
Towards Making Block-based Programming Activities
Adaptive

Tomáš Effenberger
Masaryk University

Brno, Czech Republic
tomas.effenberger@mail.muni.cz

Radek Pelánek
Masaryk University

Brno, Czech Republic
pelanek@fi.muni.cz

ABSTRACT
Block-based environments are today commonly used for in-
troductory programming activities like those that are part of
the Hour of Code campaign, which reaches millions of stu-
dents. These activities typically consist of a static series of
problems. Our aim is to make this type of activities more
efficient by incorporating adaptive behavior. In this work, we
discuss steps towards this goal, specifically a proposal and
implementation of a programming game that supports both
elementary problems and interesting programming challenges
and thus provides an environment for meaningful adaptation.
We also discuss methods of adaptivity and the issue of evalu-
ating student performance while solving a problem.

INTRODUCTION
Today there is a growing trend to get students acquainted with
programming at least on the introductory level. A typical
example of this trend is the Hour of Code campaign, which
provides online introductory programming activities that reach
millions of students [9] – exemplary learning at scale. The
Hour of Code activities are typically based on restricted mini-
languages [1], which allow students to get experience with
programming in simplified environments. These activities of-
ten use block-based programming, often based on the popular,
extensible Blockly implementation [4].

Most current block-based programming activities utilize a
static series of tasks of increasing difficulty. To make these ac-
tivities more efficient, it would be useful to make the progress
adaptive. Even students with no programming knowledge
differ in their predispositions for the task (experience with
technology, logical reasoning capabilities). Our goal is thus to
develop efficient, adaptive block-based programming activi-
ties.

Towards this goal, we propose a novel programming task that
can support a wide range of problem difficulties. The task is a
variation on the classical “robot in a grid world” setting, with
the main novel feature of “continuous movement forward”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S’18, London

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN .

DOI:

We provide open source implementation of the task with 70
example problems. We also discuss a suitable approach to
adaptivity for this task and we discuss the issue of measuring
student performance in block-based programming.

PROGRAMMING GAME
For adaptation to be really useful we need to have a suitable
programming game that can support a wide range of prob-
lems to solve – we need a continuous gradation of problems
from elementary problems to interesting programming chal-
lenges and a support for all typical aspects of introductory
programming (sequential composition, repetition, conditional
execution, nesting).

Commonly used environments for block-based programming
are turtle graphics and a robot in a grid world. Turtle graph-
ics [2] has several advantages. Even with simple programs,
it can produce an attractive graphical output, which is moti-
vating for students. It also provides a natural connection with
mathematics, particularly concerning reasoning about angles.
A disadvantage is that in the basic form it does not naturally
support conditional commands, so it can be used to practice
only a limited range of programming concepts.

The second popular approach is based on a virtual robot in a
grid world, which was first introduced as “Karel the robot” [5].
Many current Hour of Code activities are variations on this
theme, often keeping the basic principle and just using a popu-
lar graphics like Star Wars or Angry Birds. This time-tested
approach works well. A slight disadvantage is that the robot
movement requires many commands (e.g., letting the robot go
around an obstacle requires four steps and four turns) and thus
programs for more complex problem become lengthy and the
block-based programming may become cumbersome.

We propose a novel variation on the “robot in a grid world”
theme, which alleviates this problem by including a “default
movement forward”. Specifically, the game is presented as
navigating a spaceship in a space. The goal is to get the
spaceship to a final destination while avoiding obstacles and
satisfying other conditions like collecting diamonds. Actions
like left or right are automatically connected with movement
(flying) forward. This allows compact specification of even
complex spaceship trajectories.

Figure 1 provides several examples of the game world. Each
field of the grid has a color and objects. Background colors
are used for decisions; blue color is reserved for the final row
(a destination). In addition to the spaceship, controlled by the



Figure 1. RoboMission examples

program, there are four other types of objects: asteroids, me-
teoroids, diamonds, and wormholes. The difference between
the large asteroids and the small meteoroids, which both serve
as obstacles, is that meteoroids can be destroyed by shoot-
ing. Diamonds prescribe the trajectory even more explicitly
because all of them must be collected by the spaceship. If
a spaceship flies into a wormhole, it immediately appears at
the other wormhole (of the same color). Without wormholes,
only a single field on each row is flown through (as a result
of the default forward movement), which leads to long grids.
Wormholes allow to reuse part of the grid and they can also
make the planning of the path more interesting.

Programs are created by dragging-and-dropping blocks. The
blocks include basic actions (fly forward, left, right, shoot),
loops (repeat, while), conditional statements (if, if-else), and
tests (background color, position on the x-axis). To enforce
usage of loops, tasks define a limit on the number of statements
that can be used. In addition, some tasks also set a limit on the
number of shots to disallow shooting without thinking.

Figure 1 shows four examples of game words with a corre-
sponding solution. The first problem (Tunnel) demonstrates
that four basic actions allow creating a variety of simple tasks
on sequential composition of commands. In the more ad-
vanced tasks, it is often enough to have a single action inside a
body of a loop or a conditional statement (e.g., “if the color is
yellow then fly left” in the On Yellow to Left task), which is an
advantage brought by the default movement forward. The last
example provides an illustration of a nontrivial programming
example with a compact solution.

We provide open source implementation of this programming
game called RoboMission. The implementation is based on
the Blockly editor [4]. The source code is publicly available1.
The game with 70 exemplary tasks is also available online at
https://en.robomise.cz/.

ADAPTIVITY
Activities of the discussed type are typically presented as a
fixed series of problems (levels) without any personalization.
There are several ways how to make activity of this type adap-
tive. One possibility is to include hints – when a student is
stuck, he may get a hint which helps him with progress. The
generation of such hints in programming has been thoroughly
explored (e.g., [8]). This approach, however, is useful partic-
ularly for classical textual programming, where students can
get stuck on syntax and other minor problems and hints can
help them overcome these problems. In the “robot in the grid”
programming it is often hard to provide small hints. A useful
hint often gives away the main idea of a solution. Thus we
believe that rather than providing hints it is more useful to
focus on the adaptive choice of task, i.e., giving the student a
task that is neither too difficult nor too easy. Nevertheless, it
would be useful to evaluate this hypothesis and potentially to
combine the adaptive choice of tasks with adaptive hints.

A systematic approach to adaptive choice of tasks is to build
a student model that estimates knowledge of a student and to
use the estimated knowledge to select a suitable task. Such a
student model could measure knowledge in individual knowl-
edge components corresponding to different programming
1https://github.com/adaptive-learning/robomission



Tunnel Clean Your Path

Figure 2. Examples of interaction networks. Nodes correspond to programs (f = forward, l = left, r = right, Rx = repeat x times); some node descriptions
are omitted for readability. The size of nodes and the width of edges corresponds to the frequency of visits by students. Only most often visited nodes
and edges are shown. Blue denotes the initial state, green denotes correct solutions, yellow denotes nodes on a direct path towards a solution.

concepts, with a Q-matrix mapping between tasks and knowl-
edge components and potentially with knowledge components
in a hierarchical domain model [6].

Such a systematic approach may be necessary for general
programming activities. For the introductory block-based
programming we believe that it is more advantageous to use a
simpler, but well-tuned approach. Specifically, we propose to
group tasks into a linearly ordered sequence of levels, selecting
a task from the current level uniformly at random, and using a
variation on the mastery learning principle [7] to decide when
the student should move to the next level.

Levels should be fine-grained (e.g., “single simple while-
loop”) and consist of homogeneous tasks in order not to miss
an important prerequisite and to achieve a consistent increase
of the difficulty even with the exploration-maximizing random
selection of tasks. We propose the following criterion to check
if the level is fine-grained enough: a single excellently solved
task should be enough to manifest mastery of the concepts
covered in the current level.

When a student starts a new level, we set her skill to 0, and
increase it after each solved task, until it reaches 1. As op-
posed to other domains, we never want to decrease the skill,
so we only vary how much is the skill increased, based on the
performance p ∈ [0,1]. Value of the performance should be
chosen in such a way that 1/p tasks solved with such perfor-
mance are expected to manifest the mastery. For example, if
2 tasks solved with “good performance” are needed, then we
set p = 0.5 for good performance. Such convention leads the
following update formula for skill: s←min(1,s+max(p, 1

n )),
where n is the number of tasks in the current level. The 1/n
term ensures that the student eventually masters the level after
solving all tasks.

PERFORMANCE EVALUATION
Many student modeling approaches focus on modeling the
domain structure but use simple methods for quantifying the
performance of students on a given task (often using just
correct/incorrect). In the context of introductory programming,
a simple domain model could be sufficient, but it is necessary
to pay attention to the evaluation of performance.

Once a student finishes solving a task, we need to characterize
her performance by a value p ∈ [0,1]. Solving a programming
problem (even a simple one) leads to quite rich data about
the solving trajectory: we can take into account the individual
edits, executions of the code, and time taken between steps.
What is a suitable measure of performance?

On a general level, it is reasonable to separate the measure-
ment of performance and the adaptive algorithm. It would
be possible to provide all the detailed data about solving tra-
jectory to the adaptive algorithm (or student model), but that
would unnecessarily complicate the algorithm. It should be
enough to use just a coarse summary of the performance, e.g.,
distinguishing four categories like “excellent performance”,
“good performance”, “solved with problems”, “solved with
significant struggle”.

The basic approach to such classification is to utilize the sum-
mary data about the performance like the total problem solving
time and number of edits or executions.

We can also look at the specific trajectory of a student. The
advantage of block-based programming over textual program-
ming is that the programs are directly in the abstract-syntax
tree format and mostly in “canonized form” (for textual pro-
gramming it is nontrivial to get canonized abstract syntax
tree [8]). Using student data we can thus easily build an inter-
action network [3] for a problem.



Figure 2 shows examples of such interaction network for two
examples from Figure 1. These interaction networks are based
on collected student data and the visualizations show the dis-
tribution of student trajectories. From these visualizations,
we can see that we can distinguish “typical paths towards
goal state” and “blind alleys”. These can be useful to classify
student performance.

ACKNOWLEDGMENTS
The authors thank members of the Adaptive Learning group
at Masaryk University for fruitful discussions about RoboMis-
sion.

REFERENCES
1. Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky,

Anatoly Kouchnirenko, and Philip Miller. 1997.
Mini-languages: a way to learn programming principles.
Education and Information Technologies 2, 1 (1997),
65–83.

2. Michael E Caspersen and Henrik Bærbak Christensen.
2000. Here, there and everywhere- on the recurring use of
turtle graphics in CS 1. In ACM International Conference
Proceeding Series, Vol. 8. 34–40.

3. Michael Eagle, Drew Hicks, Barry Peddycord III, and
Tiffany Barnes. 2015. Exploring networks of
problem-solving interactions. In Proceedings of the Fifth

International Conference on Learning Analytics And
Knowledge. ACM, 21–30.

4. N Fraser and others. 2013. Blockly: A visual
programming editor. (2013).
https://code.google.com/p/blockly

5. Richard E Pattis. 1981. Karel the robot: a gentle
introduction to the art of programming. John Wiley &
Sons, Inc.

6. Radek Pelánek. 2017. Bayesian knowledge tracing,
logistic models, and beyond: an overview of learner
modeling techniques. User Modeling and User-Adapted
Interaction 27, 3 (2017), 313–350.

7. Radek Pelánek and Jiří Řihák. 2017. Experimental
Analysis of Mastery Learning Criteria. In Proc. of User
Modelling, Adaptation and Personalization. ACM,
156–163.

8. Kelly Rivers and Kenneth R Koedinger. 2017.
Data-driven hint generation in vast solution spaces: a
self-improving python programming tutor. International
Journal of Artificial Intelligence in Education 27, 1
(2017), 37–64.

9. Cameron Wilson. 2015. Hour of code—a record year for
computer science. ACM Inroads 6, 1 (2015), 22–22.

https://code.google.com/p/blockly

	Introduction
	Programming Game
	Adaptivity
	Performance Evaluation
	Acknowledgments
	References 

