following. We
provide guidelines for the choice of item similarity measures
– we discuss different options and provide results identifying
suitable measures (Pearson, Yule, Cohen); we also demon-
strate the usefulness of “two step similarity measures”. We
explore benefits of the use of response time information as
supplement to usual information of correctness of answer.
We use and discuss several evaluation methods for the con-
sidered tasks. We specifically consider the issue of “how
much data do we need”. This is often practically more im-
portant than the exact choice of a used technique, but the
issue is rather neglected in previous work.

2. MEASURES OF ITEM SIMILARITY
Figure 1 provides a high-level illustration of the item sim-
ilarity approach. This approach consist of two steps that
are to a large degree independent. At first, we compute an
item similarity matrix, i.e., for each pair of items i, j we
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Figure 1: High-level illustration of the general ap-
proach to item analysis based on item similarities.

compute similarity sij of these items. At second, we can
construct clusters or visualizations of items using only the
item similarity matrix.

Experience with clustering algorithms suggests that the ap-
propriate choice of similarity measure is more important
than choice of clustering algorithm [13]. The choice of simi-
larity measure is domain specific and it is typically not ex-
plored in general research on clustering. Therefore, we focus
on the first step – the choice of similarity measure – and ex-
plore it for the case of educational data.

2.1 Basic Setting
In this work we focus on computing item similarities using
learners’ performance data. As Figure 1 shows, the simi-
larity computation can also utilize information from domain
experts or automatically determined information based on
the inner structure of items (e.g., text of questions or some
available meta-data).

We discuss different possibilities for computation of item
similarities. Note that in our discussion we consistently use
“similarity measures” (higher values correspond to higher
similarity), some related works provide formulas for dissim-
ilarity measures (distance of items; lower values correspond
to higher similarity). This is just a technical issue, as we can
easily transform similarity into dissimilarity by subtraction.

The input to item similarity computation are data about
learner performance, i.e., a matrix L × I, where L is the
number of learners and I is the number of items. The ma-
trix values specify learners’ performance. The matrix is typ-
ically very sparse (many missing values). The output of the
computation is an item similarity matrix, which specifies
similarity for each pair of items.

Note that in our discussion we mostly ignore the issue of
learning (change of learners skill as they progress through
items). When learning is relatively slow and items are pre-
sented in a randomized order, learning is just a reasonably
small source of noise and does not have a fundamental im-
pact on the computation of item similarities. In cases where
learning is fast or items are presented in a fixed order, it
may be necessary to take learning explicitly into account.

2.2 Correctness of Answers
The basic type of information available in educational sys-
tems is the correctness of learners’ answers. So we start with



similarity measures that utilize only this type of informa-
tion, i.e., dichotomous data (correct/incorrect) on learners’
answers on items. The advantage of these measures is that
they are applicable in wide variety of settings.

With dichotomous data we can summarize learners’ perfor-
mance on items i and j using an agreement matrix with
just four values (Table 1). Although we have just four val-
ues to quantify the similarity of items i and j, previous re-
search has identified large number of different measures for
dichotomous data and analyzed their relations [5, 12, 20].
For example Choi et al. [5] discuss 76 different measures, al-
beit many of them are only slight variations on one theme.
Similarity measures over dichotomous data are often used in
biology (co-occurrence of species) [14]. A more directly rele-
vant application is the use of similarity measures for recom-
mendations [30]. Recommender systems typically use either
Pearson correlation or cosine similarity for computation of
item similarities [11], but they consider richer than binary
data.

Table 1: An agreement matrix for two items and def-
initions of similarity measures based on the agree-
ment matrix (n = a+ b+ c+ d is the total number of
observations).

item i
incorrect correct

item j incorrect a b
correct c d

Yule Sy = (ad− bc)/(ad+ bc)

Pearson Sp = (ad− bc)/
√

(a+ b)(a+ c)(b+ d)(c+ d)

Cohen Sc = (Po − Pe)/(1− Pe)
Po = (a+ d)/n
Pe = ((a+ b)(a+ c) + (b+ d)(c+ d))/n2

Sokal Ss = (a+ d)/(a+ b+ c+ d)

Jaccard Sj = a/(a+ b+ c)

Ochiai So = a/
√

(a+ b)(a+ c)

Table 1 provides definitions of 6 measures that we have cho-
sen for our comparison. In accordance with previous re-
search (e.g., [5, 14]) we call measures by names of researchers
who proposed them. The choice of measures was done in
such a way as to cover measures used in the most closely re-
lated work and measures which achieved good results (even
if the previous work was in other domains). We also tried
to cover different types of measures.

Pearson measure is the standard Pearson correlation coef-
ficient evaluated over the dichotomous data. In the con-
text of dichotomous data it is also called Phi coefficient or
Matthews correlation coefficient. Yule measure is similar
measure, which achieved good results in previous work [30].
Cohen measure is typically used as a measure of inter-rater
agreement (it is more commonly called “Cohen’s kappa”).
In our setting it makes sense to consider this measure when

we view learners’ answers as “ratings” of items. Relations
between these three measures are discussed in [32].

Ochiai coefficient is typically used in biology [14]. It is also
equivalent to cosine similarity evaluated over dichotomous
data; cosine similarity is often used in recommender sys-
tems for computing item similarity, albeit typically over in-
terval data [7]. Sokal measure is also called Sokal-Michener
or “simple matching”. It is equivalent to accuracy measure
used in information retrieval. Together with Jaccard mea-
sure they are often used in biology, but they have also been
used for clustering of educational data [12].

Note that some similarity measures are asymmetric with re-
spect to 0 and 1 values. These measures are typically used
in contexts where the interpretation of binary values is pres-
ence/absence of a specific feature (or observation). In the
educational context it is more natural to use measures which
treat correct and incorrect answers symmetrically. Never-
theless, for completeness we have included also some of the
commonly used asymmetric measures (Ochiai and Jaccard).
In these cases we focus on incorrect answers (value a as op-
posed to d) as these are typically less frequent and thus bear
more information.

2.3 Other Data Sources
The correctness of answers is the basic source of informa-
tion about item similarities, but not the only one. We
can also use other data. The second major type of per-
formance data is response time (time taken to answer an
item). The basic approach to utilization of response time
is to combine it with the correctness of an answer. Given
the correctness value c ∈ {0, 1}, a response time t ∈ R+,
and the median of all response times τ , we combine them
into a single score r. Examples of such transformations
are: linear transformation for correct answers only (r =
c ·max(1 − t/2τ, 0)); exponential discounting used in Mat-

Mat [28] (r = c · min(1, 0.9t/τ−1)); linear transformation
inspired by high speed, high stakes scoring rule used in Math
Garden [16] (r = (2c − 1) ·max(1 − t/2τ, 0)). The first
approach was used in our experiment due to its simplicity
and high influence of response time information.

The scores obtained in this way are real numbers. Given the
scores it is natural to compute similarity of two items using
Pearson correlation coefficient of scores (over learners who
answered both items). It is also possible to utilize specific
wrong answers for computation of item similarity [25].

It is also possible to combine performance based measures
with other types of data. For example we may estimate
item similarity based on analysis of the content of items
(syntactical similarity of texts), or collect expert opinion
(manual categorization of items into several groups). The
advantage of the similarity approach (compared to model
based approach) is that different similarity measures can be
usually combined in straightforward way by using a weighted
average of different measures.

2.4 Second Level of Item Similarity
The basic computation of item similarities computes simi-
larity of items i and j using only data about these two items.
To improve a similarity measure, it is possible to employ a



“second of level of item similarity” that is based on the com-
puted item similarity matrix and uses information on all
items. Examples of such a second step is Euclidean distance
or correlation. Similarity of items i and j is given by the
Euclidean distance or Pearson correlation of rows i and j
in the similarity matrix. Note that Euclidean distance may
be used implicitly when we use standard implementation of
some clustering algorithms (e.g., k-means).

With the basic approach to item similarity, we consider
items similar when performance of learners on these items is
similar. With the second step of item similarity, we consider
two items similar when they behave similarly with respect
to other items. The main reason for using this second step
is the reduction of noise in data by using more informa-
tion. This may be useful particularly to deal with learning.
Two very similar items may have rather low direct similar-
ity, because getting a feedback on the first item can strongly
influence the performance on the second item. However, we
expect both items to have similar similarities to other items.

A more technical reason to using the second step (partic-
ularly the Euclidean distance) is to obtain a measure that
is a distance metric. The measures described above mostly
do not satisfy triangle inequality and thus do not satisfy
the requirements on distance metric; this property may be
important for some clustering algorithms.

3. EVALUATION
In this work we focus on item similarity, but we keep the
overall context depicted in Figure 1 in mind. The quality of
a visualization is to a certain degree subjective and difficult
to quantify, but the quality of clusters can be quantified and
thus we can use it to compare similarity measures. From
the large pool of existing clustering algorithms [15] we con-
sider k-means, which is the most common implementation
of centroid-based clustering, and hierarchical clustering. We
used agglomerative or “bottom up” approach where items
are successively merged to clusters using Ward’s method as
linkage criteria.

3.1 Data
We use data from real educational systems as well as sim-
ulated learner data. Real-world data provide information
about the realistic performance of techniques, but the eval-
uation is complicated by the fact that we do not know the
“ground truth” (the “correct” similarity or clusters of items).
Simulated data provide a setting that is in many aspects
simplified but allows easier evaluation thanks to the access
to the ground truth.

For generating simulated data we use a simple approach
with minimal number of assumptions and ad hoc param-
eters. Each item belongs to one of k knowledge compo-
nents. Each knowledge component contains n items. Each
item has a difficulty generated from the standard normal
distribution di ∼ N (0, 1). Skills of learners with respect to
individual knowledge components are independent. Skill of
a learner l with respect to knowledge component j is gen-
erated from the standard normal distribution θlj ∼ N (0, 1).
We assume no learning (constant skills). Answers are gen-
erated as Bernoulli trials with the probability of a correct
answer given by the logistic function of the difference of a

Table 2: Data used for analysis.

learners items answers

Czech 1 (adjectives) 1 134 108 62 613
Czech 2 4 567 210 336 382
MatMat: numbers 6 434 60 67 753
MatMat: addition 3 580 135 20 337
Math Garden: addition 83 297 30 881 994
Math Garden: multiplic. 97 842 30 1 233 024

relevant skill and an item difficulty (a Rasch model): p =
exp(θlj − di)−1. This approach is rather standard, for ex-
ample Piech at al. [26] use very similar procedure and also
other works use closely related procedures [4, 12]. In the
experiment reported below the basic setting is 100 learners,
5 knowledge components with 20 items each.

To evaluate techniques on realistic educational data, we use
data from three educational systems. Table 2 describes the
size of the used data sets.

Umı́me Česky (umimecesky.cz) is a system for practice of
Czech spelling and grammar. We use data only from one ex-
ercise from the system – simple “fill-in-the-blank” questions
with two options. We use only data on the correctness of
answers (response time is available, but since it depends on
the text of a particular item its utilization is difficult). We
focus particularly on one subset of items: questions about
the choice between i/y in suffixes of Czech adjectives. For
this subset we have manually determined 7 groups of items
corresponding to Czech grammar rules.

MatMat (matmat.cz) is a system for practice of basic arith-
metic (e.g., counting, addition, multiplication). For each
item we know the underlying construct (e.g., “13” or “7 +
8”) and also the specific form of questions (e.g., what type of
visualization has been used). We use data on both correct-
ness and response time. We selected the two largest subsets:
multiplication and numbers (practice of number sens, count-
ing).

Math Garden is another system for practice of basic arith-
metic [16]. This system is more widely used than MatMat,
but we do not have direct access to the system and detailed
data. For the analysis we reuse publicly available data from
previous research [6]. The available data contain both cor-
rectness of answers and response times, but they contain
information only about 30 items without any identification
of these items.

3.2 Comparison of Similarity Measures
To evaluate similarity measures we consider several types
of analysis. With simulated data, we analyze the similarity
measures with respect to the ground truth while for real-
world data we evaluate correlations among similarity mea-
sures. We also compare the quality of subsequent cluster-
ings using adjusted Rand index (ARI) [27, 31], which mea-
sures the agreement of two clusterings (with a correction for
agreement due to chance). Typically, we use the adjusted
Rand index to compare the clustering with a ground truth
(available for simulated data) or with a manually provided
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Figure 2: Differences between similarity values
inside knowledge components and between them.
Simulated data set with the basic setting were used.

classification (available for the Czech 1 data set). It can be
also used to compare two detected clusterings (clusterings
based on two different algorithms or clusterings based on
two independent halves of data).

As a first step in the evaluation of similarity measures, we
consider experiments with simulated data where we can uti-
lize the ground truth. In clustering we expect high within-
cluster similarity values and low between-cluster similarity
values. Figure 2 shows distribution of the similarity values
for selected measures and suggest which measures separate
within-cluster and between-cluster values better and there-
fore which measures will be more useful in clustering. The
results show that for Jaccard and Sokal measures the val-
ues overlap to a large degree, whereas Pearson and Yule
measures provide better results. Adding the second step –
Pearson correlation in this example – to the similarity mea-
sure separates within-cluster and between-cluster values bet-
ter. That suggests that extending similarities in this way is
not only necessary step for some subsequent algorithms such
as k-means but also a useful technique with better perfor-
mance.

For data coming from real systems we do not know the
ground truth and thus we can only compare the similar-
ity measures to each other. To evaluate how similar two
measures are we take all similarity values for all item pairs
and computed correlation coefficient. Figure 3 shows results
for two data sets which are good representatives of over-
all results. Pearson and Cohen measures are highly corre-
lated (> 0.98) across all data sets and have nearly the same
values (although not exactly the same). Larger differences
(but only up to 0.1) can be found typically when one of the
values in the agreement matrix is small and that happens
only for poorly correlated items with the resulting similar-
ity value around 0. The second pair of highly correlated
measures is Ochiai and Jaccard, which are both asymmetric
with respect to the agreement matrix. The correlation be-
tween these two pairs of measures vary depending on data
set and in some cases drops up to 0.5. Because of this high
correlation within these pairs we further report results only

Czech 1 (adjectives) MatMat: numbers

Figure 3: Correlations of similarity measures.

for Pearson and Jaccard measures. Yule measure is usually
similar to Pearson measure (correlation usually around 0.9).
The main difference is that the Yule measure spreads values
more evenly across the interval [-1, 1]. Sokal is the most
outlying measure with no correlation or small correlation
(usually < 0.6) with all other measures.

Figure 4 shows the effect of the second levels of item sim-
ilarity on the Pearson measure (results for other measures
are analogical). The Euclid distance as second level similar-
ity brings larger differences (lower correlation) than Pearson
correlation. The correlations for large data sets such as Math
Garden are usually high (> 0.9) and conversely the lowest
correlations are found in results for small data sets. This
suggests that the second level of similarity is more signifi-
cant, and thus potentially more useful, where only limited
amount of data is available.

Czech 1 (adjectives) MatMat: numbersCzech 2

MatMat: addition Math Garden: addition Math Garden: multiplic.

6

Figure 4: Correlations of Pearson measure and Pear-
son with different second levels.

Finally, we evaluate the quality of the similarity measures
according to the performance of the subsequent clustering.
From the two considered clustering methods we used the hi-
erarchical clustering in this comparison because it naturally
works with similarity measure and does not require metric
space. The other two methods have similar result with same
conclusions. Table 3 and Figure 5 show results. Although
the results are dependent on the specific data set and the
used clustering algorithm, there is quite clear general con-
clusion. Pearson and Yule measures provide better results



Figure 5: The quality of clustering for different mea-
sures used in the second step of item similarity. Top:
Simulated data with 5 correlated skills. Bottom:
Czech grammar with 7 manually determined clus-
ters.

than Jaccard and Sokal, i.e., for the considered task the
later two measures are not suitable. The Pearson is usually
slightly better than Yule but the choice between them seems
not to be fundamental (which is not surprising given that
they are highly correlated). The results also show that the
“second step” is always useful. The result for simulated data
favor Euclidean distance over Pearson but there are almost
no differences for real-world data.

3.3 Do We Have Enough Data?
In machine learning the amount of available data often is
more important than the choice of a specific algorithm [2].
Our results suggest that once we choose a suitable type of
similarity measure (e.g., Pearson, Cohen, or Yule), the dif-
ferences between these measures are not fundamental, the
more important issue becomes the size of available data.

Specifically, for a given data set we want to know whether
the data are sufficiently large so that the computed item
similarities are meaningful and stable. This issue can be ex-
plored by analyzing confidence intervals for computed sim-
ilarity values. As a simple approach to analysis of similar-
ity stability we propose the following approach: We split
the available data into two independent halves (in a learner
stratified manner), for each half we compute the item simi-
larities, and we compute the correlation of the resulting item
similarities.

Sample size
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MatMat: numbers
MatMat: addition
Math Garden: addition
Math Garden: multiplic.

Czech 2
Czech 1 (adjectives)

1223

882
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336

63

Figure 6: Stability of similarity measure (Yule) for
real-world data sets. Data set was sampled, split
to halves and Pearson correlation was computed for
similarity values. Numbers on the right side indicate
thousands of answers in data sets.

We can also perform this computation for artificially reduced
data sets – this shows how the stability of results increases
with the size of data. Figure 6 shows this kind of analysis
for our data (real-world data sets). We clearly see large dif-
ferences among individual data sets. Math Garden data set
contains large number of answers and only a few items, the
results show excellent stability, clearly in this case we have
enough data to analyze item similarities. For the Czech
grammar data set we have large number of answers, but
these are divided among relatively large number of items.
The results show a reasonably good stability, the data are
usable for analysis, but clearly more data can bring improve-
ment. For MatMat data the stability is poor, to draw solid
conclusions about item similarities we need more data.

3.4 Response Time Utilization
The incorporation of response time information to similar-
ity measure can change the meaning of similarity. Figure 7
gives such example and shows projection of items from Mat-
Mat practicing number sense. Similar items according to
measures using only correctness of answers tend to be items
with the same graphical representation in the system. On
the other hand, similar items according to measures using
also response time are usually items practicing close num-
bers.

We used this method also on data sets from Math Garden,
which are much larger. In this case the use of response
times has only small impact on the computed item similari-
ties (correlations between 0.9 and 0.95). However, the use of
response times influences how quickly does the computation
converge, i.e., how much data do we need. To explore this
we consider as the ground truth the average of computed
similarity matrices with and without response times for the
whole data set. Then we used smaller samples of the data
set, used them to compute item similarities and checked the
agreement with this ground truth. Figure 8 shows the dif-
ference between speed of convergence of measure with and
without response time utilization. Results shows that the
measure which use addition information from response time
converges to ground truth much faster. This result suggests
that the use of response time can improve clustering or visu-
alizations when only small number of answers are available.



Table 3: Comparison of similarity measures for one real-world data (with sampled students) set and simulated
data sets with c knowledge components and l learners. The values provide the adjusted Rand index (with
0.95 confidence interval) for a hierarchical clustering computed based on the specific similarity measure. The
top result for every data set is highlighted.

Czech 1 (c=7) l = 50, c = 5 l = 100, c = 5 l = 200, c = 5 l = 100, c = 2 l = 100, c = 10

Pearson 0.32± 0.02 0.26± 0.04 0.48± 0.05 0.84± 0.05 0.77± 0.12 0.34± 0.04
Jaccard 0.31± 0.03 0.06± 0.03 0.15± 0.04 0.29± 0.08 0.32± 0.18 0.09± 0.02
Yule 0.31± 0.03 0.19± 0.04 0.43± 0.05 0.77± 0.07 0.60± 0.15 0.31± 0.03
Sokal 0.15± 0.06 0.11± 0.02 0.18± 0.03 0.25± 0.05 0.12± 0.11 0.14± 0.02
Pearson → Euclid 0.43± 0.01 0.45± 0.05 0.80± 0.06 0.98± 0.01 0.95± 0.03 0.67± 0.04
Yule → Euclid 0.32± 0.02 0.36± 0.05 0.65± 0.07 0.94± 0.04 0.89± 0.11 0.43± 0.03
Pearson → Pearson 0.41± 0.03 0.39± 0.05 0.73± 0.06 0.96± 0.02 0.92± 0.03 0.55± 0.04
Yule → Pearson 0.32± 0.03 0.38± 0.05 0.72± 0.06 0.97± 0.02 0.94± 0.04 0.55± 0.05

Figure 7: Projection of items practicing number
sense from MatMat system. Left: Measure based
only correctness. Right: Measure using response
time. Opacity corresponds to the number value of
the item and color corresponds to the graphical rep-
resentation of the task.

4. DISCUSSION
Our focus is the automatic computation of item similarities
based on learners’ performance data. These similarities can
be then used in further analysis of an item relations such as
an item clustering or a visualization. This outlines direction
for future work in which methods using the item similarities
should be studied in more detail. Compared to alternative
approaches that have been proposed for the task (e.g., ma-
trix factorizations, neural networks), the item similarity ap-
proach is rather straightforward, easy to realize, and it can
be easily combined with other sources of information about
items (text of items, expert opinion). For these reasons the
item similarity approach should be used at least as a baseline
in proposals for more complex methods like deep knowledge
tracing [26].

The most difficult step in this approach is the choice of a
similarity measure. Once we make a specific choice, the re-
alization of the approach is easy. Our results provide some
guidelines for this choice. Pearson, Yule, and Cohen mea-
sures lead to significantly better results than Ochiai, Sokal,
and Jaccard measures. It is also beneficial to use the second
step of item similarity (e.g., the Euclidean distance over vec-
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Figure 8: The speed of convergence to ground truth
for measures with and without response time on
Math Garden addition data set.

tors of item similarities). The exact choice of details does not
seem to make fundamental difference (e.g., Pearson versus
Yule in the first step, the Euclidean distance versus Pear-
son correlation in the second step). The Pearson correla-
tion coefficient is a good “default choice”, since it provides
quite robust results and is applicable in several settings and
steps. It also has the pragmatic advantage of having fast,
readily available implementation in nearly all computational
environments, whereas measures like Yule may require ad-
ditional implementation effort.

The amount of data available is the critical factor for the suc-
cess of automatic analysis of item relations. A key question
for practical applications is thus: “Do we have enough data
to use automated techniques?” In this work we used several
specific methods for analysis of this question, but the issue
requires more attention – not just for the item similarity
approach, but also for other methods proposed in previous
work. For example previous work on deep knowledge trac-
ing [26], which studies closely related issues, states only that
deep neural networks require large data without providing
any specific quantification what ‘large’ means. The necess-
sary quantity of data is, of course, connected to the quality
of data – some data sources are more noisy than other, e.g.,
answers from voluntary practice contain more noise than an-
swers from high-stakes testing. An important direction for
future work is thus to compare model based and item simi-



larity approaches while taking into account the ‘amount and
quality of data available’ issue.
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