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ABSTRACT
A personalized learning system needs a large pool of items
for learners to solve. When working with a large pool of
items, it is useful to measure the similarity of items. We
outline a general approach to measuring the similarity of items
and discuss specific measures for items used in introductory
programming. Evaluation of quality of similarity measures
is difficult. To this end, we propose an evaluation approach
utilizing three levels of abstraction. We illustrate our approach
to measuring similarity and provide evaluation using items
from three diverse programming environments.

INTRODUCTION
A key part of learning is active solving of educational items
(problems, questions, assignments). For high-quality educa-
tion we need large pools of items to solve. Even teachers
in classical education often work with many items. In per-
sonalized computerized educational systems, the need for a
large pool of items is even higher – if we want to provide a
personalized experience for individual learners, we need to be
able to choose from a wide set of items.

To use a large item pool efficiently, we need to be able to
navigate it. For this, it is very useful to be able to measure
the similarity of individual items. How can we measure the
similarity of educational items? From a spectrum of similarity
measures, how do we pick a suitable one? These are the basic
questions that we address in this paper.

Similarity measures have many applications, particularly in
adaptive learning systems. Similarity measure can be very use-
ful for automatic recommendations of activities. If a learner
solved an item, but with a significant effort, it may be useful
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to recommend as a next item another very similar item, so
that the learner can get more practice. On the other hand, if
a learner solved the current item easily, it is more meaning-
ful to recommend dissimilar item. If a learner struggles with
an item, the system may provide as a hint a suitable worked
example (a solution to a similar item) based on the similar-
ity measure. Similarity measure can be used in learner and
domain modeling: based on the similarity between items, we
may define knowledge components and estimate knowledge
of learners. Similarity measures may be also used in the user
interface, e.g., for enabling learners to navigate the item pool
and manually pick an item to solve, or for visualization of the
open learner model.

In addition to the use in automatic adaptation, similarity mea-
sures can be also very useful for empowering humans by
providing useful and actionable insight (see [1] for a general
discussion of this approach). For developers of learning sys-
tem and content creators, similarity measure facilitates the
management of an item pool, e.g., the identification of redun-
dant, duplicate, or missing items. Suitably presented data on
item similarity may be very useful for teachers, instructional
designers, or textbook authors. Such data may be useful for ex-
ample for guiding the choice of items for an exam – typically
we want items in an exam to be similar, but not very similar
to items practiced during learning. Data on item similarity
may provide impulses for the organization of classes, instruc-
tional materials, or creation of other educational resources (e.g,
worked examples). In systems with crowdsourced content cre-
ation, the size of item pool may be very large and similarity
measures may be fundamental for efficient utilization of avail-
able resources.

In most domains, there is no single correct measure of item
similarity. Particularly there may be a difference between
item similarity based on superficial features (a cover story)
and deep features (a principle of solution), which are related
to different perspectives of novices and experts. For some
applications, it may be useful to work with several similarity
measures.



Write a function that outputs divisors of a given number.
def divisors(n):

for i in range(1, n + 1):
if n % i == 0:

print(i, end=" ")
print()

Figure 1. Examples of programming problems with sample solutions
from three programming environments (Python, Robotanist, RoboMis-
sion).

In this work we focus on the study of similarity of program-
ming problems in the context of introductory programming,
specifically for programming exercises in Python and pro-
gramming problems with a robot on a grid, using a simplified
graphical programming language as used for example in pop-
ular Hour of code activities. Figure 1 provides examples of
problems and solutions from the three specific environments
that we use throughout this paper. There are other domains
with complex items, where measuring the similarity of items
may be useful, for example mathematics, physics, or chem-
istry. Introductory programming has the advantage that the
item statements and solutions are more easily processed and
learners’ solutions are also readily available. Progress on a
programming problem is done directly on a computer and
easily stored; as opposed to physics problems, which are still
more naturally solved on a paper. Currently, we focus only on
programming problems, but the general approach is applicable
also to other settings – therefore, we use the general term item
in our discussion.

The general approach to measuring and using similarity of ed-
ucational items is outlined in Figure 2: based on the available
data we compute similarity, which can be utilized in many
ways. Several sources of data can be used for measuring the
similarity:

• an item statement: specification of the item that a learner
should solve, e.g., as a natural language description of the
task or an input-output specification,

• item solutions: in the case of programming a solution to an
item is a program written in a given programming language;
we can use a sample solution provided by the item author
or solutions submitted by learners,

• data about learners’ performance: for example item solving
times, number of attempts needed, or hints taken.

In analyzing and applying similarity it is useful to explicitly
distinguish two matrices, which naturally occur in computa-
tions:

• a feature matrix, in which rows correspond to items and
columns to features of items (e.g., keywords occurring in
an item statement or an item solution),

• an item similarity matrix, which is a square matrix S, where
Si j denotes similarity of items i and j.

Figure 2 shows typical steps in the computation and appli-
cation of similarity. For each step there are many possible
choices for their specific realization. For example, the Arrow I
(computing a similarity matrix from a feature matrix) can be
done using Euclidean distance, Pearson correlation coefficient,
cosine similarity, and many other measures. Similarly, there
are many specific ways how to transform an item solution
into a feature matrix (Arrow B) and many algorithms for per-
forming clustering (Arrow H). Moreover, individual steps are
independent and can be combined.

In this work we focus on measuring similarity, i.e., construct-
ing the item similarity matrix. We do not discuss in detail
different applications, since it is necessary at first to properly
clarify how to compute similarity. Our main contributions are
the following. We provide overview and terminology for the
problem of “measuring the similarity of programming items”
and a systematic mapping of available choices and approaches
to the problem. As opposed to related work, which typically
utilizes only a single setting, we explore and evaluate different
approaches to computing similarity in the context of three
different programming environments (Python programming
and two robot programming environments). We systematically
analyze the role of different choices in the computation in item
similarity, utilizing analysis with three levels of abstraction.

RELATED WORK
The overall approach outlined is Figure 2 is related to the dis-
tinction between pairwise data clustering versus feature vector
clustering, which has been studied in the general machine
learning research [9, 22].

A specific domain in which item similarities and clusters have
been extensively explored are recommender systems, e.g.,
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Figure 2. The general approach to computing and applying item similarity. The arrows that are discussed in more detail in the paper are denoted by
letters and referenced in the text as Arrow X.

in neighborhood-based methods [6], item-item collaborative
filtering [4], and content based techniques [14]. Similarity
measures has been used for clustering of items [17, 18] and
also for clustering of users [23].

In the domain of educational data mining, previous research
explored similarity based on performance data. In [20], au-
thors study similarity of items and focus on comparison of
different similarity measures. In [12], authors study similarity
and clustering of users and provide detailed description of
processing pipelines for computing similarity. Another related
line of research in educational data mining is based on the
concept of a Q-matrix [24, 2]. A Q-matrix can be seen as a
generalization of a clustering; it provides mapping between
items and concepts, one item can belong to several concepts.
The Q-matrix can be constructed or refined based on the per-
formance data [5].

In the context of programming, previous research have stud-
ied similarity of programs for a single programming problem.
This has been done in two different settings. At first, in pla-
giarism detection [13], where the goal is to uncover programs
that have been copied (and slightly obfuscated). At second, in
the analysis of submissions in massive open online courses,
where a single assignment can have a very large number of
submissions. The goal of the analysis in this context is to get
insight into the learning process or multiply instructor leverage
by propagating feedback [19, 16, 25], or to automatically gen-
erate hints or examples based on learners’ submissions [21, 11,
8]. These works often use computation of similarity between
programs as one of the steps, employing techniques like bag-
of-words program representation, analysis of abstract syntax
trees, and tree edit distance. We employ these techniques for
our analysis.

The most closely related work is by Hosseini et al. [10], who
consider specifically the question of similarity of programming

items or items and worked out examples, using introductory
programming problems concerning the Java language. They,
however, use only items of the type “What is the output of
a given program?”, whereas we consider more typical pro-
gramming problems where learners are required to write a
program.

ITEMS IN INTRODUCTORY PROGRAMMING
Throughout the paper we use the general notation of educa-
tional items, since many aspects of our work are generally
applicable. Our focus is, nevertheless, on programming prob-
lems. To further specify the context of our research, we now
describe examples of specific introductory programming envi-
ronments and programming items. These environments and
items are also used in evaluation.

Programming in Python
The standard item in introductory programming is to write a
program implementing a specified functionality in a general
purpose programming language. Examples of such items are
“Write a function that outputs divisors of a given number.”,
“Write a function that outputs ASCII art chessboard of size
N.”, “Write a function that replaces every second letter in a
string by X.”, or “Write a function that outputs frequencies of
letters in a given text.”.

An item statement in this context is given by a natural lan-
guage description of the task (as illustrated above), usually
with some examples of input-output behavior. An item typi-
cally contains also a sample solution, which can be used for
automatic evaluation of learners solutions.

For our analysis we consider programming problems in
Python, which is a typical language used for introduc-
tory programming. We use 28 items from the system
tutor.fi.muni.cz, for these items we have data about
learner performance (time taken to solve the problem). We



also use 72 items for which we have only the item statement –
these items are used in a large university programming class,
but without data collection.

Robot Programming
A less standard, but very popular approach to teaching basic
programming concepts is to use a simplified programming
environment to program robots on a grid. Problems of this
type are often used in the well-known Hour of code activity,
with participation of millions of learners.

An item in this context is given by a specific world, which is
typically a grid with a robot and some obstacles or enemies,
and some restrictions placed on a program, e.g., there is often
a limit on the number of commands, so that the problem
has to be solved using loops instead of long list of simple
commands. Solutions are written in a restricted programming
language, which contains elementary commands for a robot
(move forward, turn, shoot) and basic control flow commands.
The program is often specified using graphical interface, a
common choice today is the Blockly interface [7].

For our analysis we use two environments of this type (il-
lustrated in Figure 1). Robotanist (available at the web
tutor.fi.muni.cz) uses very simple programming com-
mands (arrows for movement, colors for conditions), but the
solution of problems is often nontrivial due to limits on the
number of commands. Solutions thus require careful decom-
position into functions and use of recursion. For this environ-
ment we have 74 items, including data on learners’ perfor-
mance (over 110 thousand problem solving times). RoboMis-
sion (en.robomise.cz) uses a richer world (e.g., meteorites,
worm holes, colors, diamonds) and is programmed in the
Blockly interface using a richer set of commands (movement,
shooting, several types of conditions, repeat and while loops).
For this environment we have 75 items. Data on learners’
performance are available, but are not yet sufficiently large,
therefore we use only the item statement and sample solutions
for our analysis.

COMPUTING SIMILARITY
We structure the discussion of similarity computation into two
steps. At first, we cover the basic processing of input data
to get a feature matrix or a similarity matrix. At second, we
consider transformations of the computed matrices.

In our discussion we use similarity measures (higher values
correspond to higher similarity). Related work sometimes
considers distance (dissimilarity) measures (lower values cor-
respond to higher similarity). This is just a technical issue,
as we can easily transform similarity into dissimilarity by
subtraction.

Processing the Input Data
In this step we need to get from the raw input data to the matrix
form. The details of these steps depend on the type of data and
specifics of the used items – the input data may include natural
language text, programs written in a programming language,
formal description of the robot world, etc.

Item Statement
To compute similarity based on an item statement, it is natural
to go through the feature matrix (Arrow A). The choice of
features depends on the specific type of programming environ-
ment.

For the standard programming items where the item is speci-
fied using a natural language, the features have to be obtained
from this text. A basic technique is to use the bag-of-words
model, i.e., representing the text by a vector with the num-
ber of occurrences of each word (with standard processing,
e.g., lemmatization and omission of stop words). Other fea-
tures may be derived from the input-output specification, e.g.,
features describing types of variables (e.g, integer, string, list).

In the case of robot programming, an item is typically specified
by a robot world description and a set available commands.
Natural language description may be present, but typically
does not contain fundamental information. Basic features thus
correspond to the aspects of the word and the used program-
ming language, e.g., in the RoboMission setting these are word
concepts like diamond, worm hole, meteorite and program-
ming aspects like the limit on the number of commands.

Item Solution
Another approach to measuring similarity of items is to utilize
solutions, i.e., programming codes that solve an item. The
basic approach is to utilize a single solution – either the sam-
ple solution provided by the item author, or the most common
learner solution. Here we have two natural approaches to com-
puting similarity: via feature matrix or by direct computation
of similarities.

With the features approach (Arrow B) we analyze the source
code (typically using traversal of the abstract syntax tree)
to compute features describing occurrence of programming
concepts and keywords like while, if, return, print, or use
of operators. The basic approach is again the bag-of-words
model, only applied to programming keywords instead of
words in a natural language. In this representation we lose
information about the structure of the program – we only retain
the presence of concepts and the frequency of their occurrence.
In addition to features corresponding to keywords, we can
use features like the use of functions, the nested depth, or the
length of a code. In some settings it may also be possible to
use features based on input-output behavior (e.g., type of the
input and output).

The second approach is to compute directly item similarity
matrix (Arrow C) by computing edit distance between the
selected solutions for the two items. The edit distance can be
computed in several ways:

• tree edit distance [3] for the abstract syntax tree, poten-
tially with some specific modifications for programs (in the
specific programming language),

• the basic Levenshtein edit distance for the canonized code,
which is applicable particularly for the robot programming
exercises, where programs can be relatively easily canon-
ized,



• edit distance applied to the sequence of actions performed
(API calls), this is again easily applicable particularly for the
robot programming exercises, which have a clear API; [19]
uses this approach together with the Needleman-Wunsch
global DNA alignment for measuring edit distance.

So far, we have considered only a single solution. Typically,
we have more solutions – programming problems can be
solved in several ways, so it may be useful to have multiple
sample solutions. We can also collect learners’ solutions and
use them for analyzing item similarity. The basic approach to
exploiting multiple solutions is to compute the feature matrix
for each of them and then use a (weighted) average of matri-
ces. There are, however, other possible choices, particularly in
the direct computation of item similarity (Arrow C) based on
edit distance it may make sense to use minimum rather than
average.

Performance Data
Finally, we may use data on performance of learners while
solving items, e.g., the correctness of their solutions, the num-
ber of attempts, problem solving time, or hints taken.

These data can be transformed into features (Arrow D) like
average performance, variance of performance, or ratio of
learners who successfully finish an item. Such features in most
applications will not carry sufficiently diverse information to
compute useful similarity between items, but these features
may be useful as an addition to feature matrix based on an
item statement or solution.

We can, however, compute similarity directly from the per-
formance data (Arrow E): similarity of items i and j is based
on the correlation of performance of learners on items i and j
with respect to a specific performance measure (the correlation
is computed over learners who solved both items i and j). This
approach has been previously thoroughly evaluated in the case
of binary (correctness) performance data [20]. In the case of
programming problems, it is natural to use primarily problem
solving times (rather than correctness).

Data Transformations
Once we compute the item features or basic item similarities,
we can process them using a number of transformations. In
contrast to the above described processing of input data, which
necessarily involves details specific for a particular type of
items, the data transformation steps are rather general – they
can be used for arbitrary feature matrices and are covered by
general machine learning techniques. What may be specific
for programming or for particular input data is the choice of
suitable transformations.

Feature Transformations and Combinations
The basic feature matrix obtained by data processing contains
for each feature raw counts, e.g., the number of occurrences of
a keyword in a sample program. Before computing similarity it
is useful to normalize the values by transforming values in the
feature matrix (Arrow F), i.e., by performing transformations
that take the feature matrix and produce new, modified feature
matrix.

Examples of simple transformations are binarization (very
coarse grained normalization), normalization by dividing by
a maximal value for each feature to get values into the [0,1]
interval, or log transform (to limit the influence of outlier
values). A typical transformation, particularly in the context
of the bag-of-words features, is the TF-IDF (term frequency–
inverse document frequency) transformation.

Often we can obtain several feature matrices (or item similarity
matrices) corresponding to different data sources or multiple
solutions. We can combine these matrices in different ways,
the basic ones being: average (assuming additive influence
of data sources), min (assuming conjunctive influence of data
sources), max (assuming disjunctive influence of data sources).

Computing Similarity
When we compute the similarity matrix based on the feature
matrix (Arrow I) or on its projection into Rn (Arrow M), we
have a vector of real values for each item; the similarity of a
tuple of items is computed as the similarity of their vectors.
This is a common operation in machine learning, with many
choices available. The common choices are cosine similar-
ity, Pearson correlation coefficient, and Euclidean distance
(transformed into similarity measure by subtraction). These
measures are used widely in recommender systems, with the
experience that the choice of suitable measure depends on a
particular data set [6].

The suitable choice of a similarity measure depends also on
the steps used to compute the feature matrix and on the pur-
pose of computing similarity. As an example, consider two
programming problems, where solutions use the same con-
cepts (keywords), but one of the solutions is longer and uses
the keywords multiple times. If we use normalization, the
feature vectors will be (nearly) the same and the items will
end up as very similar for any similarity measure. If we do
not use normalization, the items will end up as very similar
when we use cosine similarity and correlation coefficient, but
as different when we use Euclidean distance. We cannot give
a simple verdict, which one of these is better, since this may
depend on the intended application.

Projections
From feature matrix or item similarity matrix we can compute
projection to Rn (Arrow G and Arrow L). Such projection is
typically used for application, particularly for visualization
of items. It can, however, also be a useful processing step
in the computation of item similarities, for example in the
case of correlated features we can use the principal compo-
nent analysis (PCA) for decorrelating features (Arrow G) and
then compute similarities based on the principal components
(Arrow M).

There are many techniques for computing low dimensional
projections, for feature matrix (Arrow G) the popular choices
include the basic linear PCA and the nonlinear t-SNE [15],
for similarity data (Arrow L) the basic technique is the (non-
metric) multidimensional scaling.



EVALUATION
As the previous section shows, there is a wide number of
techniques that can be used for computation of similarity.
Moreover, individual steps can be combined in many ways.
What is a good approach to computing similarity? Which
decisions matter?

Evaluation of similarity measures is difficult, because there
is no clear criterion of quality of measures. The suitability
of measure depends on a particular way it is used in a spe-
cific application. However, it is very useful to get an insight
into similarity measures in application independent way. To
this end we analyze similarity measures at several levels of
abstraction:

1. Similarity of items for a specific similarity measure. This
allows us to get the basic understanding of what kind of
output we can obtain.

2. Agreement of different measures (across all items). This
allows us to get understanding how much do the choices
made in the computation matter.

3. Analysis of different agreement measures. To measure
agreement between similarity measures we must also
choose some method of quantification (Arrow K). There
are several natural candidates. Does it matter, which one
we choose?

Finally, as an illustration of an application specific evaluation,
we consider evaluation of measures with respect to clustering
of items.

We perform our analysis across different contexts – differ-
ent programming environments and sets of items. We use
the settings described in Section 3, i.e., Python, Robotanist,
RoboMission. This gives us an insight into how the observed
results generalize.

Similarity of Items for a Specific Measure
We start with the basic kind of analysis – exploration of results
obtained using a specific similarity measure; i.e., we pick
a specific way to compute item similarity matrix and then
explore the matrix, its visualization and projection.

Figure 3 shows two similarity matrices for 72 Python pro-
gramming problems. The matrix based on sample problem
solutions is dense – many keywords (e.g., print, for) are
shared by many items. The matrix based on item statements is
sparse – in this case we are using very brief item statements
(typically one sentence), and thus items share words only with
several other items.

Figure 4 shows a projection into a plane of a feature matrix
for items from RoboMission. Features are based on both
item statement and sample solution (bag-of-words), with log
and IDF transformation, and divided by the maximum value.
Because statement features have significantly higher counts,
these transformations are important in order for the projection
to be influenced by both the statement and the solution. With-
out these transformations, items from different levels end up
noticeably more mixed up in the projection.

Figure 3. Item similarity matrices for 72 Python programming prob-
lems. Left: similarity computed using features based on keywords in
problem sample solutions, logarithmic transformation, and correlation.
Right: similarity computed using features based on words in natural
language item statement, TF-IDF transformation, and correlation. Note
that items are ordered by hierarchical clustering and although the ma-
trices show same items, each uses different ordering.

problems 
without loops 
& conditionals

simple while-loops
without nesting

if-statements
with position test

Figure 4. Projection into plane of 86 items from RoboMission via tSNE.
Items are coloured by their manual division into 9 levels, which is cur-
rently used in the production system (the brighter the colour, the more
difficult level – the easiest items are violet, the most difficult yellow). The
projection leads to meaningful groups of items, three of them are high-
lighted.

The usefulness of measures based on the performance data
clearly depends on the size of available data – we need suffi-
ciently large data so that the measures are stable. As a basic
check of stability we split the performance data into two in-
dependent halves, compute the measure for each half, and
then check their agreement. We performed this evaluation for
our Python programming data and the Robotanist problem,
where we have problem solving times available. The resulting
correlation is 0.54 (27 Python problems) and 0.28 (74 Rob-
otanist problems) – high enough to conclude that there is a
significant underlying signal in the performance data (and not
just a random noise), but clearly the size of data is not yet
sufficiently large to provide stable similarity measure for prac-
tical applications. We experimented with restricting the data
to only items which were solved by large number of learners.
When we use items with at least 400 solutions, the measures
are getting stable (correlation over 0.8 in both cases), but we
have data of this size only for about one half of our items.

Agreement between Measures
Our main goals in this paper are related to this level of analysis
– dealing with questions like “What is the relation between dif-



ferent similarity measures?” and “Which steps in the pipeline
are most important?”.

To analyze agreement between two similarity measures, we
first compute the item similarity matrix for of each of them
(obtaining two matrices of the type displayed in Figure 3)
and then compute the agreement as a correlation of values in
these two similarity matrices. For a set of similarity measures,
this gives us a matrix of agreement values, as illustrated in
Figure 5 and Figure 6. These figures are for the RoboMission
environment, but they illustrate trends that we see across all
our data sets.

Similarity measures based on item statement vs. solution are
only weakly related; they focus on different aspects of items
and their similarity (see Figure 5). However, the relationship
can be stronger, if the item statements include more details
or constraints about the solution, such as a set of allowed
programming blocks that the learners can use to build their
solution.
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 solution     log   euclidean

 solution     log correlation
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Figure 5. Agreement between 12 similarity measures for problems in
RoboMission. Bag-of-words features from either problem statement,
sample solution, or both, transformation either log, or log+IDF, simi-
larity function either correlation, or (subtracted) Euclidean distance.

Measures that use the same source of data only in different
ways are typically highly correlated. Figure 6 shows agree-
ment between measures that use sample solutions. Low agree-
ment is only between the binarized bag-of-words features,
which completely ignores the structure of the solution, and
Levenshtein or Edit Tree Distance approaches, which are on
the opposite spectrum of the focus on the structure. Using
a bag-of-words with log-counts (possibly with some feature
weights normalization, such as IDF) is a reasonable compro-
mise. The effect of the choice of a function for computing
similarity from feature matrix (Arrow I) seems to be small –
in Figure 5 we see comparison of correlation and Euclidean
distance.

For measures that combine multiple sources of data, feature
normalization is important to adjust for different scales and
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Figure 6. Agreement between similarity measures that use sample solu-
tions (for problems in RoboMission), ordered from the most structure-
ignoring approach on the top/left (bag-of-words, binarization transfor-
mation, Euclidean distance) to the most structure-based approach on
the bottom/right (Tree Edit Distance).

avoid one source of data being far more important than the
other. This issue can be seen in Figure 5 – without IDF nor-
malization, the measures that use all features are correlated
to those that use item statement, but not to those that use the
solution.

Figure 7 shows relations between measures that utilize differ-
ent types of solutions. Here we use data on Python program-
ming, where learners solutions are available, and compare
measures of similarity based on the sample solution (provided
by the author of the item), the top most common learners’
solutions, and the averages of several top solutions. The mea-
sures based on sample solution and top learner solution have
high overall correlation, but for individual items they may
differ quite significantly – in some cases the sample solution
and top learner solution may be very different as even simple
programming problems like computing factorial can be writ-
ten in widely different ways: using for loop, while loop, or
recursion. When data on learner solutions are available, using
the average of the 3 most common solutions seems to be good,
robust approach.

For the Robotanist and Python programming, where we have
data on learners’ performance, the correlation between mea-
sures based on solution and measures based on performance is
between 0.2 and 0.4. This is a weak agreement, but since the
measures based on performance are not yet stable, even this
weak agreement may indicate a relationship between these
different approaches to measuring similarity. This relationship
needs to be explored for larger data sets.

How to Measure Agreement?
In the previous analysis we used simple correlation to measure
agreement, i.e., to quantify agreement of two similarity matri-
ces, we flatten them into vectors and then compute Pearson’s
correlation coefficient over these vectors. But there are other
choices to measuring agreement. Particularly in applications,
where the intended use of similarity measures is to pick the
closest neighbors (e.g., recommendation of similar exercises),



Figure 7. Agreement between similarity measures that use sample solu-
tion and (multiple) learners’ solutions (for Python programming).

it may be more relevant to measure the agreement of rankings
or agreement on top N positions.

Do the results presented in the previous section depend on our
choice of the approach to measuring agreement? To explore
this question we went with our analysis up one level of ab-
straction. Now we analyze the relationship between different
measures of agreement of similarity measures. Specifically,
we compare measures of agreement based on correlation of
flatten matrices and measures of agreement based on top N po-
sitions. When measuring agreement of two similarity matrices
S1 and S2 with respect to top N positions, we use the following
approach: for each item we find N most similar items with
respect to S1 and S2; we compute the size of intersection of
these two sets; finally, we average over all items and normalize
by N.

Evaluation works in this way: we pick several similarity mea-
sures, for each of them we compute similarity matrix (as in
Figure 3); then for each measure of agreement we compute
the agreement matrix of all the chosen similarity measures
(as in Figure 5); finally, we compare these agreement matri-
ces. Example of this analysis is in Figure 8. There is some
difference between using correlation and “Top 5” measure of
agreement, but this difference should not have large impact on
conclusions about the choice of similarity measures. Note that
for this analysis we use the basic correlation, which is again
an ad hoc choice, but for now we have decided to stop our
analysis here and not to pursue other levels of abstraction.

Impact on Measure Application
Our focus in this paper is on evaluation of different similarity
measures in a general scenario. However, the evaluation can
also target on a specific application for the similarity measure.
In this section, we present an example of such analysis.

In the production system, items in RoboMission are divided
into 9 levels, which were specified manually by the system
developers. We examine how well we are able to reconstruct
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Figure 8. Correlation between methods for evaluating agreement:
RoboMission.

this labeling using different similarity measures. For each
similarity measure, we compute the similarity matrix and then
use k-means clustering for this matrix with k set to 9 (the
number of levels). The obtained clusters are compared with
the manual labeling using the Rand Index.

The results (averaged over 10 runs) are shown in Table 1. As
the manually created levels differ mainly by used program-
ming concepts, such as loops and conditionals, it helps to mul-
tiply solution features to give them higher weight. However,
if the item statements were more important for the division
into levels, then the statement features should have the higher
weights instead. The weights can be even learned to optimize
an objective function for given application, provided there is
enough data to avoid overfitting.

Table 1. Agreement between manual labeling and clusterings obtained
by k-means algorithm for similarity matrices for different similarity
measures. Transformations used with bag-of-words features: log, di-
viding by maximum value, multiplying by IDF, multiplying all solution
features by the factor of 5.

Similarity Measure Rand Index

Bag / log+max+idf+weights / correlation 0.49
Bag / log+max+idf+weights / euclidean 0.39
TED 0.30
Bag / log+max+idf / euclidean 0.29
Bag / bin / euclidean 0.28
Bag / log+max / euclidean 0.28
Bag / bin / correlation 0.27
Levenshtein 0.26
Bag / log+max+idf / correlation 0.26
Bag / log+max / correlation 0.22
Bag / log / euclidean 0.18
Bag / log / correlation 0.14
Bag / no transformation / euclidean 0.11
Bag / no transformation / correlation 0.09

DISCUSSION
We propose a systematic approach to defining and analyzing
item similarity. We discuss the issue specifically in the context
of introductory programming, but the approach is general and
can be applied also for other complex items, e.g., in mathe-
matics of physics.



Systematic Approach to Similarity Measures
Measuring similarity of items is a complex problem, because
it can be tackled in many ways (particularly for complex items
like programming problems) and it is hard to evaluate the
quality of measures. We propose a systematic approach to
studying similarity measures (outlined in Figure 2), which
makes explicit the many choices that we need to make to
specify a similarity measure.

We also propose a systematic approach to analyzing similarity
measures. Without going into details of specific application,
we cannot objectively compare measures. However, it is not
reasonable to do the evaluation only with respect to the fi-
nal application. Consider for example the use of similarity
measures in recommendation of items in an learning system.
Evaluating the quality of recommendations is a complex task
even if we compare just a single version of the recommenda-
tion algorithm to a control group. It is not feasible to evaluate
variants of the recommendation algorithm for many similarity
measures.

We thus need to analyze similarity measures even without con-
sidering specifics of a particular application. Such evaluation
cannot give us verdicts about which measures are good or bad.
But we can evaluate which decisions in the similarity computa-
tions are really important – which computation pipelines lead
to different results. In this way we can narrow the number of
measures that need to be explored for a particular application
from hundreds to few cases.

We propose to perform the evaluation on several levels of
abstraction. All these evaluations lead to results in the form
of a matrix (visualized in the form of heatmap in our figures).
The interpretation of these matrices, however, differs:

1. At the first level, we analyze the similarity of items with
respect to specific measure (Figure 3).

2. At the second level, we analyze agreement between different
similarity measures (Figure 5). Each cell of the matrix is
now computed by comparing two similarity matrices from
the first level of analysis.

3. At the third level, we analyze the impact of agreement
measure (Figure 8). Each cell of the matrix now corresponds
to comparison of two agreement matrices from the second
level of analysis.

Recommendations for Similarity Computation
The suitable choice of a similarity measure depends, of course,
on a particular setting (programming environment, character-
istics of available input data) and the particular application
of the measure. However, it is useful to have a basic default
choice which can serve as a baseline, which can be further
improved.

Based on our explorations, we propose to use the following
steps to compute such a default similarity measure:

1. Use item solutions as input data.

2. Compute feature matrix based on the data using the basic
bag-of-words approach – computing number of occurrences
of natural programming keywords.

3. Normalize the feature matrix, specifically using some vari-
ant of the TF-IDF transformation.

4. Compute item similarity based on the feature matrix using
Euclidean distance of vectors in the normalized feature
matrix.

The aspect that can most importantly change the results of
the computation is the first step – the choice of input data.
We believe that item solutions are good default, because for
introductory programming problems they are basically always
available and the basic bag-of-word analysis can be easily per-
formed in different settings. For performance data to be useful,
it is necessary to collect large data on learner behavior, which
limits their applicability. The form of item statement data can
depend on particular application (e.g., it differs significantly
between our robot programming problems and Python pro-
gramming problems), which makes its use more application
specific.

Limitations and Future Work
A strong and unique aspect of our work is that we performed
our exploration in three different programming environments,
which forced us to approach the computation of similarity
measures in a general way and allowed us to check generality
of the results. A limitation is the size of used item sets – with
respect to real life applications these are still limited. For each
environment we used between 25 and 75 items. For realistic
applications of similarity measures in adaptive systems, a
larger item set would be needed. Although we believe that the
larger item set should not significantly change the results, it
would be useful to explore similarity measures over large data
sets.

We provide analysis of similarity measures mostly in applica-
tion independent way. As argued above, we believe that this is
a necessary step. Based on the results of the current analysis,
it would be useful to analyze selected similarity measures with
respect to specific applications. Specific question that requires
attention is that whether different applications require different
similarity measures, or whether we can use one reasonably
general similarity measure.

In the current work we discuss only flat features – each feature
is treated independently from others and all are treated on the
same level. In programming, however, features are typically
interconnected and can be naturally expressed using taxonomy
or ontology. For example, we can have a feature “binary
operator” with subfeatures addition, multiplication, division,
etc.

In the processing of item statements we may want to distin-
guish superficial similarity (related to the story or general topic
of an item) and intrinsic similarity (related to the way an item
is solved). The basic bag-of-word model that we discussed for
processing item statements would not be able to distinguish
between these. For example in mathematics, word problems
typically contain significant story aspect and the basic use of
bag-of-word model would lead to dominance of the superficial
similarity based on the story. In the programming problems
that we used the story aspects is not used, but in another pro-
gramming settings it may be more relevant. The superficial



similarity may be also useful for applications (e.g., we may
want to present the learner a sequence of problems with a simi-
lar story), but it should be treated separately from the intrinsic
similarity.

REFERENCES
1. Ryan S Baker. 2016. Stupid Tutoring Systems, Intelligent

Humans. International Journal of Artificial Intelligence
in Education 26, 2 (2016), 600–614.

2. T. Barnes. 2005. The q-matrix method: Mining student
response data for knowledge. In Educational Data
Mining Workshop.

3. Philip Bille. 2005. A survey on tree edit distance and
related problems. Theoretical computer science 337, 1
(2005), 217–239.

4. Mukund Deshpande and George Karypis. 2004.
Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS) 22, 1 (2004),
143–177.

5. Michel Desmarais, Behzad Beheshti, and Peng Xu. 2014.
The refinement of a Q-matrix: Assessing methods to
validate tasks to skills mapping. In Proc. of Educational
Data Mining.

6. Christian Desrosiers and George Karypis. 2011. A
comprehensive survey of neighborhood-based
recommendation methods. In Recommender systems
handbook. Springer, 107–144.

7. Neil Fraser. 2015. Ten things we’ve learned from Blockly.
In Blocks and Beyond Workshop (Blocks and Beyond),
2015 IEEE. IEEE, 49–50.

8. Sebastian Gross, Bassam Mokbel, Barbara Hammer, and
Niels Pinkwart. 2014. How to select an example? a
comparison of selection strategies in example-based
learning. In International Conference on Intelligent
Tutoring Systems. Springer, 340–347.

9. Thomas Hofmann and Joachim M Buhmann. 1997.
Pairwise data clustering by deterministic annealing. Ieee
transactions on pattern analysis and machine intelligence
19, 1 (1997), 1–14.

10. Roya Hosseini and Peter Brusilovsky. 2017. A study of
concept-based similarity approaches for recommending
program examples. New Review of Hypermedia and
Multimedia (2017), 1–28.

11. Barry Peddycord Iii, Andrew Hicks, and Tiffany Barnes.
2014. Generating hints for programming problems using
intermediate output. In Educational Data Mining 2014.

12. Tanja Käser, Alberto Giovanni Busetto, Barbara
Solenthaler, Juliane Kohn, Michael von Aster, and
Markus Gross. 2013. Cluster-based prediction of
mathematical learning patterns. In International
Conference on Artificial Intelligence in Education.
Springer, 389–399.

13. Thomas Lancaster and Fintan Culwin. 2004. A
comparison of source code plagiarism detection engines.
Computer Science Education 14, 2 (2004), 101–112.

14. Pasquale Lops, Marco De Gemmis, and Giovanni
Semeraro. 2011. Content-based recommender systems:
State of the art and trends. In Recommender systems
handbook. Springer, 73–105.

15. Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research 9, Nov (2008), 2579–2605.

16. Andy Nguyen, Christopher Piech, Jonathan Huang, and
Leonidas Guibas. 2014. Codewebs: scalable homework
search for massive open online programming courses. In
Proceedings of the 23rd international conference on
World wide web. ACM, 491–502.

17. Mark O’Connor and Jon Herlocker. 1999. Clustering
items for collaborative filtering. In Proc. of the ACM
SIGIR Workshop on Recommender Systems, Vol. 128. UC
Berkeley.

18. Yoon-Joo Park and Alexander Tuzhilin. 2008. The long
tail of recommender systems and how to leverage it. In
Proc. of Recommender systems. ACM, 11–18.

19. Chris Piech, Mehran Sahami, Daphne Koller, Steve
Cooper, and Paulo Blikstein. 2012. Modeling how
students learn to program. In Proceedings of the 43rd
ACM technical symposium on Computer Science
Education. ACM, 153–160.
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