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Abstract The core of student modeling research is about capturing the com-
plex learning processes into an abstract mathematical model. The student
modeling research, however, also involves important methodological aspects.
Some of these aspects may seem like technical details not worth significant
attention. However, the details matter. We discuss three important method-
ological issues in student modeling: the impact of data collection, the splitting
of data into a training set and a test set, and the details concerning averag-
ing in the computation of predictive accuracy metrics. We explicitly identify
decisions involved in these steps, illustrate how these decisions can influence
results of experiments, and discuss consequences for future research in student
modeling.

Keywords Student modeling - Evaluation - Data - Metrics - Model
comparison

1 Introduction

Student modeling is a crucial step in the development of personalized, adaptive
learning systems. In recent years extensive research effort has been expended
to the development of student models (Desmarais and Baker], [2012; [Pelanek,
2017a). Both student modeling research and practical usage of student models
involves their optimization (parameter fitting), comparison, evaluation, and
interpretation. During these activities, we have to make many methodological
decisions: What data do we use for fitting our models? How do we prepro-
cess these data? How do we divide data into a training set and a test set?
What performance metric do we use for comparing models? How exactly do
we compute the value of a performance metric?
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These steps may seem like technical details that are not directly related
to the core problem of student modeling. Consequently, they do not get much
attention, and they are not documented (in sufficient detail) in research papers.
This is understandable since some of these steps (like computation of the
performance metric) can be performed using a single command in state-of-
the-art programming environments. The main point of this paper is that this
approach is dangerous. Even seemingly small methodological details can have
significant consequences for the interpretation of experiments with student
models.

As a specific illustration consider the recent work on deep knowledge trac-
ing (Piech et al., [2015). In this work, the authors proposed a novel student
modeling approach based on deep learning and claimed that it leads to a
large improvement compared to previous results reported for the same dataset
(citing [Pardos and Heffernan| (2011))). Further analysis, however, pointed out
several problems with these results (Khajah et al., 2016; Wilson et al., [2016b;
Xiong et al.l |2016; |Wilson et al. [2016a)). One problem is related to the tagging
of exercises in the used dataset. Multiple skills were handled by duplicating
records in the dataset, and this (artificial) duplication had a significant im-
pact on the performance of student models. Another problem was related to
the computation of a performance metric. Although both [Piech et al.| (2015)
and [Pardos and Heffernan| (2011)) used the same performance metric (AUC),
the metric was computed in each case in a slightly different way (global com-
putation of the metric versus per-skill computation with averaging), and this
inflated the differences between models. Overall, the large improvement re-
ported by [Piech et al.| (2015]) was to a large degree caused by methodological
problems in the evaluation.

In this work we study in detail three methodological issues that are relevant
to a wide range of student modeling research:

1. Data collection: How is the evaluation of student models influenced by the
way data were collected?

2. Data splitting for cross-validation: How do we divide our data into a train-
ing set and a test set?

3. Averaging in metrics computation: How exactly do we compute the value
of a predictive accuracy metric?

These issues get only marginal attention in the current research, but they can
influence the interpretation of experimental results in significant ways.

To have a clear focus, we consider in our discussion only statistical models
of student knowledge. The presented issues, however, are relevant also for other
types of student models (e.g., models of affect) and other user models.

Our aim in this paper is to make the methodological decisions involved in
the evaluation of student models more explicit and to highlight their impor-
tance. We also propose specific terminology and notation for their description.
We hope this will help to attract more attention to these issues in future
research and the communication about these issues will be easier.
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Since our goal is to clearly present methodological issues, we use as our pri-
mary tool simple simulations that are designed to highlight the core of studied
issues. The simulations are based on a very simple model of student learning
(simple exponential learning curves)—this setting is sufficient for illustrating
all major aspect of our discussion, and it leads to easily understandable and
reproducible simulations. We also provide ample pointers to literature to illus-
trate what approaches are currently used in research papers and to show how
the discussed issues are treated in other domains. This work extends previous
work reported in [Pelanek et al| (2016); [Pelanek| (2017b). These papers both
used simulations, but each in a different setting. In the current submission,
the setting is unified to provide a coherent presentation. The scope of covered
methodological issues is also extended.

2 Background

Before we delve into specific methodological nuances of student model evalu-
ation, we start by clarifying the context, terminology, and by describing the
setting of simulation studies that we use to illustrate the discussed issues.

2.1 Basic Terminology and Setting

In our discussion, we consider only modeling of knowledge. Student modeling
may also involve other aspects of student state (e.g., affect), but modeling
of knowledge is the most common approach, particularly in practical appli-
cations, and it also has more standardized basic structure compared to other
types of student models.

The fundamental entities involved in the modeling of student knowledge
are denoted in research papers by several different notions. In this work, we
use the terms student (a user of a learning system; also called a learner) and
item (something that a student answers; also called a question, a problem, or
an exercise). In our examples, we use only simple items, in which students pro-
vide answers that are evaluated as correct or incorrect. Real learning systems
contain a wide variety of richer items (e.g., interactive multi-step exercises,
items with hints and choices, items with partial correctness). The discussed
issues are relevant to all common types of items. The more complex items
typically lead to additional methodological nuances in the evaluation.

Individual items are grouped into knowledge components (also call skills
or concepts); we use the terminology of knowledge components as used in the
Knowledge-learning-instruction (KLI) framework (Koedinger et al., |2012a).
A knowledge component (KC) is the basic unit of knowledge used for stu-
dent modeling. For our discussion, it is mostly sufficient to view a knowledge
component as a “set of related items”. Unless explicitly specified, we assume
that items within a knowledge component are homogeneous (interchangeable).
From the practical point of view, this is an important simplification—we will
discuss this point later.
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2.2 Structure of Data

Student modeling can be based on rich data about student behavior; specific
data depend on a particular application. For our discussion, we consider only
the core data that are used for modeling student knowledge—we assume that
data are given by tuples of the format (student ID, item ID, answer, times-
tamp):

— a student ID is an anonymous identification of a student,

— an item ID is an identification of an item that the student answered,

— an answer is the summary of the interaction of the student with the item;
for our discussion we consider only the correctness of answers,

— a timestamp identifies the moment of the answer (typically a standard
database timestamp); from the perspective of student modeling the funda-
mental aspect is that it allows us to order answers of individual students.

We also assume that we have a mapping of items into knowledge components.
For most of our discussion, we are not interested in specific items, i.e., we
consider only into which knowledge component each answer belongs.

Typically much richer information is available, e.g., an answer may include
not just the correctness, but also a specific value of an answer or a response
time, a student ID may not be anonymous but linked to additional data about
a student, for items we may have the full content and not just ID. But as it
turns out, even the seemingly simple basic data lead to many methodological
nuances.

2.3 Student Model

The primary goal of models of student knowledge is to take the data on the
previous performance of a student and use it to provide an estimate of knowl-
edge and predictions of future performance. Specifically, for a student s and
an item 4, a model predicts the probability the student s will answer the item
1 correctly. Examples of well-known student models are Bayesian knowledge
tracing (BKT) or Performance factor analysis (PFA), see [Peldnek| (2017al) for
a recent overview of student modeling techniques.

In our analysis, we want to focus on general methodological issues related
to the evaluation of student models, and we do not want to get bogged down
in details specific to a particular model. We also want to highlight and show
in a clear way the discussed issues. This exposition would be difficult to do
using real data and state-of-the-art models, in which these issues interact in
complicated ways (as illustrated by the case of the deep knowledge tracing
discussed in the introduction, which involved several research papers devoted
to its clarification). Therefore, we utilize simulated data based on a very sim-
ple model of learning—simple error curve model, where the probability of an
error by a student decreases exponentially with the number of attempts for a
particular knowledge component. The model is a simplified version of a realis-
tic model of practice (Heathcote et al.l [2000)). As a model of student learning
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within a realistic learning system, it is, of course, very simplistic. Moreover, we
utilize simulations where parameters of the model are set in an exaggerated
manner to highlight the studied issues. Even though its simplicity, the model
is sufficient to illustrate the discussed aspects of evaluation and has the advan-
tage that it can be very easily specified and all described cases are thus easily
reproducible. The model can be easily used for both generating data and as a
predictive model. All reported experiments use 10,000 simulated students.

3 Data Collection

The evaluation of student models is typically done using historical datasets.
Many datasets are publicly available, for example in the DataShop repository
(Koedinger et al., 2010), but authors of these datasets typically do not pro-
vide details of data collection, e.g., under what circumstances the data were
collected or what was the behavior of the tool used to collect data. Similarly,
research papers mostly do not describe details of used datasets beyond their
size. This is understandable since a detailed description of data collection in-
volves technical details that are not in the core interest of researchers. However,
we cannot afford the luxury of ignoring the details. If we do not take the data
collection procedure and specific properties of datasets into account, we can
easily reach misleading results.

We provide several specific examples of the potential impact of data collec-
tion. We begin with a simple, but very important aspect of data: the number of
answers per student. Then we continue with illustrations of effects of attrition
bias and impact of item ordering and selection.

3.1 Number of Answers per Student

We start our exploration of dataset properties by considering an elemen-
tary property—the number of answers per student and knowledge component.
Some students (knowledge components) have many more answers than others,
i.e., the number of answers has typically very skewed distribution. For now, we
ignore this aspect and assume that the number of answers per students is con-
stant. The skewness of the distribution, however, adds further complications
to the analysis of data. We will analyze this issue later.

The number of answers per student can significantly influence results of a
model comparison. Models may differ in their ability to model “initial phase
of learning” and “plateau of performance” and the result of comparison thus
may depend on what data we use. As a simple illustrative example, consider
the setting depicted in Fig. |1} We generate the data according to the learning
curve A and then evaluate models that provide predictions according to models
B and C. If we use a small number of answers per student, model B achieves
better performance. If we use a large number of answers per student, model
C is better. This comparison is, of course, a very simplified case with naively
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Fig. 1 Illustration of the impact of the number of answer per student.

wrong models. But a similar effect also occurs for a more realistic comparison
involving commonly used models like BKT and PFA (Pelanek et al., [2016).
The number of answers can have a substantial impact on fitted parameters
of models. For illustration, consider simulated students behaving according
to the curve A in Fig. [l When we fit the data using the BKT model, we
get significantly different values for some parameters when using the first 10
answers (Pjny = 0.52, Pegrn, = 0.41, Py, = 0.28, Pyyess = 0.21) versus using
50 answers (Piyiy = 0.16, Pregrn = 0.37, Poyp = 0.07, Pyyess = 0.21). It is
tempting to interpret parameters of student models as features describing
student learning. However, as this example shows, the fitted parameters can
be more influenced by details of data collection than by properties of learning.
Liu and Koedinger| (2017)) provide a practical example of the importance of
the number of answers per student for the analysis of real student data. In this
study authors analyzed variants of popular student models (AFM and BKT)
with individualized parameters. They discuss how the number of answers per
student influences the validity and reliability of estimated parameters.

3.2 Attrition Bias

One commonly used approach to adaptation in educational systems is to let
students solve varying number of items (problems, questions) of similar type
and difficulty. A typical method is mastery learning—students solve items
until they satisfy a master criterion (Pelanek and Rihék, 2017). The mastery
decision can be made by some simple rule (e.g., “3 correct in a row”) or with
the use of a student model (e.g., “the probability of knowing the skill is at
least 95%”). Consequently, in the collected data students differ in the number
of items they answer and this difference is not random. This creates a mastery
attrition biasEI, which can influence several aspects of model evaluation and
interpretation.

1 Attrition bias is a type of selection bias, which is often present for example in medical
experiments.
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Fig. 2 Learning curves—impact of mastery attrition.

For a specific illustration of the impact of mastery attrition, let us con-
sider the evaluation of learning systems using learning curves
. A learning curve plots the error rate (or another student performance
measure like response time) as a function of the number of attempts. A de-
creasing learning curve is evidence of learning; curves can be used to compare
models or find ill-specified knowledge components. Learning curves are based
on aggregating behavior across students, and this aggregation may complicate
their interpretation (Martin et al., 2011). Particularly, learning curves based
on data from adaptive systems are prone to the mastery attrition bias. This
issue has been discussed in research (Késer et al. [2014b; Murray et al., 2013;
[Nixon et al.| 2013), but is not taken into account sufficiently in the current
practice. For example, recent work on mixture modeling using learning curves
(Streeter] does assume a constant number of answers per student and
would require significant modification to work correctly in the presence of
mastery attrition.

For illustration, Fig. [2] shows a specific simple example of the mastery
attrition bias using simulated data. We use simulated students with the prob-
ability of a wrong answer given by a learning curve 0.7e =996 We simulate a
heterogeneous student population of students by using different prior knowl-
edge, which is emulated by assuming for each student “an initial number of
attempts” (distributed uniformly from 0 to 40). When we assume that all
students answer 25 items, we get a reasonable learning curve. To analyze the
impact of mastery attrition, we simulate simple mastery criterion “4 correct
in a row”—once a student answers 4 consecutive questions correctly, we do
not consider his subsequent answers. For data with mastery attrition, we get
much flatter and noisier curve, which underestimates student learning.

Similarly, it is possible to construct simulated scenarios, in which the
absence or presence of mastery attrition determines, which student model
achieves better predictive accuracy. Peldnck et al.| (2016) presents a specific
case in which when we compare the fit of PFA and BKT models (two standard
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student models), we get that PFA has better performance if we use the con-
stant number of answers per student, whereas BKT has better performance if
data are collected using mastery learning.

In learning systems that are used by students voluntarily, there is self-
selection bias, which can work in the opposite direction to mastery attrition. In
many systems, the length of a study session is determined by students (rather
than mastery learning or other system rules). In such cases, the number of
answers depends on student motivation, which can be influenced by success. As
a simple model scenario consider the following case of heterogeneous student
population consisting of two subpopulations with flat learning curves. Students
in the first subpopulation have constant success rate 50 %, students in the
second subpopulation have constant success rate 80 %, i.e., students do not
learn, they just differ in their prior knowledge. Let us assume that the number
of answers is positively correlated with success rate, which is often the case
in real systems (Lomas et al 2013; [Papousek and Pelanek, |2015)). If we plot
the aggregated learning curve, the curve will show improvement in student
performance—Dbut this is just an illusory effect caused by student attrition. In
some systems, it may even happen that both the mastery attrition bias and
self-selection occur (Papousek et al., |2016|). This makes the interpretation of
data highly challenging.

3.3 Item Ordering and Selection

It is convenient to assume that all items within knowledge component are
sufficiently similar so that we can ignore their identity and treat them as
interchangeable. We are using this assumption for most of this paper. The
assumption is used (often implicitly) in many student modeling studies, for
example in several ASSISTment papers that use models built using tabulat-
ing “success rate for the next problem” (Van Inwegen et al., [2015alb)). These
models would not work in the case of an adaptive choice of items, where the
learning system actively tries to achieve a given target success rate. The ap-
plication of such models is thus limited to (implicitly assumed) properties of
a particular dataset. We discuss several settings in which the policy used for
selection and ordering of items (e.g., fixed, adaptive, or random) can have a
substantial impact on evaluation and interpretation of student models.

At first, let us assume a fixed ordering of items, which is common when
we analyze data coming from common non-personalized learning systems. As
a specific illustration of the potential impact on the evaluation of student
models consider the following scenario. We assume that student learning is
described by learning curves in Fig. [I] and we consider items belonging to
knowledge components A and C. We consider two datasets with the fixed
ordering of items. In the dataset AC, first 16 items belong to the knowledge
component A and the next 16 items belong to the knowledge component C. In
the dataset CA, the order is reversed. Over these data we compare two models.
Model M ¢ is the optimal model that uses the correct learning curves and
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Fig. 3 Illustration of the impact of item ordering. The dataset AC contains 16 A items,
followed by 16 C items. The dataset CA contains items in reverse order. The black lines
show the true probabilites of correct answers, the gray line shows predicted probabilites
according to model that assumes that all items belong to A.

the correct mapping of items to knowledge components. Model M 4 is a model
that assumes that all items belong to knowledge component A and uses the
learning curve for A. Now consider the comparison on our datasets AC and
CA (Fig. [3). When we use the dataset AC, the predictions of the two models
are nearly indistinguishable. When we use the dataset CA, there are vast
differences between predictions of these models.

This example is clearly an artificial, extreme case. Similar situation, how-
ever, appears often very naturally due to the differences in difficulty of items.
In learning systems, it is quite natural that the order of items is related to
their difficulty—students solve easier items first and then proceed to more dif-
ficult ones. If all students solve items in similar order, it may be impossible
to disentangle increase in problem difficulty and student learning. Similarly to
the above-given scenario, we can have two models that have widely different
assumptions about item difficulty and speed of student learning and that have
nearly indistinguishable predictions on data with fixed ordering, whereas if
items are ordered randomly, predictions show significant differences between
models (Peldnek et al.| (2016) provide a specific example).

When data come from an adaptive system, the effects of item selection and
ordering may be even more complicated. One of the goals of adaptive learning
systems is to select items of suitable difficulty (neither too difficult nor too
easy). Let us consider a hypothetical system that aims at providing students
with items where they have 75% chance of answering correctly. Moreover,
let us assume that the system uses an excellent student model that enables
the system to achieve this target success rate very well. Using this system,
we collect student answers and using this dataset we evaluate models. In the
evaluation, we compare the predictions of our excellent student model with a
simple baseline that provides a constant prediction of success 0.75. Due to the
circumstances, we end up with nearly the same performance of the student
model and the simple baseline. A naive conclusion would be that the student
model is not very useful and we may as well use the naive baseline in our
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implementation. But this is an entirely misleading conclusion since the good
performance of the simple model is just due to characteristics of the collected
data, which were obtained thanks to the powerful student model. If we have
used randomly collected data, differences between the model and the baseline
would be large. The described case is a simplified scenario, but similar effects
can be observed in data coming from real systems, see Peldnck et al.| (2016)
for specific example in data from adaptive learning system for geography.

This example is a particular case of a feedback loop between student model
and data collection—a model influences which data are collected, the collected
data are used to evaluate the model. In [Peldnek et al| (2016]); Niznan et al.|
we explored this feedback loop using simulations, showing that the use
of an incorrect student model may lead to a dataset that is insufficient for
demonstrating that the model is incorrect.

3.4 Related Work

Potential biases caused by data collection have been discussed in research in
related domains. Research on the evaluation of recommender systems
nawardana and Shanil, 2009} [Herlocker et all, [2004; [Shani and Gunawardana),
2011) discussed potential biases in data collection, e.g., by filtering users, and
data splitting issues when using offline data. A proposal for layered evaluation
of adaptive systems (Paramythis et al [2010) includes the evaluation of data
collection but does not address specifically its impact on subsequent steps.
The presence of a feedback loop between data collection and model evaluation
has been previously discussed in the context of “exploration vs. exploitation
problem” (multiarmed bandits), with applications for news (Li et al. 2011
Wager et al., 2014) and advertisement (Bottou et al. 2013} [Langford et al.
2008) selection.

In the context of student modeling, issues related to data collection have
not been systematically studied before, although specific aspects have al-
ready been addressed by previous work, particularly in the context of learning
curves (Martin et al.,[2011)) and mastery learning. The impact of mastery attri-
tion on evaluation using learning curves has been discussed in several research
papers (Fancsali et al., 2013; Késer et al., |2014b; Murray et al.l |2013; Nixon|
. Specifically, previous work showed specific illustrations of con-
founded learning curves (Nixon et al., 2013)), discussed methods for disaggre-
gation of learning curves (Murray et al.,|2013), and proposed mastery-aligned
models (Kaser et al., 2014b) to take this bias into account. Confounding effect
of item ordering on learning and item difficulty has been mentioned in several
works (Gonzélez-Brenes et al., 2014; | Jarusek et al., [2013; Khajah et al.l 2014;
[Pelanek and Jarusekl [2015), but only as a side note. [Doroudi and Brunskilll
discuss an example showing the impact of the number of answers per
students on fitted model parameters.
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4 Data Splitting for Cross-validation

When we build our student models, we do not want just to fit available his-
torical data, but we want our models to generalize, i.e., to provide useful
predictions for novel students and items. To evaluate the ability of models to
generalize, we typically use cross-validation: data are repeatedly divided into
training set and a test set, the training set is used to fit model parameters, the
test set is used to estimate model performance. Cross-validation is a general
machine learning approach, and most aspects of its usage of in student model-
ing are just special cases of general machine learning methods. Most of these
aspects are not specific to student modeling, although some of them deserve
more attention by student modeling community; specifically, the issue of data
overlap in cross-validation and the risk of type I error (Dietterich, [1998]).

Here we focus on one step in the cross-validation method: data splitting.
This step is specific to the nature of data and thus deserves specific attention
in the context of a particular application domain. For cross-validation, we
need to split the data into a training set and a test set and to decide which
data exactly are used to perform predictions. This decision needs to take into
account the structure of data. In domains where data points are independent
(e.g., classification of images), data splitting can be performed by a simple
random selection. In student modeling, the data have many dependencies: a
single data point corresponds to a student answering an item at a particular
time. Such a data point is related to other data points via the student, the item
and also via time. When performing data splitting, we need to take at least
some of these relations into account. However, it is not clear which relations
should be taken into account and how to take them into account. Many specific
choices can be made and these choices influence results of an evaluation. The
cross-evaluation choices are also often under-documented in research papers,
which hampers reproducibility of research.

4.1 Splitting with Respect to Students and Items

At first, let us ignore the temporal aspect and focus only on the structure of
data with respect to students and items. With random data splitting, we do
not take students and items into account while splitting data. This approach
does not correspond to real usage of student models—in practice, we have some
historical data on past students and items, we use them to fit and compare
our models, and then we use models to make predictions for new students and
items. In the related field of recommender systems, some researchers use the
terminology of “weak and strong generalization” (Marlinl |2004; |Volkovs and
Yul [2015)—weak generalization tests predictions for users that are included in
the training set, strong generalization tests predictions for new users.

In student modeling literature researchers sometimes use the terminology
“student-stratified” and “item-stratified” cross-validation. This terminology is,
however, potentially confusing. In general machine learning, the term “strati-
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fied cross-validation” is typically used with the meaning that division into folds
is done in such a way that “class distribution in each fold is approximately the
same as in the initial dataset” (Diamantidis et al.,|2000). Taking this meaning
of stratification, the notion of “student-stratified cross-validation” would mean
that “folds are balanced with respect to students”. In fact, some researchers
have used the term in a closely related meaning, for example [Sao Pedro et al.
(2013b)). More often, however, the meaning of student-stratified is “all stu-
dent data are either exclusively in a training set or exclusively in a testing
set”. This meaning was used for example by [Yudelson et al.| (2013]); [Koedinger
et al.| (2016]); Niznan et al.| (2015)).

We propose the use of terminology based on the “level” keyword, as illus-
trated in Fig.[d This terminology has less overloaded meaning than the termi-
nology using the keyword “stratified” and the “student-level cross-validation”
notion has already been used in many papers, for example by Baker| (2010));
Koedinger et al| (2012b)); Pardos et al|(2013); |[Baker et al.| (2012)).

The most common type of data splitting in student modeling is “student
level”, i.e., testing generalization to new students. Such splitting is more com-
mon than “item level” since there is an asymmetry between students and
items—items are usually rather fixed, whereas new students arrive contin-
uously. Thus, we mainly want to be able to evaluate generalizations across
students. In some applications of student models, however, it is useful to focus
primarily on item level validation (Koedinger et al.l 2012b)).

We may also be interested in other kinds of generalization, for example, in
generalization to new knowledge components, or in generalization to new stu-
dent populations. Natural student populations that can be used for validation
are students enrolled in a course within a specific semester (“cohorts”); this
approach was used for example by (Ren et al., 2017)).

4.2 Temporal Aspects of Data and Dynamic Predictions

Another important aspect of data splitting is the temporal nature of student
data. Students answer items in some order, and we need to take this order into
account. With the random splitting of data, we would end up using future
actions for predicting past actions, which does not make sense. Taking the
timing into account in a strict manner would mean picking a specific time and
splitting data into a training set and a test set using this time. This approach
would correspond to a single test set (holdout set).

If we want to perform cross-validation, we need to do multiple different
data splits. A common approach is to perform student level cross-validation,
i.e., to respect the timing ordering only for individual students and to ig-
nore it across students. This approach assumes that the properties of both
items and the student population are stable across time. This assumption is
probably reasonably satisfied in most educational applications. As a specific
example where the assumption is not fully satisfied we can consider learning of
geography facts—the student knowledge of some places may be significantly
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Fig. 4 Data splitting with respect to students and items. Rows correspond to students,
columns correspon to items. The first diagram shows division of students into populations
and items into knowledge components. The remaining diagrams outline several basic data
splitting procedures.

influenced by current events (e.g., war, epidemics) and thus be unstable across
time. The impact of such issues on model comparison should be negligible.
Nevertheless, the used assumption deserves some supporting analysis or at
least an acknowledgment that it is being used.

An important aspect in which research studies differ is whether predic-
tions for a sequence of student actions are static or dynamic. Fig. [f] illustrates
this distinction combined with presence and absence of student-level cross-
validation.

— Static predictions: Predictions for all testing data of a given student are
made at the same time, i.e., predictions are based only on data included
in the training set.

— Dynamic predictions: Predictions are continuously updated after observing
each answer, i.e., predictions also incorporate data in the test set (respect-
ing their ordering).

The dynamic approach is the standard approach used in time series forecast-
ing (Hyndman and Athanasopoulos, 2014; Bergmeir and Benitez, 2012).

The student level cross-validation with dynamic predictions typically most
closely corresponds to the actual application of a student model in a learning
system. In most cases, it should be the preferable approach to cross-validation.
The reason for the use of static predictions is in many cases convenience—for
some modeling approaches (e.g., those that utilize Monte Carlo Markov Chains
or matrix factorization) it is not easy to recompute the predictions after each
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Fig. 5 An illustration of the basic options for cross-validation methodology. Dashed line
denote cases where the static predictions differ from dynamic predictions (by not considering
the recent data). Similar way to illustrate division into a training set and a test set was
previously used by [Khajah et al.| (2014); Reddy et al|(2016); Peldnek| (2017a)).

observation. This is, however, a potentially significant limitation for practical
applications and it needs to be explicitly discussed.

4.3 Overview of Approaches Used in Current Research

To illustrate the scope of different approaches to cross-validation, we provide
examples of specific methods used in previous work. Note that in some cases
the exact approach is not explicitly specified and is deduced from the context.

Student-level cross-validation with dynamic predictions was used, for ex-
ample, by [Streeter] (2015)); Niznan et al.| (2015); [Pardos and Heffernan| (2011);
[Yudelson et al.| (2013); [Yudelson and Koedinger| (2013)); this approach is also
typically employed in other research that uses the BKT model. Student-level
cross-validation with static predictions was used, for example, by
(2014b)); Klingler et al.| (2015)); it is also used in other works using the AFM
model. Liu and Koedinger| (2017) use student-level cross-validation with both
dynamic predictions (for the BKT model) and static predictions (for the AFM
model); they note that the results cannot be directly compared.
let al|(2012b); Liu et al.| (2014); [Koedinger et al.| (2016 consider both student-
level and item-level cross-validation and argue that for their purposes the item-
level cross-validation is more relevant. Static predictions on the same students
(using the last 20% of attempts) were used by [Khajah et al.| (2014); [Pelanek|
land Jarusek! (2015]).

There are also other approaches, which go beyond those illustrated in Fig. [4]
and Fig. [5| |Gonzélez-Brenes et al. (2014) use offline evaluation on new stu-
dents, but only the second half of sequence is used for evaluation. Some re-
searchers use only a single attempt per student for the evaluation of predictions
(Pardos and Heffernan| 2010} [Reddy et all, [2016]).
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4.4 Interaction with Data Collection

The choice of a data splitting approach needs to take into account the data
collection procedure. Particularly, when data are collected using mastery learn-
ing, the data splitting based on “same students” will lead to a bias towards
correct answers in a test set—whatever mastery learning criterion is used, it
is based on seeing correct answers.

As a specific example, consider the approach to building the test set as
the last 20% of attempts of some students—this approach has been used for
example by Khajah et al. (2014]). Such a test set can bias results of a model
comparison. As a simplified illustrative situation, consider students who an-
swer entirely randomly, i.e., with a constant probability of success 0.5. Let
us compare two simple student models: model A predicting the probability
of success 0.5, model B predicting the probability of success 0.7. Model A
corresponds exactly to the assumptions of our simulated setting, so it is by
construction the better model. What happens when we perform the evaluation
on the last attempts of data collected by simple mastery learning condition
“3 correct in a row”? Model B achieves better performance as correct answer
dominate in this test set, even though their occurrence is just due to the data
collection condition, not due to some inherent aspect of student behavior.

5 Metrics for Predictive Accuracy

Once we have determined a cross-validation approach, we can train our models
on a training set and let them provide predictions on a test set. To evaluate a
model we need to quantify its predictive accuracy over the test set. To this end,
we need to summarise the difference between predictions and observed values
by a single number—a performance metric. The choice of this metric, details of
its computation, and interpretation of the obtained values also involve several
methodological nuances.

We discuss commonly used metrics, their interpretation, and usage in the
current research. We focus specifically on the insufficiently documented issue
of metric averaging.

5.1 Definition of Metrics

Many performance metrics can be used for measuring predictive accuracy of
student models; see |Pelanek| (2015]) for an extensive overview. In this work, we
focus on two metrics that are most commonly used for evaluation of models of
student knowledge, RMSE and AUC, and we analyze methodological details
of their usage. Other student metrics are for example log-likelihood (which in
practice behaves similarly to RMSE), mean absolute error (which is unsuitable
for evaluation of binary predictions), and metrics based on the quantitative
understanding of errors like accuracy or F1 measure (which are more suitable
for models of affect rather than knowledge).
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We start with a basic definition of metrics. We assume that we have data
about n answers, numbered ¢ € {1,...,n}, a student model provides pre-
dictions p; € [0,1], and the observed value is given by the binary value
0; € {0,1}. Root mean square error (RMSE) is then given as RMSE =

LS (0; — p;)2. RMSE is an “error metric”, i.e., lower values mean better
1
n =1 ’ )

predictive performance.

The second metric that we consider is the area under the receiver operat-
ing curve (AUC). The receiver operating curve (ROC) summarizes the per-
formance of a binary classification over all possible thresholds. The curve has
“false positive rate” on the x-axis and “true positive rate” on the y-axis, each
point of the curve corresponds to a choice of a threshold; for a detailed intro-
duction to ROC curve construction and interpretation see [Fawcett| (2006). The
area under the ROC curve (AUC) provides a summary performance measure
across all possible thresholds. It is equal to the probability that a randomly
selected positive observation has higher predicted score than a randomly se-
lected negative observation. AUC is 1 for a perfect model and 0.5 for random
predictions, i.e., it is interpreted as a reward (higher is better). The area un-
der the curve can be approximated using a metric called A’; this metric is
equivalent to the well-studied Wilcoxon statistics (Fogarty et al., [2005)).

5.2 Choice and Interpretation of Metric

The choice of a metric used for comparing student models is important since
different metrics lead to different results; this has been documented previ-
ously using data from real systems (Peldnek, 2015). Here we use our simulated
scenarios with learning curves to provide a clarification related to the inter-
pretation of absolute and relative values of metrics (by the relative value we
mean the difference in values for two models). Sometimes these values are used
to make judgments about the quality of a model or the significance of model
improvement. Such use of metrics is, however, rather misleading. From the
perspective of model evaluation, it makes sense to consider only the ordering
of metric values; the magnitude and differences of metrics values are dependent
mainly on the data available, not on the quality of models.

For the RMSE metric, the value of the metric is closely related to the
average error rate. When the average error rate is near 50%, the RMSE value
will be near 0.5, unless we have an excellent predictor, which is in the case of
predicting noisy student behavior unlikely. If the average error rate is low, the
RMSE value will go towards zero even for a simple constant predictor. For the
AUC metric, the value will be high (near 1) even for a simple model when there
is high heterogeneity in data (e.g., differences among knowledge components,
students, or pronounced learning leading to a large difference between the
beginning and the end of each student’s sequence). With homogeneous data,
the AUC value will be typically low (near 0.5) even for a complex model.

As a specific example, consider the error curves in Fig. [f] We consider
only cases where we fit the data by the same model that generated them. If
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Fig. 6 Error curves used for illustration of metric values.

we consider only the curve A, the metric values are poor: RMSE 0.492, AUC
0.593. If we consider only the curve B, RMSE is much better: 0.160 (because
the error rate is low). If we consider a model with both curves A and B, AUC
is much better: 0.834 (because of the heterogeneity in data). Note that in all
cases we are evaluating optimal predictions, i.e., the differences in metric values
are not caused by fundamental changes in the predictive ability of models, but
by the characteristics of data.

We typically use metrics for model comparison, and thus the focus is not
on their absolute values, but on the relative performance of models (a differ-
ence between metric values for different models). These relative values also
cannot be easily interpreted. Specifically, with the AUC metric, we can have
vastly different models and obtain the same or nearly the same values of the
metric. For example, if we divide all predictions by two, the value of the AUC
metric remains the same, since the metric considers only relative ordering of
predictions. In the error curve model with a single knowledge component, even
an arbitrary model for which error predictions decrease with k achieves the
same AUC value as the optimal model. A substantial difference in AUC typ-
ically means a model improvement, but a lack of difference in AUC clearly
does not mean “absence of improvement” (see also discussion by (Marzban,
2004))). This means that by relying solely on the AUC metric, researchers can
miss important results!

5.3 Averaging Issues

The basic definitions of metrics treat data as one dimensional. But in student
modeling, we typically have two natural ways to group data: with respect to
students and to knowledge components. Data (both observations and predic-
tions) can thus be seen as a matrix, typically with missing values. The basic
definitions of metrics are based on computations over a flattened matrix. Al-
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ternatively, we can compute metrics per row (or column) of the matrix and
then compute an average value of the metric.
Thus there are three main approaches to computing any metric:

— Global computation. In the metric computation, we do not differentiate
between students and knowledge components and treat all data points
as equal. This is the most straightforward approach (and also probably
the most common), and thus this should be a default meaning of metric
(when the computation is not further specified). If we want to make the
computation explicit, we denote this approach to the computation of the
metric using the subscript g, e.g., RMSE,, AUC,.

— Awveraging across knowledge components. We compute the metric for each
knowledge component and then take an average (in the case of a low num-
ber of knowledge components we may also report the value for each of
them). We denote this approach to the computation of the metric using
the subscript KC, e.g., RMSE+&, AUC%&.

— Averaging across student. We compute the metric for each student and
then take an average. We denote this approach to the computation of the
metric using the subscript 3, e.g., RMSFE5, AUCs.

None of these approaches is “the correct one” since the suitability of each
approach depends on a particular application. At the same time, the choice
of the approach is important—we will show that these approaches can lead to
quite different results.

To get a basic intuition why the results may differ, consider a case of highly
uneven distribution of answers, i.e., some students (knowledge components)
have a much larger number of answers than others—such a situation is in fact
very typical in real learning systems. With the global computation of a metric
all data points have the same weight, and thus the results are influenced mainly
by students (knowledge components) with many answers. On the other hand,
the per student (or per KC) computation gives equal weight to all students
(KC) without regard to the number of answers, i.e., answers for students (KC)
with many answers have less weight.

5.8.1 Averaging Across Students

Now we turn to the discussion of issues related to different averaging methods,
starting with averaging across students. The differences in the global compu-
tation of metrics and averaging across students are important in cases where
the number of available data from individual students is unevenly distributed.
This corresponds to a typical case in any user data—typically we have many
users with few responses and few users with many responses. The global com-
putation of metrics gives the same weight to all responses, whereas averaging
across users gives the same weight to all users (and thus lower weight to re-
sponses by users with many responses).

For an illustration, we consider a specific simulated scenario. We again use
learning curves from Fig. [1] (in Section. The data are generated according
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Table 1 Illustration of the per student computation using error curves from Fig. [l} Data
are generated according to curve A, with 70% of students having 5 attempts and 30% of
students having 60 attempts. The table compares predictions by curves B and C.

model RMSE,; RMSE+%

B 0.40 0.46
C 0.35 0.48

to the curve A with an uneven distribution of the number of answers among
students: 70% of students have only 5 attempts, 30% of students have 60
attempts. Data are then fitted with two models. The first one (curve B) fits
only the beginning of a sequence; the second one (curve C) fits only the end of
the sequence. Table [I] gives the comparison of RMSE values for these models.
If we compare the models with respect to the RMSE metric computed globally,
model C is better. If we compare the models with respect to the RMSE metric
averaged across students, model B is better.

The use of the AUC metric with averaging across students brings one
additional problem. The AUC metric is not well defined when all responses are
the same (e.g., all answers are correct). When we consider the computation
of the metric per student, such cases are likely to happen, particularly for
students with a small number of answers. It is not clear how to treat these
cases. The basic approach is to ignore these undefined cases—this was done
for example by |Sao Pedro et al.| (2013a)). However, this approach is not entirely
fair—we want predictors to behave well even for these students, and thus we
should take these predictions somehow into account.

5.8.2 Averaging Across Knowledge Components

The essential difference between global computation and averaging across
knowledge components is the same as in the case of averaging across students—
each method distributes weights differently to the available data points. The
issue can be again quite pronounced for practical systems, as often the dis-
tribution of responses among KCs is very highly uneven—in the case of KCs
even more than in the case of students since popular basic KCs often have
orders of magnitude more responses than very specific or advanced KCs.

The AUC metric again brings some specific issues. When AUC is computed
per knowledge component, the metric does not require any calibration of the
model, since the metric only considers relative ordering of predictions. For ex-
ample, in our simple error curve model, the only relevant aspect of predictions
is that they are decreasing, it does not matter what the exact shape of the
curve is (all decreasing curves lead to the same value of the AUC metric). The
global computation of the AUC metric takes into account the relative calibra-
tion among KCs, e.g., if predictions for one of the KCs are too low relative to
other KCs, it will decrease the metric value. However, in this case the over-
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Fig. 7 Illustration of the impact of AUC computation. Data generated by a model with
knowledge components Al, B2 and fitted by three models.

all AUC is easily dominated by “differences among KCs” with only a limited
effect of the “ability to predict within KC”.

As a specific example, consider the case demonstrated in Fig. [7] We gen-
erate the data with a model with two knowledge components Al and B2
(full lines). For model comparison, we consider three models and compare the
AUC values when computed globally and averaged across KCs. A model with
“speed of learning mismatch” (using knowledge components A2, B1) achieves
the same performance as the correct model when AUC is computed per KC.
whereas for globally computed AUC it achieves poor performance (because
the curves A2 and B1 cross, whereas the correct curves Al and B2 do not). A
model which uses one correct KC (A1) and one very poor KC (C, which mod-
els “negative” learning) has the results the other way around. It achieves very
poor AUC when computed across KCs (due to the inappropriate model of neg-
ative learning), whereas it achieves quite a good AUC when computed globally

(due to substantial differences between KCs that are captured correctly in the
model).

5.4 Usage of Metrics in the Current Research

We conclude our discussion of metrics with an overview of their usage in the
current research. A detailed overview of metrics used for evaluation of predic-
tive accuracy of student models is provided by [Pelanek| (2015)). Several other
works describe general methodological issues connected with performance met-
rics. [Dhanani et al.| (2014)) compare metrics in the case of learning model
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parameters; they conclude that RMSE is better than AUC for this purpose.
[Pardos and Yudelson| (2013)) study the ability of models to identify “moment
of learning” and analyze the relationship between this ability and predictive
accuracy metrics; the AUC metric again shows poor results. |Gonzalez-Brenes|
[and Huang| (2015) briefly mention the differences between global computa-
tion and computation per knowledge component and possible relation to the
Simpson’s paradox.

Both RMSE and AUC are widely used for evaluation of student models.
In most cases, however, the exact approach to computation is typically not
explicitly specified in papers. In most cases, probably, the used approach is
either global (particularly for the RMSE metric) or averaging per knowledge
component.

The RMSE metric has been used for example by Beck and Xiong| (2013);
Gong et al| (2010); [Wang and Beck (2013); |Wang and Heffernan| (2013);
Yudelson et al.| (2013); [Papousek et al.| (2014); Niznan et al. (2015); Liu and|
Koedinger| (2017). RMSE was also used as a metric in the KDD Cup 2010,
which focused on student performance evaluation. Examples of papers that
use both the AUC metric and some other metric are Kaser et al| (2014alb));
Beck and Xiong| (2013); Gong et al.| (2010} |2011)); /Cook et al.| (2017). There are
also many papers that use only the AUC metric for evaluation, for example
Beck and Chang| (2007)); |Gonzalez-Brenes and Mostow| (2013)); [Pardos et al.|
(2013); [Piech et al.| (2015); Beck| (2007); |Gonzalez-Brenes| (2015)).

Some papers that use the AUC metric explicitly describe computation per
knowledge component computation. [Pardos and Heffernan| (2011)) report AUC
for individual knowledge components. Gonzélez-Brenes et al.| (2014) discuss
both global computation and averaging over knowledge components.
use both global computation and averaging over knowledge
components and discuss the impact of the choice on comparison with previous
work. Several works compute AUC per student and report averages and results
of statistical comparisons (Pardos et al., 2012} Baker et al.l 2008; Sao Pedro|
P0133).

Performance metrics are also used in many other research areas. Result
and observations from these areas may provide useful insight for evaluation of
student modeling techniques.

The RMSE metric is closely connected to the sum of square errors and mean
square of errors. From the perspective of model comparison, all these metrics
are equivalent since averaging and square root are monotone operations. The
exact equivalence, however, does hold only for the global computation. When
the metric is computed with the use of averaging, the result may slightly dif-
ferent. In some domains (particularly in weather forecasting) the mean square
error (RMSE without the square root) is called a Brier score (Brier]
[Toth et al. 2003) or a quadratic scoring rule (Gneiting and Raftery], [2007)).
The Brier score is sometimes decomposed into additive components (Murphy,
1973)), which provide further insight into the behavior of predictive models.

The ROC curve and AUC metric are successfully used in many different
research areas, but their use is criticized for several reasons (Lobo et al 2008}
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Hand},2009), e.g., because the metric summarizes performance over all possible
thresholds, even over those for which the classifier would never be practically
used. [Marzban| (2004)) discusses AUC in the meteorology context and shows
that “AUC discriminates well between good and bad models, but not between
good models”.

Fawcett| (2004) provides a detailed discussion of the ROC curve and the
AUC metric, discussing also averaging issues (with a focus on the construction
of the ROC curve). [Hamill and Juras| (2006) use the context of meteorology
to discuss the issue of metric interpretation in the case when the frequency
of observed events is not invariant in all samples (which is closely relevant to
varying success rates for different knowledge components in student models).

6 Discussion and Recommendations

We have described several methodological nuances that can influence results
of experiments with student models. We conclude with a discussion of specific
consequences for research practice.

6.1 Understanding Our Data

Researchers who use published data that they did not collect themselves should
inquire into details of the used data collection mechanism. It is useful to per-
form exploration of dataset properties to get the understanding of the data
and its potential biases. We should make sure that our results are not su-
perficially created by the data collection mechanism. Careful attention should
also be paid to the division of data between training and test set—a proper
procedure should be selected according to the purpose of the model.

Tt is also useful to check the robustness of achieved results (comparison of
model performance, fitted parameter values). What happens when we use an
artificially shorter number of answers per student? What happens when we
use different performance metric (or different averaging approaches in metric
computation)? Do the results of model comparison stay the same?

In some cases, it may be impossible to perform required probes—for ex-
ample, if we have access only to historical data and we care about ordering
of items, we cannot perform experiments with different orderings. Specifically,
the basic “easier to difficult” progression in item difficulty is desirable. In some
form, it is present in most educational datasets. We should take this issue into
account, analyze the available data to understand its properties, and explic-
itly discuss potential limitations. Useful descriptive statistics for this specific
purpose include analysis of mean presentation order of each item (used by
Khajah et al|(2014)), analysis of the correlation between orderings of differ-
ent students (used by [Peldnek and Jarusek| (2015)), or analysis of transitions
between items (used by [Lopes et al.| (2015)).
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6.2 Data Collection

Our results also have consequences for the data collection itself. We have il-
lustrated how the use of adaptive techniques leads to datasets that make it
difficult or even impossible to compare student models and find mistakes in
their specification (e.g., in knowledge components or prerequisites). The adap-
tive behavior is the purpose of student modeling and is beneficial for students.
At the same time, however, it is detrimental for evaluation purposes.

Nevertheless, we can find a reasonable compromise between our different
goals. We can modify the behavior of our learning systems in a way that would
enable easier evaluation without hampering their primary goal (i.e., student
learning). Specifically, we may employ the controlled use of randomization. If
some items are chosen randomly (from a reasonably defined set of items), the
impact on user experience may be negligible and the collected data can be
used for evaluation in a much more straightforward manner than adaptively
chosen items—a specific version of this approach was used by [Papousek et al.
(2016)).

6.3 Choice and Computation of Metrics

We have presented examples that demonstrate potentially substantial differ-
ences between different methods (“global”, “per knowledge component”, “per
student”) of computation of metrics of predictive accuracy. A natural ques-
tion is: “Which method is the correct one?” Unfortunately, there is no simple
answer to this question—the choice of an appropriate method depends on the
specific use case. In some applications we may care mainly about “long-term
users”, and we do not worry about users who just try a system for a short while,
e.g., for systems used schoolwide in formal educational settings. In other cases
the “initial impression” is essential and we want the model to work well even
for users with few responses, e.g., for commercial systems targeting individual
students where the initial impression influences the decision whether to buy a
license. Each of these cases requires a different approach to the evaluation of
predictive accuracy.

Thus the solution is not to choose a single universal metric and to apply
it in all student modeling research. The choice of metric, however, clearly
deserves more attention in research. Researchers should provide a rationale for
the choice of metric and also enough technical details about the computation
of the metric to make their research reproducible. Our analysis of literature
suggests that the current state-of-the-art is inadequate in this respect. In many
cases, it is not possible to determine whether the reported metric was computed
globally or averaged over knowledge components or students.

Our examples also show that the AUC metric can be potentially misleading
in several ways. Some of these features have been already noted in research
outside of student modeling. In student modeling, however, the AUC metric
remains to be heavily used, and in many studies it is the only metric that is



24 Radek Peldnek

reported. In the light of discussed deficiencies, these kinds of results should be
reevaluated using other metrics and taking into account different methods of
metric averaging.

From a wider perspective, we should not forget that the ultimate goal of
student modeling is to contribute to student learning. Metrics that evaluate
model performance on historical data are indispensable for optimization of
models and for choosing a suitable candidate from a wide range of model
variants. To fully evaluate the merit of a model, however, we need to explore
its impact when applied within a learning system.

6.4 Reporting of Data, Experiments, and Results

This paper explicitly highlights many decisions that need to be done in an
evaluation and that can influence the results, e.g., the choice of a dataset and
potential treatment of present biases, the choice of metric and its computation,
the data splitting procedure. For most of these choices there is no “universally
correct decision”, e.g., we can not pick one universal metric or a universal
approach to splitting data into training and a test set. But we should be
aware of the choices made and make them explicit in our research reports.

The current research in student modeling often does not report experimen-
tal methodology in sufficient detail. This makes the interpretation of results
and reproducibility of research more difficult. One obstacle to proper reporting
is the diverse notation and terminology used in the field. One goal of this paper
is to explicitly identify aspects of experimental evaluation that need more at-
tention and to propose terminology that would facilitate communication about
data, experiments, and results.

6.4.1 Publication of Datasets

Currently, most published dataset document only the data itself, but not the
way in which the data were collected. As the data collection can have a sub-
stantial impact on the interpretation of the data, it is necessary to document
data collection mechanism as well. The behavior of adaptive systems is quite
complicated (e.g., many parameters often influence the exact choice of items)
and typically it is not feasible to document the data collection mechanism up
to all details. But authors of datasets should explicitly discuss all major issues
and potential limitations due to the data collection mechanism, notably:

— The distribution of answers and attrition biases in data. What is the dis-
tribution of the number of answers per student and knowledge component?
What influences this number? Is there mastery attrition due to the behav-
ior of the learning system? Is there self-selection bias due to characteristics
of user population?

— Item ordering and selection. How is the specific choice and ordering of items
from a single knowledge component determined? Is the ordering fixed, ran-
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dom, or adaptive? Is there a feedback loop, i.e., are the answers of students
used to influence the future choice of items?

6.4.2 Data Splitting

Evaluation of student models is typically done with the use of cross-validation.
This is a well-known and general methodology, but it is insufficient to report
just “evaluation was done using 10-fold cross-validation”. In student modeling,
it is necessary to explicitly state what approach has been used for splitting
data into a training set and a test set. Specifically, research papers should
report:

— Data splitting with respect to items and students. Here we propose to
abandon the use of potentially misleading “student stratified” and “item
stratified” terminology. Instead, we propose to use terminology based on
the “level” keyword (as illustrated in Fig. [4).

— The treatment of the temporal aspect of the data; specifically, whether the
predictions are computed dynamically after each answer, or statically at
one chosen time point (as illustrated in Fig. |5)).

As the primary data splitting procedure, which most closely corresponds to
typical applications in learning systems, we propose “student level cross-validation
with dynamic prediction updates”.

6.4.3 Metrics Computation

The predictive accuracy of models is typically summarised by a performance
metric like RMSE or AUC. These metrics may be computed in several different
ways and the differences can lead to important discrepancies in the evaluation.
It is thus necessary to explicitly specify the used approach to averaging in
metric computation. To this end we propose the following notation:

— Global computation of a metric, in which all data points treated equally,
is the default that is denoted by the plain name of the metric, e.g., RMSE,
AUC.

— An average of per student metric values is denoted by the metric name
with a subscript 5, e.g. RMSE5, AUCSs.

— An average of per knowledge component metric values is denoted by the
metric name with a subscript KC, e.g. RMSE&, AUC%5.

6.5 Research Priorities

Through the paper, there are pointers to papers whose results may be influ-
enced by the described methodological nuances. The point of this paper is not
to pick on specific research studies. Criticizing is easy, doing proper evaluation
is hard. Student modeling is a difficult task with many hidden influences. No
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evaluation is perfect—there will always be some undocumented details and ar-
bitrary choices. Nevertheless, continuous improvement of evaluation standards
is possible. We just have to give the topic enough attention.

This leads us to conclude with a high-level reflection on research priorities
for the student modeling community. At the current state of the research,
simple models of learning like BKT or logistic models have been extensively
explored and there is a natural trend towards building more complex models
(e.g., based on Bayes networks or deep learning).

Our discussion, however, shows that the evaluation of student models is
complicated by many methodological pitfalls and even the evaluation of simple
models is not properly settled. Without having a very clear methodology and
notation for performing experiments, we risk that exploration of complex mod-
els will lead to misleading results. This danger is illustratively documented by
the deep knowledge tracing experiment described in Introduction. Specifically,
the issue of robustness of estimated parameters and comparative results needs
more attention even for basic models.

Research of the community, of course, does not need a single priority. It
is worthwhile to explore both complex models and methodology of evaluation
using simple models. The important point is that the methodology should not
be neglected.
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