Measuring ltem Similarity in Introductory Programming

Radek Pelanek Tomas Effenberger Matéj Vanék
Masaryk University Masaryk University Masaryk University
Brno, Czech Republic Brno, Czech Republic Brno, Czech Republic

pelanek @fi.muni.cz

Vojtéch Sassmann
Masaryk University
Brno, Czech Republic
445320 @mail.muni.cz

ABSTRACT

A personalized learning system needs a large pool of items
for learners to solve. When working with a large pool of
items, it is useful to measure the similarity of items. We
outline a general approach to measuring the similarity of items
and discuss specific measures for items used in introductory
programming. Evaluation of quality of similarity measures
is difficult. To this end, we propose an evaluation approach
utilizing three levels of abstraction. We illustrate our approach
to measuring similarity and provide evaluation using items
from three diverse programming environments.

INTRODUCTION

A key part of learning is active solving of educational items
(problems, questions, assignments). For high-quality educa-
tion, we need large pools of items to solve. To use a large
item pool efficiently, we need to be able to navigate it. For
this, it is very useful to be able to measure the similarity of
individual items. Similarity measures have many applications,
particularly in adaptive learning systems. They may be used
for automatic recommendations of activities (similarly to the
use of similarity in product recommender systems [1]), for
suggesting similar worked out examples that serve as hints [2],
for improving learner and domain models, or for providing
insight and feedback to teachers, content creators, and tool
developers.

In this work we focus on the study of similarity of program-
ming problems in the context of introductory programming,
specifically for programming exercises in Python and pro-
gramming problems with a robot on a grid, using a simplified
graphical programming language as used for example in pop-
ular Hour of code activities. There are other domains with
complex items, where measuring similarity of items may be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

L@S’18, London

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN .

DOI:

tomas.effenberger @mail.muni.cz

vanekmatej@mail.muni.cz

Dominik Gmiterko
Masaryk University
Brno, Czech Republic
ienze @mail.muni.cz

useful, e.g., mathematics, physics, or chemistry. Introductory
programming has the advantage that the item statements and
solutions are more easily processed and learners’ solutions are
also readily available.

Our main contribution is the proposal of a systematic approach
to studying similarity measures, which explicitly highlights
many choices that we have to make to specify a similarity
measure. This general approach to measuring and using simi-
larity of educational items is outlined in Figure 1: based on the
available data we compute similarity, which can be utilized in
many ways. Several sources of data can be used for measuring
similarity: 1. an item statement: specification of the item that
a learner should solve, e.g., as a natural language description
of the task or an input-output specification, 2. item solutions:
in the case of programming a solution to an item is a program
written in a given programming language; we can use a sample
solution provided by the item author or solutions submitted
by learners, 3. data about learners’ performance: for example
item solving times, number of attempts needed, or hints taken.

In analyzing and applying similarity it is useful to explicitly
distinguish two matrices, which naturally occur in computa-
tions: a feature matrix, in which rows correspond to items and
columns to features of items (e.g., keywords occurring in an
item statement or an item solution), and item similarity matrix,
which is a square matrix S, where S;; denotes similarity of
items i and j. Figure 1 shows typical steps in the computation
and application of similarity. For each step there are many
possible choices for their specific realization. For example, the
Arrow I (computing a similarity matrix from a feature matrix)
can be done using Euclidean distance, Pearson correlation
coefficient, cosine similarity, and many other measures. Simi-
larly, there are many specific ways how to transform an item
solution into a feature matrix (Arrow B) and many algorithms
for performing clustering (Arrow H). Moreover, individual
steps are independent and can be combined.

A similarity measure for a particular application can thus be
specified in many ways. To pick a specific measure, we need
to compare and evaluate measures. We discuss methods for
performing such evaluation, which utilize several levels of
abstraction, and report on experience with several case stud-

input data computed data applications
item ddi
statement V|suaI|zat|on —» adding, removing items
S R" navigation
S projection insight for teachers
£
item | features i) (l\lb
solutions | matrix [@ > cIustermg —» learner and domain
®» © modeling,
E skill estimation
§) item similarity
~ |performance —@’/, matrix
data nearest recommendations
@ neighbors ~ hints

evaluation of
stability,
agreement

Figure 1. The general approach to computing and applying item similarity. The arrows that are discussed in more detail in the paper are denoted by

letters and referenced in the text as Arrow X.

ies with different introductory programming environments
(Python programming and two robot programming environ-
ments).

COMPUTING ITEM SIMILARITY

The standard item in introductory programming is to write a
program implementing a specified functionality in a general-
purpose programming language. Examples of such items are
“Write a function that outputs divisors of a given number.”,
“Write a function that replaces every second letter in a string
by X.”, or “Write a function that outputs frequencies of letters
in a given text.”. An item statement in this context is given by
a natural language description of the task, usually with some
examples of input-output behavior. An item typically con-
tains also a sample solution, which can be used for automatic
evaluation of learners solutions.

A less standard, but very popular approach to teaching basic
programming concepts is to use a simplified programming
environment to program robots on a grid. Problems of this
type are often used in the well-known Hour of code activity,
with the participation of millions of learners. An item in this
context is given by a specific world, which is typically a grid
with a robot and some obstacles or enemies, and some restric-
tions placed on a program, e.g., there is often a limit on the
number of commands, so that the problem has to be solved
using loops instead of long list of simple commands. Solu-
tions are written in a restricted programming language, which
contains elementary commands for a robot (move forward,
turn, shoot) and basic control flow commands. The program
is often specified using graphical interface, a common choice
today is the Blockly interface.

Processing the Input Data

As the first step, we need to get from the raw input data to
the matrix form. To compute similarity based on an item
statement, it is natural to go through the feature matrix (Ar-
row A). The choice of features depends on the specific type
of programming environment. For the standard programming

items where the item is specified using a natural language, the
features have to be obtained from this text. A basic technique
is to use the bag-of-words model, i.e., representing the text by
a vector with the number of occurrences of each word (with
standard processing, e.g., lemmatization and omission of stop
words). Other features may be derived from the input-output
specification, e.g., features describing types of variables (e.g.,
integer, string, list). In the case of robot programming, an item
is typically specified by a robot world description and a set of
available commands; basic features describing the world, e.g.,
size of the world, the presence of obstacles.

Another approach to measuring the similarity of items is to uti-
lize solutions, i.e., programming codes that solve an item. The
basic approach is to utilize a single solution — either the sam-
ple solution provided by the item author or the most common
learner solution. Here we have two natural approaches to com-
puting similarity: via feature matrix or by direct computation
of similarities. With the features approach (Arrow B) we ana-
lyze the source code (typically using traversal of the abstract
syntax tree) to compute features describing the occurrence of
programming concepts and keywords like while, if, return,
print, or use of operators. The basic approach is again the
bag-of-words model, only applied to programming keywords
instead of words in a natural language. In this representation
we lose information about the structure of the program — we
only retain the presence of concepts and the frequency of their
occurrence.

The second approach is to directly compute item similarity
matrix (Arrow C) by computing edit distance between the
selected solutions for the two items. The edit distance can be
computed in several ways, for example tree edit distance for
the abstract syntax tree, potentially with some specific modifi-
cations for programs (in the specific programming language),
or the basic Levenshtein edit distance for the canonized code,
which is applicable particularly for the robot programming
exercises, where programs can be relatively easily canonized.

Performance Data

Finally, we may use data on the performance of learners while
solving items, e.g., the correctness of their solutions, the num-
ber of attempts, problem solving time, or hints taken. These
data can be transformed into features (Arrow D) like average
performance, the variance of performance, or the ratio of learn-
ers who successfully finish an item. Such features in most
applications will not carry sufficiently diverse information to
compute useful similarity between items, but these features
may be useful as an addition to feature matrix based on an
item statement or solution.

We can, however, compute similarity directly from the per-
formance data (Arrow E): similarity of items i and j is based
on the correlation of performance of learners on items i and j
with respect to a specific performance measure (the correlation
is computed over learners who solved both items i and j). This
approach has been previously thoroughly evaluated in the case
of binary (correctness) performance data [4]. In the case of
programming problems, it is natural to use primarily problem
solving times (rather than correctness).

Data Transformations

Once we compute the item features or basic item similarities,
we can process them using a number of transformations. In
contrast to the above-described processing of input data, which
necessarily involves details specific for a particular type of
items, the data transformation steps are rather general — they
can be used for arbitrary feature matrices and are covered
by general machine learning techniques. The feature matrix
may be normalized or transformed (Arrow F) using techniques
like TF-IDF (term frequency—inverse document frequency)
transformation. From feature matrix or item similarity matrix
we can compute a projection to R" (Arrow G and Arrow L).
Such a projection is typically used for applications, particularly
for visualization of items. It can, however, also be a useful
processing step in the computation of item similarities, e.g.,
for decorrelating features.

The computation of the similarity matrix based on the fea-
ture matrix (Arrow I) or its projection into R" (Arrow M) is a
common operation in machine learning, with many choices
available, e.g., cosine similarity, Pearson correlation coef-
ficient, and Euclidean distance (transformed into similarity
measure by subtraction). These measures are used widely in
recommender systems, with the experience that the choice of
a suitable measure depends on a particular data set [1].

EVALUATION AND DISCUSSION

As the previous section shows, there is a wide number of tech-
niques that can be used for computation of similarity. More-
over, individual steps can be combined in many ways. What
is a good approach to computing similarity? Which decisions
matter? These are hard questions since we cannot easily eval-
uate the quality of measures. Without going into details of a
specific application, we cannot objectively compare measures.
However, it is not reasonable to do the evaluation only with
respect to the final application. Consider for example the use
of similarity measures in the recommendation of items in an
learning system. Evaluating the quality of recommendations

is a complex task even if we compare just a single version
of a recommendation algorithm to a control group. It is not
feasible to evaluate variants of a recommendation algorithm
for many similarity measures.

We thus need to analyze similarity measures even without con-
sidering specifics of a particular application. Such evaluation
cannot give us verdicts about which measures are good or bad.
But we can evaluate which decisions in the similarity computa-
tions are really important — which computation pipelines lead
to different results. In this way, we can narrow the number of
measures that need to be explored for a particular application
from hundreds to few cases.

To this end, we propose to analyze similarity measures at
several levels of abstraction:

1. Similarity of items for a specific similarity measure. This
allows us to get the basic understanding of what kind of
output we can obtain.

2. Agreement of different measures (across all items). This

allows us to get understanding how much do the choices
made in the computation matter.

3. Analysis of different agreement measures. To measure

agreement between similarity measures we must also
choose some method of quantification (Arrow K).

Case Studies

We have performed evaluation of similarity measures for sev-
eral introductory programming environments: two Python
programming settings (28 items used in the web system
tutor.fi.muni.cz and 72 items used in a a large univer-
sity programming class), and two two robot programming
environments: Robotanist (74 items, also available at the
web tutor. fi.muni.cz), which uses very simple program-
ming commands (arrows for movement, colors for conditions),
and RoboMission (en.robomise.cz, 75 items), which uses a
richer world (e.g., meteorites, worm holes, colors, diamonds)
and is programmed in the Blockly interface using a richer set
of commands (movement, shooting, several types of condi-
tions, repeat and while loops). Here we present examples of
the analysis for the RoboMission environment and summarize
the main results with the focus on the second level of analysis.
Specific results that support the claims below are available in
the full version of the paper [3].

To analyze agreement between two similarity measures, we
first compute the item similarity matrix for of each of them
and then compute the agreement as a correlation of values in
these two similarity matrices. For a set of similarity measures,
this gives us a matrix of agreement values, as illustrated in
Figure 2. Similarity measures based on item statement vs.
solution are only weakly related, as they focus on different
aspects of items and their similarity. Measures that use the
same source of data only in different ways are typically highly
correlated. Figure 2 shows agreement between measures that
use sample solutions. A low agreement is only between the
binarized bag-of-words approach, which completely ignores
the structure of the solution, and Levenshtein or Tree Edit
Distance approaches, which are on the opposite spectrum of

Bag/bin ! ‘ IO_S
0.84 1 091 0. b J

Bag/log

GELTRERH 0.78 0.91 i
0.0
£} 0.64 0.94 0.87

Levenshtein

TED

Bag/bin

£
]
=
@
e
@
>
[
3

Figure 2. Agreement between similarity measures that use sample solu-
tions (for problems in RoboMission), ordered from the most structure-
ignoring approach on the top/left (bag-of-words, binarization transfor-
mation, Euclidean distance) to the most structure-based approach on
the bottom/right (Tree Edit Distance).

the focus on the structure. Using a bag-of-words with log-
counts (possibly with some feature weights normalization,
such as IDF) is a reasonable compromise. The effect of the
choice of a function for computing similarity from feature
matrix (Arrow I) seems to be small. For measures that combine
multiple sources of data, feature normalization is important
for adjusting different scales and avoiding one source of data
being far more important than the other.

Instead of using the sample solution provided by the instruc-
tor, we can use learners solutions, e.g., the top most common
learners’ solutions or an average of several top solutions. We
evaluated this approach for Python programming. The mea-
sures based on sample solution and top learner solution have
high overall correlation, but for individual items they may
differ quite significantly — in some cases the sample solution
and top learner solution may be very different as even simple
programming problems like computing factorial can be writ-
ten in widely different ways: using for loop, while loop, or
recursion. When data on learner solutions are available, using
the average of the 3 most common solutions seems to be a
robust approach.

For the Robotanist and Python programming, we also explored
item similarity based on learners’ performance (problem solv-
ing times). The correlation between measures based on solu-
tion and measures based on performance is between 0.2 and
0.4. This is a weak agreement, but it turns out that with the
size of our data (in the order of hundreds of solutions per
item) the measures based on performance are not yet stable.
Thus even this weak agreement may indicate a relationship
between these different approaches to measuring similarity.
This relationship needs to be explored for larger data sets.

So far we used simple correlation to measure agreement, i.e., to
quantify agreement of two similarity matrices we flatten them
into vectors and then compute Pearson’s correlation coefficient
over these vectors. But there are other choices to measuring
agreement. Particularly in applications, where the intended use
of similarity measures is to pick the closest neighbors (e.g., a
recommendation of similar exercises), it may be more relevant
to measure the agreement of rankings or agreement on top N
positions. To evaluate the impact of this choice it is useful to

perform analysis on a higher level of abstraction — comparing
results obtained using different measures of agreement. We
have compared the basic correlation agreement with agreement
on the top N positions. Although these are quite different
approaches to measuring agreement of measures, they lead to
very similar results (see full version [3] for details), i.e., it is
not a fundamental decision which one we choose to use for
evaluation.

Basic Recommendations for Similarity Computation

The suitable choice of a similarity measure depends, of course,
on a particular setting (programming environment, character-
istics of available input data) and the particular application
of the measure. However, it is useful to have a basic default
choice which can serve as a baseline, which can be further
improved.

Based on our explorations, we propose to use the following
steps to compute such a default similarity measure: 1. Use
item solutions as input data. 2. Compute feature matrix based
on the data using the basic bag-of-words approach — comput-
ing number of occurrences of natural programming keywords.
3. Normalize the feature matrix, specifically using some vari-
ant of the TF-IDF transformation. 4. Compute item similarity
based on the feature matrix using the Euclidean distance of
vectors in the normalized feature matrix.

The aspect that can most importantly change the results of
the computation is the first step — the choice of input data.
We believe that item solutions are a good default because for
introductory programming problems they are basically always
available and the basic bag-of-word analysis can be easily
performed in different settings. For performance data to be
useful, it is necessary to collect large data on learner behavior,
which limits their applicability. The form of item statement
data can depend on a particular application (e.g., it differs
significantly between our robot programming problems and
Python programming problems), which makes its use more
application specific.

REFERENCES
1. Christian Desrosiers and George Karypis. 2011. A
comprehensive survey of neighborhood-based

recommendation methods. In Recommender systems
handbook. Springer, 107-144.

2. Roya Hosseini and Peter Brusilovsky. 2017. A study of
concept-based similarity approaches for recommending

program examples. New Review of Hypermedia and
Multimedia (2017), 1-28.

3. Radek Peldnek, Tomas Effenberger, Matéj Vanék,
Vojtéch Sassmann, and Dominik Gmiterko. 2018.
Measuring Item Similarity in Introductory Programming:
Python and Robot Programming Case Studies. (2018).
https://www.fi.muni.cz/adaptivelearning/sim-full.pdf
Full version of the paper.

4. Jifi Rihak and Radek Peldnek. 2017. Measuring
Similarity of Educational Items Using Data on Learners’
Performance. In Educational Data Mining. 16-23.

https://www.fi.muni.cz/adaptivelearning/sim-full.pdf

	Introduction
	Computing Item Similarity
	Processing the Input Data
	Performance Data

	Data Transformations

	Evaluation and Discussion
	Case Studies
	Basic Recommendations for Similarity Computation

	References

