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ABSTRACT
A common personalization approach in educational systems is
mastery learning. A key step in this approach is a criterion that
determines whether a learner has achieved mastery. We thoroughly
analyze several mastery criteria for the basic case of a single well-
speci�ed knowledge component. For the analysis we use exper-
iments with both simulated and real data. �e results show that
the choice of data sources used for mastery decision and se�ing of
thresholds are more important than the choice of a learner model-
ing technique. We argue that a simple exponential moving average
method is a suitable technique for mastery criterion and propose
techniques for the choice of a mastery threshold.
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1 INTRODUCTION
Mastery learning is an instructional strategy that requires learners
to master a topic before moving to more advanced topics. A key
aspect of mastery learning is a mastery criterion – a rule that de-
termines whether a learner has achieved mastery. Mastery criteria
have been studied already 40 years ago [6, 15, 24], but at that time
typically only for static tests and small scale applications. Nowa-
days, mastery learning is used on large scale in dynamic, adaptive
educational systems [11, 22].

A typical application of mastery criterion within a modern ed-
ucational system is the following. A learner solves a problem or
answers a question in the system. Data about learner performance
are summarized by a model of learner knowledge or by some sum-
mary statistic. Mastery criterion takes this summary and produces a
binary verdict: “mastered” or “not mastered”. Based on this verdict,
the system adapts its behavior: it either presents more problems
from the same topic or moves the learner to another topic. �e
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mastery criterion typically takes an external parameter (threshold),
which speci�es its strictness.

Mastery criterion gives a binary output. Most education systems
use some kind of visualization (e.g., progress bars, skillometers,
open learner models) that give learners a sense of progress towards
the mastery goal. �ese visualizations are closely related to mastery
criterion; in fact they can o�en be viewed as mastery criterion with
di�erent thresholds.

In this paper we thoroughly analyze the basic scenario for de-
tecting mastery – we assume to have well-speci�ed �ne-grained
knowledge components, i.e., sets of items related to same skill, such
that these items can be treated as indistinguishable (potentially
di�erentiated by simple parameters as di�culty or time intensity).
We do not consider relation between knowledge components (e.g.,
prerequisites).

Simple mastery criteria are N correct in row [11, 13] or average
success rate from last N a�empts. More complex methods are based
on models of learner knowledge and the use of mastery threshold
policy. A model provides probabilistic prediction that the next
answer will be correct and mastery is declared if the prediction is
over a given threshold.

�ere exists an extensive research on learner modeling [5]. �is
research typically uses personalization through mastery learning
as a motivation. However, evaluation of models is typically not
done by evaluating the impact on mastery criterion, but instead
using evaluation of predictive accuracy on historical data using
metrics like RMSE or AUC [19]. Evaluation of mastery criterion
is more di�cult, particularly because mastery is a latent construct
that cannot be directly measured.

Recent research studied impact of learner models on mastery
decision. �e ExpOps method [14, 23] gives an expected number
of opportunities needed. �is estimate is computed without using
learner data, just based on assumptions of the used model, so the
provided estimate may be misleading if the assumptions do not cor-
respond to the behavior of real learners. Another proposal are e�ort
and score metrics [10], which use historical data to estimate the
e�ort needed to reach mastery and the performance a�er mastery.

Most of the research on mastery criterion was done in relation
with the Bayesian knowledge tracing (BKT) model [4]; this model
is also o�en used in practice with a standard mastery threshold
0.95. �e role of this threshold was analyzed by Fancsali et al. [7, 8]
by using simulated data (generated by the BKT model) to show the
relation between the threshold and proportion of learners with pre-
mature mastery and over-practice. Simulated data were also used
by Pardos and Yudelson [16] to study mean absolute deviation from
the “true moment of learning”. �ey focused on the analysis of a re-
lation between predictive accuracy metrics and moment of learning
detection. Baker et al. [2] also studied the moment of learning using
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the BKT model, but they focused on “hindsight analysis” with the
use of the full sequence of learner a�empts. �e goal was to detect
at which moment learning occurred using a rich set of features (e.g.,
response times, hint usage). Yudelson and Koedinger [26] used
several large data sets to study di�erences in mastery decisions
done by two variants of the BKT model and showed that the impact
of replacing standard model with individualized can be substantial
(as measured by time spent).

Recent research [12, 23] proposed general instructional policies
applicable to any predictive model: predictive similarity [23] and
predictive stability [12] policies. For evaluation authors used the
above described techniques: ExpOps [23] and e�ort and score met-
rics [12]. �ese instructional policies focus on stopping not just
in the case of mastery, but also for wheel-spinning learners who
are unable to master a topic [3]. �ese works, however, pay li�le
a�ention to the choice of thresholds.

In this work we analyze di�erent mastery criteria using exper-
iments with both simulated and real data. We compare mastery
decisions by the standard BKT model and the basic N consecutive
correct criterion. We analyze the decisions of the exponential mov-
ing average method under di�erent situations. We also explore the
impact of usage of response times in mastery criterion. We explore
several techniques for the analysis, including comparison with
ground truth (for simulated data) and novel e�ort-score graphs.

Based on results of these experiments we argue that it is suf-
�cient to use simple methods for mastery criterion; speci�cally,
the exponential moving average method is simple and su�ciently
�exible to �t many applications. Rather than focusing on the choice
and parameter ��ing of learner models, it is more important to
focus on tuning mastery thresholds and on the choice of data that
are used to make the decision (e.g., whether to use of response
times).

2 TECHNIQUES FOR DETECTING MASTERY
Our aim is not to introduce new mastery criteria, but to provide
insight into behavior of already proposed criteria. In this section
we describe previously used methods in a single se�ing.

2.1 Notation
We consider only the case of learning for a single knowledge com-
ponent. We assume that for each learner we have a sequence of an-
swers to items belonging to this knowledge component. Examples
of knowledge components and items are “single digit multiplication”
with items like “6 × 7” or “inde�nite articles” with items like “a/an
orange”.

We use the following notation: k is the order of an a�empt, θk
is a skill estimate for the k-th a�empt, Pk ∈ [0, 1] is a predicted
probability of correct answer at the k-th a�empt, and ck gives
the observed correctness of the k-th a�empt. As a basic case we
consider only correctness of answer, i.e., dichotomous ck ∈ {0, 1}.
It is also possible to consider “partial credit” answers (e.g., based
on the usage of hints or on the response time), i.e., real valued
ck ∈ [0, 1]. A typical mastery criterion is a “mastery threshold
criterion” which uses a threshold T and declares mastery when the
skill estimate (or alternatively the probability of correct answer) is
larger than T .
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Figure 1: Illustrative comparison of performance estimation
techniques for a sequence of answers of a a single simulated
student (B2 from Table 1). �e black line is the ground truth
probability of correct answer and the dots are the simulated
answers.

Figure 1 provides speci�c illustration based on simulated data.
Since these are simulated data, we know the ground truth (the black
line; mastery achieved at the 8th a�empt). �e colored lines show
estimates by several methods. Mastery decisions would depend
on particular thresholds, e.g., for a threshold T = 0.9 the moving
average method would declare mastery at the 12th a�empt.

2.2 Methods without Assumptions about
Learning

Basic mastery criteria use only simple statistics about past answers
without explicitly modeling the learning process.

2.2.1 Consecutive Correct. �e simplest mastery criterion is “N
consecutive correct answers” (NCC) (N -in-row, “streak”). With
this method we simply count the number of consecutive correct
answers and declare mastery once the count reaches the threshold
N . As a progress bar we can simply use the current count. One of
the disadvantages of this method is that any mistake (even if it is
just a typo) means that the learner has to “start again from zero”
and this can be demotivating. Nevertheless, this simple method is
o�en practically used and can be successful [13].

2.2.2 Moving Average. Another simple statistics that can be used
for mastery criterion is moving average. �e basic average for a
moving window of size n is θk = 1

n
∑n
i=1 ck−i . In addition to n we

now need a second parameter: a threshold T . Mastery is declared
when θk ≥ T . One disadvantage of this approach is that it is not
suitable for a progress bar. Consider a window of size n = 6 and
a recent history of a�empts 1, 1, 0, 1, 0 (θk = 0.6). If the learner
answers correctly, the recent history becomes 1, 0, 1, 0, 1 and the
moving average remains the same (θk+1 = 0.6), i.e., the progress
bar does not improve a�er the correct answers.
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A natural extension, which circumvents this problem, is to use
weighted average and give more weight to recent a�empts, i.e.,
θk =

∑k
i=1wi · ck−i/

∑k
i=1wi , where wi is a decreasing function

(this approach is equivalent to the “time decay” approach discussed
in [18] and also closely related to [9]).

2.2.3 ExponentialMoving Average. �e moving average approach
is o�en used speci�cally with exponential weights; this variant is
called exponential moving average (EMA). �is choice of weights
o�en provides good performance [18] and it has the practical ad-
vantage of easy implementation, since it can be easily computed
without the need to store and access the whole history of learners
a�empts.

If we choose the weights to be given by an exponential function
wi = (1−α )α (i−1) , we can compute the exponential moving average
θk a�er k steps as follows:

• initialization: θ0 = 0,
• update: θk = α · θk−1 + (1 − α ) · ck .

�e mastery criterion remains θk ≥ T .

2.3 Methods based on Learner Models
A more sophisticated approach to detecting mastery is based on the
usage of learner models. �ese models estimate learners knowledge
and predict the probability that the next answer will be correct.
�ese models are naturally used with the mastery threshold rule –
mastery is declared once the estimate of knowledge is above a given
threshold. Note that learner models can be used also with more
complex instructional policies, e.g., predictive similarity [23] and
predictive stability [12]. �ese policies deal not just with mastery,
but also with wheel-spinning learners that are unable to master a
topic. In this work, however, we consider only the basic mastery
threshold policy.

2.3.1 Bayesian Knowledge Tracing. Bayesian knowledge tracing
(BKT) [4] assumes a sudden change in knowledge. It is a hidden
Markov model where skill is a binary latent variable (either learned
or unlearned). �e model has 4 parameters: Pi is the probability
that the skill is initially learned, Pl is the probability of learning a
skill in one step, Ps is the probability of incorrect answer when the
skill is learned (slip), and Pд is the probability of correct answer
when the skill is unlearned (guess). Note that BKT can also include
forge�ing; the described version corresponds to the variant of BKT
that is most o�en used in research papers.

�e estimated skill is updated using a Bayes rule based on the
observed answers; the prediction of student response is then done
based on the estimated skill. In the following we use θk and θ ′k
to distinguish prior and posterior probability during the Bayesian
update (θk is the prior probability that the skill is learned before
the k-th a�empt and θ ′k is the posterior probability that the skill is
learned a�er we have taken the k-th answer into account):

θ1 = Pi

θ ′k =




θk (1−Ps )
θk (1−Ps )+(1−θk )Pд if ck = 1

θkPs
θkPs+(1−θk ) (1−Pд ) if ck = 0

θk+1 = θ ′k + (1 − θ ′k )Pl
Pk = Pд · θk + (1 − Ps ) · (1 − θk )

Estimation of model parameters (the tuple Pi , Pl , Ps , Pд ) can be done
using several techniques (the expectation-maximization algorithm,
stochastic gradient descent or exhaustive search).

2.3.2 Logistic Models. Another commonly used class of learner
models are models based on logistic function, e.g., Rasch model, Per-
formance factor analysis [17], or the Elo rating system [18]. �ese
models utilize assumption of a continuous latent skill θ ∈ (−∞,∞)
and for the relation between the skill and the probability of correct
answer use the logistic function σ (x ) = 1

1+e−x (the function can be
easily extended to capture guessing in multiple-choice questions).

A simple technique of this type is Performance factor analysis
(PFA) [17]. �e skill estimate is given by a linear combination of
the initial skill and past successes and failures of a student: Pk =
σ (β +γ ·sk +δ · fk ), where β is the initial skill, sk and fk are counts
of previous successes and failures of the student during the �rst k
a�empts, γ and δ are parameters that determine the change of the
skill associated with a correct and incorrect answer. Parameters
β,γ ,δ can be easily estimated using standard logistic regression.

3 ANALYSIS AND COMPARISON OF
CRITERIA

Now we compare the described mastery criteria under several cir-
cumstances and discuss general methodological issues relevant to
the evaluation of mastery criteria.

3.1 Data
For our analysis we use both real and simulated data, since each of
them has advantages and disadvantages. Real data directly corre-
spond to practical applications. However, the evaluation of mastery
criteria is di�cult, since mastery is a latent construct and we do
not have objective data for its evaluation. With simulated data we
know the ground truth and thus we can perform more thorough
evaluation, but the results are restricted to simpli�ed conditions
and depend on the choice of simulation parameters.

3.1.1 Simulated Data. For generating simulated data we use
both the BKT model and a logistic model. We have selected parametriza-
tions of these models in such a way as to cover a wide range of dif-
ferent learning situations (e.g., high/low prior knowledge, slow/fast
learning, high/low guessing). Table 1 provides description of simu-
lation scenarios used in experiments. In all cases we generate 50
answers for each learner.

�e BKT model is used in its basic form of the model. It can be
used in a straightforward way to generate data and the ground truth
mastery is clearly de�ned by the model. For the logistic model we
consider a simple linear growth of the skill. More speci�cally, for the
initial skill θ0 we assume normally distributed skill θ0 ∼ N (µ,σ 2)
and we consider linear learning θk = θ0 + k · ∆, where ∆ is either
a global parameter or individualized learning parameter. In the
case of individualized ∆ we assume a normal distribution of its
values with a restriction ∆ ≥ 0. As a ground truth mastery for this
model we consider the moment when the simulated learner has
0.95 probability of answering correctly according to the ground
truth parameters.
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Table 1: Speci�cation of models used for generating simu-
lated data. “Bn” are BKT models, “Ln” are logistic models.

Parameters
B1 Pi = 0.15 Pl = 0.35 Ps = 0.18 Pд = 0.25
B2 Pi = 0.25 Pl = 0.08 Ps = 0.12 Pд = 0.3
B3 Pi = 0.1 Pl = 0.2 Ps = 0.1 Pд = 0.15
B4 Pi = 0.1 Pl = 0.3 Ps = 0.4 Pд = 0.05
B5 Pi = 0.05 Pl = 0.1 Ps = 0.06 Pд = 0.2
B6 Pi = 0.1 Pl = 0.05 Ps = 0.1 Pд = 0.5
L1 θ0 ∼ N (−1.0, 1.0) ∆ = 0.4
L2 θ0 ∼ N (−0.4, 2.0) ∆ = 0.1
L3 θ0 ∼ N (−2.0, 2.0) ∆ = 0.15
L4 θ0 ∼ N (0.0, 0.7) ∆ ∼ N (0.15, 0.1)
L5 θ0 ∼ N (−2, 1.3) ∆ ∼ N (0.45, 0.15)
L6 θ0 ∼ N (−0.7, 1.5) ∆ ∼ N (0.6, 0.3)

�e source codes of all experiments with simulated data is avail-
able1.

3.1.2 Real Data. We use real data from two educational systems.
�e �rst is a system for practice of Czech grammar and spelling
(umimecesky.cz). �e system implements mastery learning based
on the exponential moving average method. �e system visualizes
progress using progress bar with highlighted thresholds (mastery
levels) 0.5, 0.8, 0.95, and 0.98. �e main mastery level (used for
example for evaluation of homework within the system) is given
by a threshold 0.95. �e value of α depends on the type of exercise.
For the analysis we use data from the basic grammar exercise with
multiple-choice questions with two options (items of the type “a/an
orange”). For this exercise the system uses α = 0.9. �e data set
consist of over 40 000 answer sequences (each sequence is for a
learner and particular knowledge component).

�e second system is MatMat (matmat.cz) – an adaptive prac-
tice system for basic arithmetic with items of the type “6 × 7” with
free-form answers. �e system implements adaptive behavior even
within a practice of a single knowledge component; items are cho-
sen to be of an appropriate di�culty for a particular learner [21].
�e data set was �ltered to contain only learners with more than
10 answers. �e used data set consist of 330 000 answers from more
than 8 000 learners.

3.2 Evaluation Methods
With simulated data we have the advantage that we know the
ground truth moment of learning. Clearly we want the moment
when mastery is declared to be close to this ground truth, so the
basic metric to optimize is mean absolute deviation between the
ground truth mastery moment and detected mastery moment. �is
metric has been used in previous research [16]. However, in practi-
cal applications there is an asymmetry in errors in mastery decision.
Typically, we are more concerned about under-practice (mastery
declared prematurely) than about over-practice (lag in declared
mastery). �is aspect was also noted in previous work, e.g., [6]
considers ‘ratio of regret of type II to type I decision errors’. To
1https://github.com/adaptive-learning/umap2017-mastery

take this asymmetry into account, we consider weighted mean
absolute deviation (wMAD), where we put w times more weight
to under-practice than to over-practice (we use w = 5 unless state
otherwise).

Analysis of mastery criteria for real data is more di�cult than
for simulated data, because now we cannot analyze the decision
with respect to correct mastery decisions (these are unknown). One
possible approach is to compare the degree of agreement between
di�erent methods. �is analysis cannot tell us which method is bet-
ter, but it shows whether the decision which one to use is actually
important – if mastery decisions by two methods are very similar,
we do not need to ponder which one is be�er and we can use the
simpler one for implementation in a real system. To evaluate the
agreement of two methods, we use Spearman’s correlation coe�-
cient over the mastery moment for individual learners (alternative
methods are also possible, e.g., using Jaccard index over sets of
learners in the mastery state).

Another approach is to measure e�ort (how long it takes to reach
mastery) and score a�er mastery (probability of answering correctly
a�er mastery was declared). �is type of evaluation was used in
previous research [10, 11]. �ese metrics have to be interpreted
carefully due to a�rition biases in data, particularly when the used
system already uses some kind of mastery learning [20].

3.3 Comparison of BKT and NCC
As a �rst experiment we compare the mastery threshold criterion
based on the commonly used BKT model and the simplest mastery
criterion N consecutive correct. We compare these methods over
simulated data generated by a BKT model. Moreover, to avoid the
issue of parameter ��ing, we simply use the optimal ground truth
BKT parameters for detecting mastery, i.e., this is the optimal case
for application of the BKT model.

To make mastery decision we need to choose thresholds: N for
the NCC method and T for BKT. We optimize these parameters for
each simulated scenario. Since we optimize a single parameter, we
use a simple grid search.

�e experiments were performed as follows. We choose BKT pa-
rameters. We generate sequences of 50 answers for 10 000 simulated
learners. We use this training set to �t the thresholds by optimizing
the wMAD metric using the grid search. �en we generate a new
set of 10 000 learners and use this test set for evaluation – compu-
tation of the metric wMAD for both methods and also correlation
of their mastery decisions.

Table 2 shows results of this experiment for di�erent scenarios
from Table 1. �e optimized thresholds are between 0.9 and 0.97 for
BKT and between 2 and 8 for NCC. With respect to wMAD, BKT
is typically be�er, but the di�erence is not large. �e correlation
between mastery decisions is typically very high. From the per-
spective of a student, these results mean that mastery is declared
by both methods at the same or very similar time. Larger di�erence
between BKT and NCC occurs only in the case with a high slip and
a low guess.

�e summary of this experiment is that even in the best case
scenario, where data perfectly correspond to model assumptions,
BKT does not bring signi�cant improvement over the basic mastery
decision criterion.
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Table 2: Comparison of BKT and NCC mastery criteria over
simulated data.

�reshold wMAD
NCC BKT NCC BKT Cor.

B1 2 0.92 2.56 2.42 0.88
B2 4 0.97 6.2 5.76 0.97
B3 2 0.95 2.81 2.48 0.92
B4 1 0.9 2.72 2.13 0.74
B5 4 0.97 3.77 3.62 0.99
B6 8 0.97 11.48 10.33 0.94

3.4 Role of Response Times
In the next experiment we use real data from the MatMat system
and explore the relative importance of the choice of a model and the
choice of input data, speci�cally whether to use learners response
times. In the case of basic arithmetic it makes sense to include
�uency (learners’ speed) as a factor in the mastery decision. Does
it ma�er whether we include response times? How much?

For the choice of a skill estimation model we consider the fol-
lowing two variants:

• �e basic exponential moving average (EMA) method with
α = 0.8.

• A logistic learner model (denoted as M) described in detail
in [21].

�e basic di�erence between these two approaches is that the model
takes into account di�culty of items, whereas the EMA approach
completely ignores item information. �e model thus can be�er
deal with the adaptively collected data (learners are presented items
of di�erent di�culty).

For the choice of input data we consider also two variants:
• Only the basic correctness data, i.e., the response value is

binary (0 or 1).
• Combination of correctness and response times (denoted as
+T ). �e response value for wrong answers remains 0; the
response value for correct answers is linearly decreasing
for response times between 0 and 14 seconds; for longer
times the response value is 0. �e constant 14 is set as a
double of the median response time, i.e., a correct answer
with median response time has the response value 0.5.

We compare four models obtained as combinations along these
two dimensions: EMA, EMA+T, M, M+T. We evaluate agreement
between them to see which model aspects makes larger di�erence.
To analyze mastery decision, it is necessary to choose mastery
thresholds. However, the studied methods di�er in the scales of
their output values, e.g, EMA + T gives smaller values than EMA.
It is therefore not easy to choose thresholds for a fair comparison.
To avoid biasing the results by a choice of speci�c thresholds, we
compare directly orderings of learners by di�erent methods. For
each learner we compute the �nal skill estimate and we evaluate
agreement of methods by the Spearman correlation coe�cient over
these values.

Figure 2 shows correlations of the four studied methods for four
knowledge components from the MatMat system. We see that
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Figure 2: Spearman correlation between di�erent learner
skill estimation methods for di�erent knowledge compo-
nents (Matmat data).

the correlation between EMA and the model approach is typically
higher than correlation between approaches with and without use
of response time. Particularly the variants with timing information
(EMA+T and M+T) are highly correlated. From this analysis we
cannot say which approach is be�er, but we see that the impact of
using response times is larger than the impact of using a learner
model.

3.5 Analysis of the EMA Method
�e reported results and our experience from practical application
within the system for Czech grammar suggest that EMA is a rea-
sonable method for detecting mastery. �erefore, we analyze its
behavior in more detail.

EMA as a mastery criterion has two parameters: the exponential
decay parameter α and the threshold T . By tuning these two pa-
rameters we can obtain di�erent behaviors. Both parameters have
values in the interval (0, 1). Increase in both of these parameters
leads to an increase of the length of practice, for values approaching
1 the increase is very steep.

�e basic nature of this increase is apparent when we analyze
the number of consecutive correct answers that guarantee passing
a threshold for a given α (a su�cient, but not necessary condition):
N ≥ logα (1 −T ). For example for a threshold T = 0.95 we get the
following relation between α and number of a�empts N :

α 0.7 0.75 0.8 0.85 0.9 0.95
N 9 11 14 19 29 59

Note that EMA can also exactly emulate the N consecutive correct
criterion, e.g., when we use α = 0.5 andT = 1−0.5N , ge�ing N con-
secutive correct becomes both su�cient and necessary condition
for passing the threshold.
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Table 3: Comparison ofmastery criteria over simulated data:
NCC, the EMAmethod with �xed α = 0.95, and the full EMA
method.

Parameters wMAD
sc N α95 α T NCC EMA95 EMA
B1 2 0.1 0.7 0.5 2.48 2.48 2.45
B2 4 0.5 0.75 0.75 6.45 6.23 6.07
B3 3 0.3 0.5 0.75 2.66 2.66 2.42
B4 1 0.1 0.2 0.8 2.82 3.47 2.31
B5 4 0.4 0.7 0.75 3.76 3.64 3.59
B6 7 0.7 0.75 0.92 11.04 10.45 10.41
L1 8 0.7 0.9 0.6 3.92 3.34 2.63
L2 17 0.85 0.9 0.9 9.02 8.44 7.64
L3 14 0.85 0.9 0.85 7.39 6.21 5.04
L4 15 0.85 0.8 0.98 10.28 10.7 10.3
L5 8 0.7 0.7 0.95 5.13 4.97 4.97
L6 8 0.7 0.6 0.98 6.67 7.12 6.87

We analyze EMA parameters for simulated data using the same
methodology as in the experiment comparing BTK with NCC. In
this case we use data generated by both BKT and logistic models,
optimizing parameters and thresholds with respect to the wMAD
metric. As a baseline for comparison we use the NCC method.

Table 3 shows results. We see that EMA achieves slightly be�er
performance than NCC, for BKT scenarios the di�erence is typically
small, for scenarios corresponding to slow learning according to the
logistic model assumptions the di�erence can be quite pronounced.
�e optimal EMA parameters vary depending on the scenario –
both α and T .

When we �x the thresholdT = 0.95 and vary only the parameter
α , the quality of mastery decisions (as measured by the wMAD
metric) is typically be�er than for the NCC method, but worse than
when EMA is used with full �exibility.

To explore the impact of the choice of metric, we explored di�er-
ent values of the weight w , which speci�es the relative importance
of under-practice (premature mastery) to over-practice. �e key
factor in�uencing the optimal value of α is the learning scenario,
but the choice of w also has nontrivial impact. For example in the
L6 scenario, the optimal value of α (for �xed threshold 0.95) varies
between 0.52 and 0.73 depending on the weight w .

3.6 E�ort and Score Analysis
Our results suggests that the se�ing of thresholds is a key aspect
of mastery detection. �erefore, we need methods that could be
used to choose threshold values for practical systems – the wMAD
metric used in previous experiments is applicable only to simulated
data for which we know the ground truth. For this purpose we
explore the idea of measuring e�ort and score [10–12] and propose
a visualization using an e�ort-score graph.

We measure e�ort and score metrics as follows: e�ort is the
average number of a�empts needed to reach mastery; score is the
average number of correct answers in k a�empts that follow a�er
reaching mastery (reported experiment uses k = 5, the results are
not sensitive to this choice). Note that there may be learners that
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L6

1
3
5
8
12
18

Figure 3: �e e�ort-score graph for simulated data and the
N consecutive correctmethodwith variable N . �e lines cor-
respond to Ln scenarios from the Table 1.

do not reach mastery or that do not have enough a�empts a�er
mastery was reach. Treatment of these issues (e.g., whether to
use value imputation as in [10]) may in�uence results, particularly
when comparing similar methods. For the presented analysis these
issues are not fundamental.

To analyze the impact of the choice of threshold, we use e�ort-
score graphs. Figure 3 shows this graph for the Ln subset of our
simulated data and the basic NCC mastery criterion. �e curve
shows the trade-o� between e�ort and score. By using higher
mastery thresholds, the score of learners who achieved mastery
improves, but at the cost of higher e�ort. A reasonable choice of
threshold is the point at which the e�ort-score curve starts to level
o�, i.e., where additional e�ort does not bring improvement in
performance. �is is a heuristic approach, but note that it leads to
similar conclusions about the choice of a threshold as experiments
that utilize the ground truth (reported in Table 3).

�e technique can thus be useful for se�ing of thresholds for
real data. Figure 4 shows the e�ort-score graph for data from the
Czech grammar and spelling system. In this case the results are
provided for the EMA method with α = 0.9 and di�erent values of
thresholds (this directly corresponds to the approach used in the
actual implementation). Curves correspond to several knowledge
components of varying di�culty. For easy knowledge components
the score is high even for low thresholds; higher values of threshold
only increase the e�ort, but by acceptable margin. For di�cult
knowledge components, the score levels o� only a�er the threshold
is over 0.95. �e analysis thus suggests that the value 0.95 is a
reasonable compromise.

4 DISCUSSION
We conclude with a discussion of implications of presented results.
We also discuss wider context, simplifying assumptions of our
experiments, and opportunities for future work.
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Figure 4: �e e�ort-score graph for real data and the EMA
method with α = 0.9 and variable thresholds. �e lines cor-
respond to knowledge components of varying di�culty.

4.1 What Matters in Mastery Criteria?
Our results suggest that there is not a fundamental di�erence be-
tween simple mastery criteria (consecutive correct, exponential
moving average) and more complex methods based on the use of
learner modeling techniques. �e important decisions are what
data to use for mastery decision and the choice of thresholds.

�e choice of mastery thresholds involves the trade-o� between
the risk of premature mastery and over-practice. Even small changes
in thresholds can have large impact on learners practice, so se�ing
of this parameter should get signi�cant a�ention in development
of systems utilizing mastery learning. �e choice of thresholds
depends on a particular application, because applications di�er in
the relative costs of premature mastery and over-practice. Gen-
eral research thus cannot provide universal conclusions about the
choice of threshold, but it can provide more detailed guidance for
techniques that can help with the choice of thresholds. As a practi-
cal tool for this choice we propose e�ort-score graphs, which can be
easily constructed from historical data. It would be useful to further
elaborate other techniques described in previous work [7, 10].

4.2 Exponential Moving Average
Our results and previous work [18] suggest that the exponential
moving average method provides a reasonable approach to detect-
ing mastery. �e method has two parameters: the exponential
decay parameter α and the threshold T . Together these two pa-
rameters provide enough freedom so that the method can provide
good mastery decision in di�erent situations (e.g., di�erent speeds
of learning, levels of initial knowledge, presence of guessing).

�e technique is very simple to implement and use for online
decisions. �e technique is also directly applicable for visualization
of progress to learners (typically using some kind of progress bar).
It has an intuitive behavior – an increase in estimated skill a�er a
correct answer, a decrease a�er a wrong answer. Such behavior may
seem trivial and straightforward, but it does not necessarily hold
for alternative methods. For example simple moving average o�en

stays the same a�er a correct answer and some learners models
may even increase skill estimate a�er a wrong answer (because
such behavior �ts training data).

4.3 Role of Learner Models
Our results suggest that learner modeling techniques are not fun-
damental for detecting mastery. However, that does not mean that
they are not useful. Learner models are very useful for obtaining
insights using o�ine analysis of data. One of key assumptions
of our analysis is that we have well-speci�ed knowledge compo-
nents. Learner modeling techniques are useful for discovery and
re�nement of knowledge components and their relations. However,
once this o�ine analysis is done, it may be be�er to use simpler,
more robust methods for online decisions. �is argument is closely
related to Baker’s proposal for “stupid tutoring systems, intelli-
gent humans” [1] – using analytics tools to inform humans and
then implement relatively simple, but well-selected and well-tuned
methods into computer systems.

4.4 Limitations and Future Work
Our analysis uses several simplifying assumptions. Li�ing these
assumptions provides interesting directions for future work.

We assume well-speci�ed, isolated knowledge components of
suitable granularity. In the case of strong relations among knowl-
edge components, the di�erence between learner modeling tech-
niques and simple techniques may be larger, since learner modeling
techniques may utilize information from several knowledge compo-
nents for mastery decision. An interesting issue is the interaction
between level of granularity of knowledge components and the
choice of mastery thresholds.

We do not consider wheel-spinning learners [3] who are unable
to master a knowledge component and instead of continued practice
would bene�t from redirection to one of prerequisite knowledge
components. �is issue has been addressed by policies developed
in previous work [12, 23]. �ese policies have been evaluated for
learner modeling techniques; it may be interesting to explore their
combination with exponential moving average.

We do not consider forge�ing. �is is particularly important
issue in the case of factual knowledge (e.g., foreign language vo-
cabulary), but even in the case of mathematics previous research
have shown that the mastery speed is related to future performance
[25]. Instead of treating mastery as a permanent state, it would
be be�er to treat it as a temporary state that needs reassessment.
An interesting direction is an integration of mastery criteria with
research on spacing e�ects.

Finally, in the presented analysis we ignore potential biases
present in real data, particularly a�rition bias [20]. �is can be po-
tentially an important issue for the analysis of e�ort-score graphs. It
would be useful to develop techniques for detecting and overcoming
such biases in the e�ort-score analysis.
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