
Measuring Difficulty of Introductory Programming Tasks
Tomáš Effenberger
Masaryk University

Brno, Czech Republic
tomas.effenberger@mail.muni.cz

Jaroslav Čechák
Masaryk University

Brno, Czech Republic
410322@mail.muni.cz

Radek Pelánek
Masaryk University

Brno, Czech Republic
pelanek@fi.muni.cz

ABSTRACT
Quantification of the difficulty of problem solving tasks has
many applications in the development of adaptive learning
systems, e.g., task sequencing, student modeling, and insight
for content authors. There are, however, many potential con-
ceptualizations and measures of problem difficulty and the
computation of difficulty measures is influenced by biases
in data collection. In this work, we explore difficulty mea-
sures for introductory programming tasks. The results provide
insight into non-trivial behavior of even simple difficulty mea-
sures.

INTRODUCTION
The central question that we address in this work is “How
should we measure the difficulty of problem solving tasks
in learning systems?” We are concerned specifically with
adaptive learning systems, in which students solve tasks and
the system collects data on their performance. For our analysis,
we use data about introductory programming tasks, but the
studied issues are directly relevant also for other problem
solving tasks, e.g., in mathematics or physics.

Measuring the difficulty of tasks in learning systems is use-
ful from several perspectives. Data on student performance
are used by student modeling techniques to estimate skills of
students [10]. The obtained skill estimates are used to guide
adaptive behavior of systems, e.g., for mastery criteria or rec-
ommendations. By taking the difficulty of tasks into account,
we can improve the estimates [9, 6] and thus the behavior of
systems. A specific important application of task difficulty
measures is for task ordering. A common approach in learning
systems (both adaptive and non-adaptive) is to sequence tasks
in the order from easier to more difficult [1]. In order to do
so, we need to have a good measure of difficulty. Difficulty
measures are also useful for content management, i.e., for cre-
ation, removal, and updates of tasks, and for domain modeling.
Information about difficulty is useful feedback to task creators
and to authors of domain models.

Quantifying the difficulty of tasks is, however, quite non-trivial.
On a conceptual level, it is not even clear what the concept

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

L@S ’19 June 24–25, 2019, Chicago, IL,USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6804-9/19/06.

DOI: https://doi.org/10.1145/3330430.3333641

of “difficulty” means. For example, many authors discuss the
distinction between “complexity” and “difficulty” and their
exact meanings [12, 2, 8]. Although the exact views of these
concepts differ among authors, the common view is that com-
plexity is concerned with intrinsic properties of a task itself
(structure, components, their relations), whereas difficulty is
a matter of person-task interaction. Measuring complexity is
thus to a large degree specific for a particular type of problem
solving exercise, whereas difficulty can be measured using
performance data, which have a very similar form for different
types of exercises. We thus focus on measures of difficulty,
which are more readily applicable in a wide range of learning
systems.

Even when we take the view of difficulty as a measurement
of solvers’ performance, it is far from clear what aspects of
performance we should consider and how to quantify difficulty.
For example, two difficulty dimensions of performance that
are available in most contexts are time intensity (measured
for example as median response time for correct answer) and
failure rate (ratio of students unable to finish the task). In
many cases, additional data can be used to quantify difficulty,
e.g., “process data” like the number of steps or the quality of
solutions. Each of these aspects concerns different facet of
difficulty, and often they can be quantified in several ways, i.e.,
we can obtain many different measures of difficulty. However,
for the practical development of learning systems, it is very
useful to quantify the difficulty of tasks by a single number.
Which one should we choose?

Once we solve the conceptual issues and decide which specific
facet of difficulty we want to measure and what specific mea-
sure we want to use (e.g., median problem solving time), we
still have to face methodological issues with data collection
[11]. Observed performance data from learning systems are
influenced by biases. Performance of students on a particular
task depends on the context, specifically ordering of tasks.
Was the task preceded by a very similar task (and thus the
performance is influenced by transfer)? Is the task the first
one in a problem solving sequence and thus the student is
getting acquainted with the user interface? Data from learning
systems also often include attrition bias—students leave the
system in non-random order and thus populations subsamples
for different tasks differ. These effects can potentially have a
significant influence on the computed difficulty measures.

In this work, we analyze data from learning systems for several
types of introductory programming exercises. We explore
relations among different approaches to measuring problem
difficulty, stability of measures, and effects of data filtering.

https://doi.org/10.1145/3330430.3333641


ANALYSIS OF DIFFICULTY MEASURES
We use data from two systems for the practice of introductory
programming (robomise.cz and umimeprogramovat.cz)
and analyze the properties of basic difficulty measures like
failure rate and median problem solving time.

Data
Table 1 presents an overview of four programming exercises
that we use to explore the relationship between different meth-
ods for measuring task difficulty. These exercises practice
basic programming concepts like sequences of commands,
conditional statements, loops, variables, and functions; how-
ever, not all the exercises practice all of these concepts. Stu-
dents can execute their program at any time to see its output.
For the analysis, we use summary information about attempts:
success (whether the student eventually solved the task), solv-
ing time, number of edits, and number of executions.

In the RoboMission exercise [5], students build programs us-
ing a block-based programming interface to guide a robot
on a grid. The tasks are divided into levels and sublevels.
After completing a task, the system recommends to the stu-
dent a randomly chosen task from the first sublevel which has
not been yet mastered. The other three exercises come from
another learning system (umimeprogramovat.cz). Each of
them contains 5–10 linearly ordered levels and the tasks are
recommended in a predefined order. These three exercises
use scaffolding in the form of prepared programs that need to
be modified or extended. In both Turtle Blockly and Turtle
Python, students command a turtle to draw assigned geometric
objects [3]; the difference between the two is in the program-
ming interface (block-based vs. textual). In the fourth exercise,
students write any Python code to solve tasks with numbers,
strings, and lists.

Table 1. Programming exercises and data used for analysis.

Exercise Interface Tasks Students Attempts

RoboMission blocks 85 3,800 62,500
Turtle Blockly blocks 77 11,000 63,600
Turtle Python text 51 2,400 11,900
Python text 73 2,000 10,700

Relations between Performance Aspects
Many aspects of student performance can be used for mea-
suring the difficulty of tasks. In a programming exercise, the
learning system can collect granular data on students’ problem
solving activity, i.e., a timed sequence of individual submits,
code edits, or even keystrokes [7]. For our analysis, we take
two basic aspects of performance: the failure rate (ratio of
students who started solving a task but did not finish it) and
the median time of correct solutions. These measures are the
most universal—they are not dependent on specific aspects of
data collection and thus can be used in virtually any system
for introductory programming (or problem solving in general).

Fig. 1 shows the relation between these two measures for our
four introductory programming exercises. We see that in all
cases the correlation between the measures is not perfect, i.e.,
each measure captures a different aspect of difficulty. The

degree of correlation moreover differs among the exercises.
In RoboMission, the measures are reasonably well correlated,
whereas for Python programming, the correlation is much
lower. These results show that even for quite similar types of
exercises, it is not possible to make general conclusions about
the relation of different difficulty measures.

(r=0.57) (r=0.56)

(r=0.22)(r=0.90)

Figure 1. Comparison of a measure relation across different exercises.
Next to each exercise name there is a Spearman correlation coefficient.

Difficulty and Complexity
The complexity of a task depends only on its content and thus
can be measured (at least approximately) before any perfor-
mance data are collected. The complexity of programming
tasks is influenced by factors such as required programming
concepts (e.g., conditional statements, while loops, and nesting
flow-of-control structures), the total number of flow-of-control
structures, and total number of lines in the solution. Fig. 2
shows the relationship between estimated complexity and ob-
served difficulty for tasks in RoboMission. Complexity is
estimated as the average of 3 ranks according to (1) the num-
ber of distinct programming concepts, (2) the total number of
flow-of-control structures, and (3) the total number of lines in
the solution. Difficulty is estimated as the average of 4 ranks
according to (1) the failure rate, (2) the median solving time,
(3) the median number of edits, and (4) the median number of
executions. The correlation between complexity and difficulty
is moderate (Spearman’s r = 0.73), suggesting that complexity
can serve as a reasonable proxy for the difficulty of a new task.

A significant discrepancy between difficulty and complexity
indicates a potentially problematic or wrongly placed task. In
RoboMission, most of the tasks that are more complex than
difficult have quite a straightforward solution and include only
concepts that are already practiced in previous levels. These
tasks might be more appropriate in an earlier level, in which
one of the concepts they include was introduced for the first
time.

On the other end of the spectrum, there are a few tasks in
RoboMission that are considerably more difficult than com-
plex. Most of them are tricky tasks that do not require any
advanced programming concept, but it is difficult to find the
correct sequence of actions to solve the puzzle. The trickiness



could be argued to be a part of the complexity; however, we
cannot capture it by simple indicators using only task content.
Comparing the estimated complexity with the observed dif-
ficulty helps to detect and flag these tricky tasks, and such
information could be used for task recommendation. For ex-
ample, a learning system should avoid giving tricky tasks to
struggling students, but can give them to more experienced
students to make their progress through introductory levels
more challenging.

complexity

di
ffi

cu
lty

level
1
2
3
4
5
6

Figure 2. Comparison of complexity and difficulty of tasks in RoboMis-
sion.

Stability of Measures
Computing task difficulty requires that enough performance
data about the task has already been collected. Generally,
a few hundreds of attempts are needed to obtain difficulties
that result in a reasonably stable task ordering, but the rate of
convergence differs across difficulty measures. Fig. 3 shows
how the number of students impacts the stability of induced
task orderings for individual difficulty measures. The final
task ordering is computed from a randomly sampled half of
the students; the other half of the students is then used to create
samples of increasing size. The stability is computed as the
average Spearman correlation coefficient between the final
ordering and orderings induced from random samples of given
number of students.

The lowest number of students is required by measures based
on the number of edits and solving time and the highest num-
ber of students by the failure rate. This is in line with the
intuition that the more bits of information from the students’
attempts is used, the faster the convergence to a stable order-
ing. Combining multiple performance data might thus result
in even more stable ordering; however, in RoboMission, a
straightforward combination of the individual measures (as a
weighted average of ranks) is less stable than just using the
number of edits or the solving time alone.

Biases and Filtering
Collected data are influenced by various biases. Many students
in our systems attempt to solve just a single task. These
students are just looking around and they are not seriously
solving tasks. Such behavior increases the failure rate of some
tasks. Moreover, students solving their first few tasks are often
struggling with user interface rather than with the content of
tasks. If students encountered the very same task later, they
might be able to solve it easily. This condition increases the

0 50 100 150 200 250 300
number of students

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
ab

ilit
y

measure
median edits
median time
median executions
failure rate

Figure 3. Stability of individual difficulty measures computed as Spear-
man correlation coefficient between a running and the final task order-
ings. The shaded regions correspond to 95% confidence intervals.

solving time of the tasks encountered early in the solving
sequence. We explore the impact of these biases in several
programming exercises.

The desired property of difficulty measures is to be insensi-
tive to the mentioned biases. To asses the insensitivity we
compute the measure on a sub-sequence of tasks attempted
by each student. The sub-sequence starts with k-th attempted
task. This filtering removes both non-serious attempts and
attempts where the student is learning how to use the system.
The downside is a significant reduction of data and thus the
decrease of stability of measures.

Figure 4. Comparison of failure rate and median solving time measures
with and without filtering of the first items from the solving sequence.
The top row uses Turtle Blockly data and the bottom row uses RoboMis-
sion data.

We studied the effects of filtering on failure rate and median
solving time measures. Fig. 4 shows a correlation of measure
computed on complete and filtered data. The filtering is done
by taking only sub-sequences starting from the 10th attempted
task by each student. A high correlation, in this case, means
that the measure produces similar results both on the complete
and the filtered data. Since the first attempts have the most
potential to be biased, high correlation suggests insensitivity
of the measure to mentioned biases.



The correlations differ between measures and exercises. The
filtering has minimal impact on median solving time in all
studied exercise types. The failure rate, on the other hand,
tends to decrease on the filtered data. The significance of
the effect depends on a particular exercise. Fig. 4 shows
data from two similar exercises (both based on the Blockly
programming environment). Nevertheless, the two exercises
are from learning systems with a different approach to task
sequencing. RoboMission uses an adaptive recommendation
algorithm that includes randomization of ordering among tasks
with similar difficulty. Consequently, the biases caused by
problem ordering are probably limited and the filtering of data
has minimal impact on failure rate. Other studied exercises
are from a system with the fixed ordering of tasks. In these
cases, the filtering has a nontrivial effect, particularly on tasks
that occur on the first position in one of the predefined task
sets.

DISCUSSION AND FUTURE WORK
If task difficulties are used to inform decisions, such as which
task to recommend or how to order the tasks, the measurement
of difficulty requires careful attention. We have demonstrated
that in different programming exercises, decisions about the
choice of difficulty measure and bias-reducing filtering can
have considerably different effects on the final measurements
and induced ordering of tasks. Furthermore, the stability of
the measurements can be low if there are not enough perfor-
mance data collected. In examined programming exercises,
the median solving time measure converges faster than the
failure rate measure. The median time measure is also more
robust with respect to biases caused by task ordering.

Computation of difficulty suffers from the cold start problem;
it requires a few hundreds of students that have solved the
task before the difficulty estimates are stable. Before the
performance data is collected, a complexity computed from
the task content can be used as a reasonable approximation
of the difficulty. Future research could explore how to reduce
the required amount of collected data by combining several
difficulty and complexity measures, as well as other available
information. Frequently, new tasks are added to an existing
exercise; in such case, the collected data about older tasks,
together with a suitable task similarity measure could be used
to obtain difficulty estimate for the new task.

In this work, we have examined simple measures of difficulty
and a method to reduce biases through straightforward fil-
tering of attempts. A natural extension is to employ models
from item response theory [4], which have the group invari-
ance property (the difficulty estimates are not dependent on
the subpopulation that solves a task). However, these mod-
els do not take into account learning, so they would also not
provide an optimal solution. Moreover, robustly estimating
completely context-independent difficulty might be infeasi-
ble if the learning system encourages the students to proceed
through the tasks in a similar order [11]. As an alternative
approach, we suggest to explore estimation of relative contex-
tual difficulty; i.e., whether the task is of appropriate difficulty
given its placement within the system, or whether it is too
easy or too difficult. Such information would be helpful for

small iterative improvements of the tasks and their division
into levels.

REFERENCES
1. Peter L Brusilovsky. 1992. A framework for intelligent

knowledge sequencing and task sequencing. In
International Conference on Intelligent Tutoring Systems.
Springer, 499–506.

2. Donald J Campbell. 1988. Task complexity: A review
and analysis. Academy of management review 13, 1
(1988), 40–52.

3. Michael E Caspersen and Henrik Bærbak Christensen.
2000. Here, there and everywhere - on the recurring use
of turtle graphics in CS 1. In ACM International
Conference Proceeding Series, Vol. 8. 34–40.

4. R.J. De Ayala. 2008. The theory and practice of item
response theory. The Guilford Press.

5. Tomáš Effenberger and Radek Pelánek. 2018. Towards
making block-based programming activities adaptive. In
Proc. of Learning at Scale. ACM, 13.

6. JP González-Brenes, Yun Huang, and Peter Brusilovsky.
2014. General features in knowledge tracing:
Applications to multiple subskills, temporal item
response theory, and expert knowledge. In Proc. of
Educational Data Mining. 84–91.

7. Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew
Butler, Jürgen Börstler, Stephen H Edwards, Essi
Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
and others. 2015. Educational data mining and learning
analytics in programming: Literature review and case
studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

8. Peng Liu and Zhizhong Li. 2012. Task complexity: A
review and conceptualization framework. International
Journal of Industrial Ergonomics 42, 6 (2012), 553–568.

9. Zachary A Pardos and Neil T Heffernan. 2011. KT-IDEM:
introducing item difficulty to the knowledge tracing
model. In International conference on user modeling,
adaptation, and personalization. Springer, 243–254.

10. Radek Pelánek. 2017. Bayesian knowledge tracing,
logistic models, and beyond: an overview of learner
modeling techniques. User Modeling and User-Adapted
Interaction 27, 3 (2017), 313–350.

11. Radek Pelánek. 2018. The details matter: methodological
nuances in the evaluation of student models. User
Modeling and User-Adapted Interaction (2018).

12. Judy Sheard, Angela Carbone, Donald Chinn, Tony Clear,
Malcolm Corney, Daryl D’Souza, Joel Fenwick, James
Harland, Mikko-Jussi Laakso, Donna Teague, and others.
2013. How difficult are exams?: a framework for
assessing the complexity of introductory programming
exams. In Proceedings of the Fifteenth Australasian
Computing Education Conference-Volume 136.
Australian Computer Society, Inc., 145–154.


	Introduction
	Analysis of Difficulty Measures
	Data
	Relations between Performance Aspects
	Difficulty and Complexity
	Stability of Measures
	Biases and Filtering

	Discussion and Future Work
	References 

