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Abstract. Construction of a mapping between educational content and
skills is an important part of development of adaptive educational sys-
tems. This task is difficult, requires a domain expert, and any mistakes
in the mapping may hinder the potential of an educational system. In
this work we study techniques for improving a problem-skill mapping
constructed by a domain expert using student data, particularly prob-
lem solving times. We describe and compare different techniques for the
task – a multidimensional model of problem solving times and super-
vised classification techniques. In the evaluation we focus on surveying
situations where the combination of expert opinion with student data is
most useful.

1 Introduction

With the increasing use of technology in education it becomes possible to cre-
ate educational systems that are personalized and adaptive. One of important
aspects of development of such systems is the construction of a mapping between
educational content (questions, problems) and latent skills. This mapping is
important for student skill estimation, which guides the adaptive behavior of
systems, and also for the system interface, e.g., for grouping of problems or
feedback to students using open learner models.

Latent skills, also denoted as knowledge components or concepts, may in
mathematics correspond for example to “trigonometric functions”, “linear func-
tions” or “binary numbers”. The suitable granularity and choice of the skills,
as well as the construction of the mapping between a system content and skills
depends on a particular application. This task is typically done by a human and
since it is a difficult process, it requires a domain expert. The labeling of items,
particularly for large item pools, may be time-consuming, and consequently the
process is rather expensive, which is a drawback particularly for applications tai-
lored for relatively small target groups (specialized domains, languages spoken
by relatively small number of speakers). Another approach is to use automatic
construction of the mapping from the data. To be reliable, the automatic app-
roach requires large amounts of data. Moreover, the automatically determined
skills may be hard to interpret, which may limit their applicability – we want to
provide students with feedback on their knowledge of trigonometric functions,
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114 J. Nižnan et al.

not on their “mathematical skill number 3”. Synergy of these two approaches
may bring useful results. We can use a human expert to provide initial label-
ing of problems and then automatic methods can be used to detect errors that
the human might have introduced and to fix them. This approach alleviates the
requirements on the human, so it may be possible to use non-expert or to do
labeling in quick, coarse way. It also provides interpretability and a good starting
point for automatic methods.

Depending on the quality of the provided expert labeling and amount of
data, there are three possible scenarios. If the number of expert errors is small
or the data are insufficient, it is best to use just the expert opinion. If the expert
makes lot of mistakes and large data are available, then it is best to use just the
data. We are interested in the region between these two cases, when it is most
advantageous to combine both the expert input and available data. Our aim is
to explore techniques for such combination and to map the size of this region.

Our particular context are data about problem solving times from Prob-
lem Solving Tutor [1,2] (mathematics problems, logic puzzles). We explore two
approaches for combining expert input with data. The first one is a multidimen-
sional model of problem solving times. Model parameters are estimated using
stochastic gradient descent, where expert input is used for initialization. The sec-
ond approach is supervised learning approach, where the expert labels are used
for learning a classifier and mistakes of the classifier are interpreted as errors of
the expert. Results show that the two approaches lead to similar performance
results, the supervised learning approach is computationally significantly faster.
The results also show that the region, where the combination of expert opinion
with data is advantageous, is quite large and that this approach deserves further
attention.

2 Related Work

The main area of related research is concerned with the Q-matrix approach [3–5].
This research was done mainly for correctness data, i.e., binary response (cor-
rect/incorrect), whereas we use problem solving times. Also, most of the research
either uses an expert provided Q-matrix (without any analysis of suitability of
the matrix) or tries to find the Q-matrix solely from the data (possibly dis-
cussing the differences between mined and expert Q-matrices [6]). In previous
work on analysis of skills in context of problem solving times, we [7] used spectral
clustering to automatically detect skills from data.

Only few works focused on checking or improving expert provided Q-matrix
[8–12]. The closest relevant work [10] used matrix factorization approach to
enhance expert provided matrix. The accuracy of this technique was compared
with two other techniques on multiple datasets [12]. Our setting is different, as we
study only classification and we use problem solving times instead of correctness
data.

Other related techniques are matrix factorization in recommender systems
[13] and the SPARFA [14] technique. These techniques also automatically detect
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concepts in data (e.g., in movie rating), but this research has significant differ-
ences from our work. At first, the focus of the research in these settings is mainly
on improving predictions, not on the concepts themselves. At second, there is
usually no way to use expert input and the output usually is not interpretable
and thus is not directly usable for adaptive educational systems.

Learning Factors Analysis [15] is a technique for improving a cognitive model
provided by an expert. It performs a combinatorial search over many models.
While its goal is similar to ours, the approach is different. Other research [16]
is based on a Bayesian approach for performing skill discovery where expert
labeling is used as a prior. The goal is to better predict the correctness of student
responses. Our measure of success is different. We want to find a correct latent
mapping of problems to skills. Both of the above mentioned methods work with
correctness data.

Our use of supervised learning techniques, which assumes that the provided
labeling is not completely correct, is related to learning with noisy labels [17,
18]. This line of research is focused mainly on improvement of classification
methods. We assume a symmetrical noise and thus there is no need for these
more sophisticated methods. Preliminary version of our work is available [19].

3 Techniques

In this section we describe the proposed techniques for problem classification by
combining input from experts and student data.

3.1 Inputs and Outputs

In the following we assume that we have a set of students S, a set of problems P ,
and data about problem solving times: ts,p is a logarithm of time it took a student
s ∈ S to solve a problem p ∈ P (reasons for working with a logarithm of time
are described for example in [1,20]). The data is not complete, meaning that not
every student solved every problem. We denote κ ⊆ S × P the set of student-
problem pairs for which we have observed solving times.

We have an expert labeling lE : P → Σ where Σ is the set of skills. We
assume that the number of skills is rather small when compared to the number
of problems. The expert labeling may contain some mistakes when compared to
a correct hidden labeling l. The output of our algorithms is some other labeling
lA that may be different from lE . The goal of our algorithms is to provide a more
accurate labeling (according to l) than lE .

Some of our algorithms do not work with incomplete data. This is why we
transform the data using Spearman’s correlation coefficient, which gives a metric
of similarity between two problems. When computing the correlation coefficient
r(pi, pj) of problems pi and pj we use only the times of students that solved both
problems. Correlation can be used to construct a |P |-dimensional vector space
where each dimension j represents a correlation with problem pj . A problem pi

is then represented as a vector rpi
= {r(pi, pj)}1≤j≤|P |. We assume that when
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two problems are similar then they have similar correlations with other problems
and therefore their Euclidean distance dr(pi, pj) = ‖rpi

− rpj
‖ is small.

3.2 Model with Multidimensional Skill

In this section we introduce a model with multidimensional skill for predicting
how much time it takes a student to solve a particular problem. The model uses
a few latent attributes: problem bias bp, student bias βs, problem skill vector
qp and a student skill vector θs. It assumes the following relationship between
the attributes: ts,p = bp + βs + qᵀ

pθs + ε where ε is a gaussian error. It always
predicts the time t̂s,p = bp + βs + qᵀ

pθs.
The problem bias bp can be thought of as being the basic problem difficulty –

a term commonly used in item response theory and in our previous research [1].
Similarly, the student bias βp can be viewed as a basic negative student skill
(higher skill should implicate shorter solving time). The vector qp of length |Σ|
represents the weight of individual skills in the problem p. We require its values
to be approximately in the [0, 1] range to allow for easy interpretation. The
vector θs (of length |Σ|) can be interpreted as the values of skills the student s
has.

This model is a multidimensional extension of a basic model of problem
solving times that we used in our previous research [1]: ts,p = bp + apθs + ε.
The main difference between these models, besides the multidimensional skill,
is that the basic model is missing the student bias βs and instead of qp it uses
a discrimination factor ap. The reason for different notation is that there are
different restrictions on ap than on qp. Mainly, meanp∈P (ap) = −1.

This model can be alternatively viewed as a matrix factorization problem:
T = b1ᵀ

|S| + 1|P |β
ᵀ + QΘᵀ + E. The matrix of times T has shape |P | × |S|. A

column vector of all-ones of length n is denoted as 1n.
This model is supervised in a sense that it is learning to predict the student

solving times. As a byproduct we get the Q-matrix Q which represents the
problem-skill mapping that we are interested in. We can interpret the matrix Θ
as a mapping of individual students to the values of their skills. The objective of
the learning of the model is to find the values of the parameters that minimize
the squared prediction error E =

∑
(s,p)∈κ(ts,p − bp − βs − qᵀ

pθs)2.
To get the values of the parameters we use stochastic gradient descent, which

is a popular method for similar settings, particularly in the area of collaborative
filtering and recommender systems [21]. Other approach to get the parameters
is to use alternating convex search. If we fix the problem-related parameters
then the problem of minimizing the error E is convex. Alternatively if we fix the
student-related parameters this problem is also convex. We can alternate these
steps, in each using a convex optimization software to estimate the parameters.

Before we start estimating the parameters we need to initialize the values of
the parameters. When the expert labeling is not available we can initialize the
Q-matrix randomly with values taken uniformly from [0, 1]. However, when the
expert labeling is available we use that as the initial Q-matrix instead. After
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Fig. 1. An example of changing values of one skill during the iterations of gradient
descent. Each line represents a single problem.

the algorithm terminates we can check for discrepancies between the expert Q-
matrix and the Q-matrix outputted by the parameter estimation algorithm. We
will assume that these discrepancies are expert mistakes.

We want to keep the values of the Q-matrix in the [0, 1] range to allow for
easy interpretation. When using alternate convex search we can achieve this
simply by subjecting it to the appropriate constraints. In stochastic gradient
descent we can use L2 regularization by using a slightly modified error function
E′ = E + λ

∑
(s,p)∈κ ‖qp‖2 where λ is a regularization parameter. Note that

using L2 regularization will not keep the values precisely in the [0, 1] range, but
choosing an appropriate λ will keep the values from traveling too far.

Figure 1 shows the small gradual changes of values of one skill in the Q-matrix
during the passing iterations of stochastic gradient descent. It also illustrates the
4 categories of change that can occur in the Q-matrix: true positive (incorrect
classification is fixed), false positive (correct classification changes to incorrect),
true negative (correct classification stays correct), false negative (incorrect classi-
fication is not fixed). Our experiments have shown that the biconvex optimization
approach makes much greater changes to the values of the Q-matrix than gra-
dient descent, resulting in essentially ignoring the expertly initialized Q-matrix.
Therefore, in further evaluation we use stochastic gradient descent.

3.3 Supervised Learning

In this section we introduce how supervised classification methods can be used
to detect errors in expert labeling.

The main idea can be illustrated by the most straightforward approach which
uses k-NN (k-nearest neighbors) algorithm and correlations between problems.
We assume that the most correlated problems belong to the same skill and thus
have the same labels. So for problem pi a new label lA(pi) will be the most
common label among the k most correlated problems from P with problem pi.
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This approach can find some mistakes, however it brings only small improvement
of expert labeling lE .

Similarly, we can perform k-NN with distances dr defined in Section 3.1.
In this case correlation information is used more broadly, because distance of
two problems incorporates correlation with all others problems from P . This
approach gives more promising results than naive approach above.

Of course it is possible to use different classification methods with metric dr or
vectors rp as vectors of features. We have chosen logistic regression classifier [22],
which is more sophisticated but still computationally fast. Logistic regression
classifier finds a linear combination of features wᵀrp of training data which –
after passing through logistic function – fits labeling the best. In fact, classifier
finds a decision hyperplane which splits the space into two parts corresponding
to skills.

Fig. 2. Projection of vectors rp to plane, where x-axis represents distance from decision
hyperplane. Data points represent problems with labeling provided by expert (squares,
circles) and his mistakes (white ones).

Figure 2 gives inside look into how logistic regression works in our setting for
2 skills. The classifier splits the space by decision line to two halfspaces which
correspond to the skills. Every point in the figure is a problem and its shape
represents labeling provided by expert. White ones mark mistakes of expert. For
3 or more skills one-vs.-all strategy is applied.

Logistic regression classifier (similar as other classifiers) makes two types of
mistakes on our training data: (1) mistakes near decision line, which are caused
by generalization and not perfect separability of problems; (2) mistakes which
correspond to expert mistakes. Our goal is to have maximum of mistakes of type
2 and minimum of mistakes of type 1. The algorithm without regularization
(λ = 0) overfits and does not find any mistakes (it is often possible to split n
points in n dimensions into any given two sets). With growing regularization
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(we used quadratic one) more mistakes of type 2 are found but some mistakes
of type 1 occur.

4 Evaluation

Now we turn to evaluation of the proposed techniques on real data.

4.1 Data and Experiment Setup

To evaluate our algorithms we used real data from a Problem Solving Tutor [2]. It
is a free web-based tutoring system for practicing problem solving; it is available
at tutor.fi.muni.cz. The system adapts to an individual student – based on
past problem solving attempts the system estimates student’s problem solving
skill, using this estimated skill it predicts problem solving times for new problems
and chooses a suitable problem for a student. The system has more than 12 000
registered students (mainly university and high school students), who have spent
more than 18 000 hours solving more than 500 000 problems.

For the evaluation we used problem solving data from 5 problem types: Slith-
erlink, Tilt Maze, Rushhour, Sokoban, Robotanist. We chose these types of prob-
lems because they are some of the most popular ones and therefore a lot of data
has been generated from the attempts to solve them. On average we have 80
instances per problem type and 1200 solving attempts per problem.

To simulate multiple skills for the evaluation purposes we mixed data from
k problems together (k ∈ {2, 3, 4}). Each problem type represents a single skill
(or label). An expert is simulated by taking the correct labeling and introducing
some random mistakes. Hence, in this situation (as opposed to standard setting),
we know the correct “latent” skills and thus we can measure accuracy of a method
as the portion of the final labels assigned correctly.

We will denote the general approach described above as ED (expert-data).
We compared this approach with the E (expert) approach, where only the expert
labeling is used and, the D (data) approach, where only the data is used in an
unsupervised fashion.

A baseline approach to unsupervised clustering is the k-means algorithm,
in our setting it can be used in straightforward way when the problems are
represented by correlation vectors rp described in Section 3. In previous work [7]
we have shown that spectral clustering achieves slightly better results. Here we
use for the evaluation of the D approach the spectral clustering.

Expert labeling was obtained as correct labeling (given by problem types)
with some additional mistakes. We performed these evaluations with different
values of an expert error rate pe ranging from 0 to 0.5. When the simulated
expert was labeling an individual data point, he assigned it the correct label
with probability 1 − pe, otherwise a random incorrect label was assigned. The
expected accuracy of an expert with an error rate pe is 1 − pe.

The expert labeling was then used in the ED approach. When using the model
with multidimensional skill, we initialized the algorithm to use the expert labeling.
In supervised learning the expert-labeled data was used as a training data set.
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4.2 Algorithm Settings

When using the model with multidimensional skill we need to set the following
three parameters of stochastic gradient descent: the number of iterations, the
learning rate α and the regularization parameter λ. We set all of these parameters
empirically. Our experiments have shown that after 100 iterations the values in
the Q-matrix are stable. The learning rate α was set to 0.005 which is small
enough to allow for smooth changes in the Q-matrix. This is important because
our goal is to find a better local optimum near the expertly initialized Q-matrix.
The parameter λ was set to 0.0001.

In the case of k-NN algorithm experiments showed that choice of k is not
essential; the results are comparable for 20 ≤ k ≤ |P |

2 . For comparison we used
fixed k = 30.

For the method based on logistic regression the choice of regularization para-
meter λ can be used to set the sensitivity of the algorithm to mistakes. With
low regularization only the most serious (according to data) mistakes are found
(small recall and high precision). With high regularization most of the mistakes
of expert are found (rising recall) together with some false positives (dropping
precision). Fortunately, the algorithm is not sensitive to regularization too much
(the figure uses logarithmic scale of λ) and interval of regularization with good
accuracy is wide enough. So it is possible to use one regularization for different
skills and gain good results. For comparison we used fixed λ = 2.

4.3 Results

Figure 3 shows the comparison of the accuracies of the E, ED and D approaches.
The left graph shows the results for the mix of 2 problems, the right one for the
mix of 3 problems. We can denote three zones within expert error rate based
on which approach (E, ED or D) performs the best. The E-zone appears for
very small values of pe, the D-zone appears for very large values of pe, and the
ED-zone appears between them, where the combination of expert labeling and
student data is beneficial.

Fig. 3. Comparison of techniques for particular situations (2 and 3 skills). The ED-zone
is marked for the model. The accuracy is averaged from 20 repeated runs.
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We are interested particularly in the ED-zone, where the newly introduced
approaches are the best, specifically in its position and width, which tells us for
which values of pe these approaches are a good choice. Also, maximal benefit
of correcting expert labeling (over E and D) can be measured. We will call this
feature as height of ED-zone.

The figure shows that algorithm based on k-NN brings only small improve-
ment and only for limited range of error rates. The other two approaches based
on model and logistic regression are significantly better and to each other com-
parable. Also, curves of accuracy of these algorithms are often very similar (as
illustrated in Figure 3).

Both described algorithms produced similar results, however the algorithm
based on logistic regression is significantly faster, because it works with corre-
lation vectors, which substantially reduces the amount of data, and the com-
putation of the decision line is a straightforward process. Algorithm based on
the model needs a lot of iterations and repeated passes through all problem
solving times. On the other hand this approach gives more information about
problem-skill mapping, because it provides Q-matrix and not only labeling.

The ED-zones properties for various numbers of skills and selected combi-
nations of problems sets are covered in Figure 4. The figure illustrates general

Fig. 4. ED-zones for selected problem combinations. In each case three techniques are
compared: k-NN (K), logistic regression (L), and the model with multidimensional skill
(M). Degree of shade corresponds to the height of the ED-zone. Dotted lines mark the
points where spectral clustering achieved the same results as the simulated expert.
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trends that hold also for other combinations of problems. The main fact, which
can be observed from the figure, is that with the rising number of skills the ED-
zone is larger and higher. This is caused by decreasing accuracy of unsupervised
algorithms.

We have further explored properties of the ED-zone using experiments with
simulated data. Students times for given skill i ∈ Σ was generated from baseline
model (see [1]) as ts,p = bp − θi,s + ε where b is normally distributed difficulty of
problems, θ is normally distributed skill of students and ε is a gaussian error. The
algorithm based on logistic regression was used to compute ED-zone properties.

Figure 5 shows results according to the number of students (30 problems
per problem type and 50% completeness of data was used). The combination of
expert opinion and student data is most beneficial for middle range of students
count. For small number of students there is not enough data for accurate correc-
tion of expert. For large amount of students the algorithm which uses only data
performs better, thus the ED-zone is smaller, but correction of expert is still the
best choice for reasonable error rates of expert. Similar to experiments with real
data, the experiments also show that the benefit from combining expert opinion
with student data increases with the number of skills.

Fig. 5. Properties of the ED-zone on simulated data. Under the dotted line is the
E-zone, above the dashed line is the D-zone, the ED-zone is space between them.

5 Discussion

Our experiments address two types of questions: “how” and “when”. The “how”
question is concerned with the choice of suitable technique for combining expert
opinion and student data. Here the results suggest that on one hand the choice
of technique is important – note that two similar supervised approaches (k-
NN, logistic regression) achieve quite different results. On the other hand, two
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significantly different approaches (the multidimensional model of solving times
and logistic regression with regularization) achieve very similar results. This
suggest that the results of these techniques are close to optimal performance
that is possible for the given data.

The “when” question is concerned with mapping when it is useful to use
the studied techniques, i.e., when does the combination of expert opinion and
student data bring an advantage. The results show that this “zone” is sufficiently
large to deserve attention, the size of the zone grows with number of skills and
for larger numbers of skills the zone becomes dominant, i.e., for large range of
quality of expert input, it is useful to combine the expert opinion with student
data.

Another related issue, where combination of expert opinion and student data
may be useful, is identification of typical problems and outliers. Based on the
student data we can identify candidates for such problems, e.g., using the cor-
relations r(pi, pj) (defined in Section 3.1) or the noise in problem solving times
(see [1]); our experiments suggest that these different measures lead to similar
results. The results may provide valuable information for authors of educational
content and teachers, e.g., it may be useful to remove outlier problems from an
educational system or use typical problems for exam.

The combination of expert opinion and student data deserves further atten-
tion. In the context of correctness modeling, lot of research has been done on the
study of Q-matrices, including some works on combining expert opinion with stu-
dent data. But most of the research studied the “how” question (development of
techniques), it would be useful to consider in more detail the “when” question (in
what circumstances we should combine expert opinion and data). On the other
hand, we have focused mainly on classification (assigning each problem to single
skill), whereas the Q-matrix approach can assign items to multiple skills. The
above described multidimensional model of problem solving times can be used in
the same fashion as the usual Q-matrix approach, but the supervised approach
using logistic regression is limited only for classification. Further extensions and
evaluations in this direction would be interesting.
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