
Modeling Students’ Learning and Variability of
Performance in Problem Solving

Petr Jarušek
Masaryk University Brno
xjarusek@fi.muni.cz

Matěj Klusáček
Masaryk University Brno

matej.klusacek@mail.muni.cz

Radek Pelánek
Masaryk University Brno
pelanek@fi.muni.cz

ABSTRACT
Given data about problem solving times, how much can we
automatically learn about students’ and problems’ charac-
teristics? To address this question we extend a previously
proposed model of problem solving times to include variabil-
ity of students’ performance and students’ learning during
sequence of problem solving tasks. We evaluate proposed
models over simulated data and data from a “Problem Solv-
ing Tutor”. The results show that although the models do
not lead to substantially improved predictions, the learnt
parameter values are meaningful and capture useful infor-
mation about students and problems.

1. INTRODUCTION
In intelligent tutoring systems [1, 15] student models typi-
cally focus on correctness of student answers [6], and cor-
respondingly the problems in tutoring systems are designed
mainly with the focus on correctness. This focus is partly
due to historical and technical reasons – the easiest way to
collect and evaluate student responses are multiple choice
questions. Thanks to the advances in technology, however,
it is now relatively easy to create rich interactive problem
solving activities. In such environments it is useful to ana-
lyze not only correctness of students answers, but also timing
information about a solution process.

To attain a clear focus, here we consider only the information
about problem solving times, i.e., we model students perfor-
mance in exercises where the only performance criterium
is time to solve a problem. Examples of such exercises are
logic puzzles (like the well-known Sudoku puzzle) or suitably
formulated programming and mathematics problems [9].

In previous work [8] we described a model which assumes a
linear relationship between a problem solving skill and a log-
arithm of time to solve a problem, i.e., exponential relation
between skill and time. In this work we present extensions
of the model in two directions. The first extension models
variability of performance of individual students. The sec-

ond extension models students’ learning (improvement of
problem solving skill) during a sequence of tasks.

The feasibility of detecting students’ learning and variability
of performance from problem solving data depends on many
factors: how much data are available, what is the noise in
the problem solving times, what is the magnitude of learning
effects, whether students solve problems in the same order.
We use simulated data to identify conditions under which
detection of students’ parameters may be possible.

We also evaluate our models on real data from the Prob-
lem Solving Tutor [7, 9]. With the available data set the
extended models do not bring substantial improvement of
predictions of future problem solving times. Nevertheless,
the experiments show that the fitted parameter values are
reasonably robust and bring useful information about stu-
dents’ learning and variability of their performance.

2. MODELING PROBLEM SOLVING TIMES
We recapitulate the model of problem solving times which
was introduced in [8] and then describe two extensions of
the model and parameter estimation for these models.

2.1 Related Work
The presented models extend our previous work on modeling
problem solving times [8]. The modeling approach is related
to several areas. It is an example of a learner modeling in
intelligent tutoring systems (see [6] for an overview) and
the model is closely related to models used in item response
theory [2]. Both of these areas focus mainly on modeling cor-
rectness of answers (probability that a student will answer
a test item correctly), we focus on modeling timing (prob-
ability distribution of time to solve a problem). Another
related area are recommender systems [10], which are used
mainly in e-commerce to recommend users products that
may be interesting for them. Particularly relevant technique
is collaborative filtering [11], which takes matrix of ratings of
products by users, and predicts future ratings. Our model
is analogical to collaborative filtering when we reinterpret
users as students, products as problems, and ratings as per-
formance (for other similar work see [3, 14]). With respect to
modeling learning, there is an extensive research on learning
curves (e.g., [13, 12]). In the context of intelligent tutoring
systems the most often used approach is Bayesian knowl-
edge tracing [5], which models probability that a student
has learned a particular skill during a sequence of attempts.

2.2 The Basic Model
We assume that we have a set of students S, a set of prob-
lems P , and data about problem solving times: tsp is a
logarithm of time it took student s ∈ S to solve a problem
p ∈ P . In the following we always work with a logarithm of
time and use subscript s to index student parameters and
subscript p to index problem parameters.

We assume that a problem solving performance depends on
one latent problem solving skill θs and two main problem pa-
rameters: a basic difficulty of the problem bp and a discrim-
ination factor ap. The basic structure of the model is simple
– a linear model with Gaussian noise: tsp = bp + apθs + ε.
Basic difficulty b describes expected solving time of a stu-
dent with average skill. Discrimination factor a describes
the slope of the function, i.e., it specifies how the problem
distinguishes between students with different skills. Finally,
ε is a random noise given by a normal distribution with zero
mean and a constant variance (note that the model in [8] as-
sumes problem dependent variance). The presented model
is not yet identified as it suffers from the “indeterminacy of
the scale” (analogically to many IRT models). This is solved
by normalization – we require that the mean of all θs is 0
and the mean of all ap is -1.

2.3 Modeling Variability of Students’ Perfor-
mance

The basic model outlined above assumes constant variance
of the noise. But some students are more consistent in their
performance than others and also problem characteristics
influence the variance of the noise. To incorporate these
factors we propose to model the variance as c2p + σ2

sa
2
p –

a weighted sum of a problem variance c2p and a student
variance σ2

s , where student’s contribution to the variance
depends on the discrimination of the problem. Intuitively,
student’s characteristics matter particularly for more dis-
criminating problems.

Thus now we have three problem parameters a, b, c and two
student parameters θ, σ. The model is the same as before,
only the noise is modeled in more detail:

tsp = bp + apθs +N (0, c2p + a2pσ
2
s)

The model with variance c2p+a2pσ
2
s is equivalent to the follow-

ing approach: “at first determine a student’s local skill for
the attempt (based on his variance σ2) and then determine
the problem solving time with respect to this local skill”:

p(θ′|s) = N (θ′|θs, σ2
s) p(t|θ′, p) = N (t|bp + apθ

′, c2p)

The equivalence of these two definitions is a special case of
a general result for Gaussian distributions (see e.g., [4]).

2.4 Modeling Learning
It is sensible to incorporate learning into the model. The
basic model assumes a fixed problem solving skill, but stu-
dents problem solving skill should improve as they solve
more problems – that is, after all, aim of tutoring systems.
The model extension is inspired by the extensive research on
learning curves (e.g., [13, 12]). A learning curve is a graph
which plots the performance on a task (usually time or error
rate) versus the number of trials. The shape of the learning
curve is in the majority of human activities driven by power

law: T = BN−α (where T is the predicted time, N the
number of trials, α the learning rate and B the performance
at the first trial).

If we take the logarithm of the above mentioned form of
the power law, it can be naturally combined with our basic
model of problem solving times:

tsp = bp + ap(θs + δs · log(ksp)) + ε

where δs is a student’s learning rate and ksp is the order of
the problem p in problem solving sequence of a student s.
In the current analysis of this model we assume constant
variance. Nevertheless, the model can be easily combined
with the more detailed model of the noise presented above.

2.5 Parameter Estimation
We need to estimate model parameters from given data. To
do so we use maximum likelihood estimation and stochastic
gradient descent. As this is rather standard approach (see
e.g., [4]) we focus in the following description only on the
derivation of the error function and the gradient.

We derive the maximum likelihood estimation for the model
with detailed noise (including student and problem vari-
ance). The likelihood of observed times tsp for this model
is:

L =
∏
s,p

N (tsp|bp + apθs, c
2
p + a2pσ

2
s)

To make the derivation more readable, we introduce the fol-
lowing notation: esp = tsp − (bp + apθs) (prediction error
for a student s and a problem p), vsp = c2p + a2pσ

2
s (variance

for a student s and a problem p). Thus we can write the
log-likelihood as:

lnL =
∑
s,p

−
e2sp
2vsp

− 1

2
ln(vsp)−

1

2
ln(2π)

Maximizing the log-likelihood is equivalent to minimizing
the following error function:

E =
∑
s,pEsp where Esp = 1

2
(
e2sp
vsp

+ ln(vsp))

It is intractable to find the minimum analytically, but we can
minimize the function using stochastic gradient descent. To
do so we need to compute a gradient of Esp:

∂Esp

∂ap
=
−espθsvsp−apσ2

se
2
sp

v2sp
+

apσ
2
s

vsp

= − esp
vsp

(θs + apσ
2
s
esp
vsp

) +
apσ

2
s

vsp
∂Esp

∂bp
= − esp

vsp
∂Esp

∂θs
= −ap espvsp

∂Esp

∂c2p
= 1

2
(− e2sp

v2sp
+ 1

vsp
) = − 1

2v2sp
(e2sp − vsp)

∂Esp

∂σ2
s

= 1
2
(−a2 e

2
sp

v2sp
+ a2 1

vsp
) = − a2

2v2sp
(e2sp − vsp)

Note that the obtained expressions have in most cases straight-
forward intuitive interpretation. For example the gradient
with respect to θs is −ap espvsp

, which means that the estima-

tion procedure gives more weight to attempts over problems
which are more discriminating and have smaller variance.

Stochastic gradient descent can find only local minima. How-
ever, by good initialization we can improve the chance of

finding a global optimum. In our case there is a straightfor-
ward way to get a good initial estimate of parameters:
bp = mean of tsp (for the given p);
ap = -1;
θs = mean of bp − tsp (for the given s);
cp = 1

2
of variance of bp − tsp (for the given p);

σs = 1
2

of variance of bp − tsp (for the given s).

If we return to the original simplifying assumption and as-
sume that the variance is constant (independent of a par-
ticular problem and student), then the error function is the
basic sum-of-squares error function and the computation of

gradient simplifies to
∂Esp

∂ap
= −θsesp, ∂Esp

∂bp
= −esp, ∂Esp

∂θs
=

−apesp. Parameter estimation for the model with learning
is analogical.

3. EVALUATION
Now we report on evaluation of the models over simulated
data and real data from the Problem Solving Tutor.

3.1 Simulated Data
The models described in Section 2 can be easily used to
generate simulated data. Even though we have large scale
data about real students, the simulated data are still useful,
because for these data we know “correct answers” and thus
we can thoroughly evaluate the parameter estimation proce-
dure. The results show that the basic difficulty of problems
b and students’ skill θ can be estimated easily even from
relatively few data. Estimating problem discrimination a is
more difficult – to get a good estimate we need data about
at least 30 solvers and even with more data the further im-
provement of the estimates is slow. As could be expected, it
is most difficult to get a reasonable estimate of student and
problem variance. To do so we need data about at least 50
problems and 150 students.

For the model with learning, the possibility of detection of
learning depends on the situation. If the differences in learn-
ing rates are high and noise is low, then it is easy to detect
the learning in the data. If the students’ learning rates are
very similar and noise in data is high, it is impossible to
detect the learning. The feasibility of detection of learning
also depends on the order in which students solve problems.
In many practical cases the ordering in which students solve
problems is very similar. Often students proceed from sim-
pler problems to more difficult ones (this is certainly true
for our data which are used below). If the ordering of prob-
lems for individual students is highly correlated, there is no
way to distinguish between the absolute values of student
learning and intrinsic difficulty of problems. On the other
hand, the ordering of problems does not impact the esti-
mation of relative learning rates (i.e., comparing students’
learning rates).

3.2 Predictions
Next we report on the evaluation of predictions of prob-
lem solving times for data on real students using a Problem
Solving Tutor [7, 9] – a free web-based tutoring system for
practicing problem solving (available at tutor.fi.muni.cz).
The system has more than 10 000 registered students (mainly
university and high school students), who have spent more
then 13 000 hours solving more than 400 000 problems. The

system contains 30 types of problems, particularly computer
science problems (e.g., binary numbers, robot programming,
turtle graphics, introductory C and Python programming,
finite automata), math problems (e.g., functions and graphs,
matching expressions), and logic puzzles (e.g., Sokoban, Nuri-
kabe, Slitherlink). For the experiment we used 8 most solved
problem types from the Problem Solving Tutor, for each
problem we consider only students who solved at least 15
instances of this problem.

We compare model predictions with two simpler ways to pre-
dict problem solving times. At first, we consider the mean
time as a predictor – the simplest reasonable way to pre-
dict solving times (note that, consistently with the rest of
the work, we compute the mean over the logarithm of time
and thus the influence of outliers is limited and the mean is
nearly the same as the median).

At second, we consider a simple ‘personalized’ predictor
t̂sp = mp − δs, where mp is the mean time for a problem
p and δs is a “mean performance of student s with respect
to other solvers”, i.e., δs = (

∑
mp − tsp)/ns, where ns is

the number of problems solved by the student. Note that
this corresponds to the initialization of our basic model (Sec-
tion 2.5); we call it a baseline predictor.

Evaluation of model predictions was done by repeated ran-
dom subsample cross-validation, with 10 repetitions. The
training and testing sets are constructed in the following
way: we choose randomly 30% of students and put the data
of the last 20% of their attempts to the testing set; the re-
maining data forms the training set. Table 1. compares the
results using the root mean square error metric.

The results show that the model provides improvement over
the use of a mean time as a predictor. Most of the im-
provement in prediction is captured by the baseline model;
the basic model brings a slight but consistent improvement.
This improvement is larger for educational problems (e.g.,
Binary numbers) than for logic puzzles (e.g., Tilt maze).

Different variants (basic model with constant variance, indi-
vidual variance, learning) of the model lead to similar pre-
dictions and similar values of RMSE. The model with indi-
vidual variance leads in same cases to improved RMSE, the
model with learning leads to slightly worse results than the
basic model. One possible reason can be the higher number
of parameters which causes slight overfitting. The second
reason may be difference in scale between the parameters
– values of the learning coefficient are typically between 0
and 0.2 while other parameters have wider spread. Thus it
should be possible to improve the results of gradient descent
using different step sizes for each parameter, particularly
smaller step size for the learning parameter δ. Experiments
with the improved algorithm really show statistically signif-
icantly better in results in some cases (e.g., in the case of
Slitherlink, which is a puzzle with many opportunities for
improving performance).

3.3 Analysis of Parameter Values
Even through the more complex models do not lead to sub-
stantially improved predictions, they can still bear interest-
ing information. Predictions are useful for guiding behaviour

Table 1: Quality of predictions for different models and problems measured by root mean square error metric.
Tilt Robot. Binary Region Slith. Sokoban Rush. Nurik.

Mean time predictor 1.045 1.376 1.259 1.37 1.195 1.246 1.077 1.143
Baseline predictor 0.925 1.324 1.174 1.28 0.976 1.037 0.995 1.026
Basic model 0.92 1.301 1.148 1.28 0.948 1.021 0.981 1.025
Model with variance 0.918 1.304 1.161 1.278 0.947 1.016 0.978 1.025
Model with learning 0.948 1.313 1.181 1.322 0.967 1.034 0.993 1.04

Table 2: Spearman’s correlation coefficient for parameter values obtained from two independent halves of
the data.

Tilt Robot. Binary Region Slith. Sokoban Rush. Nurik.
student skill θ 0.748 0.641 0.822 0.472 0.816 0.789 0.737 0.904
student learning rate δ 0.525 0.394 0.623 0.576 0.455 0.394 0.509 0.570
basic problem difficulty b 0.994 0.961 0.951 0.927 0.981 0.963 0.962 0.837
problem discrimination a 0.469 0.564 0.569 0.282 0.533 0.347 0.434 0.195

of the tutoring systems, but small improvement in predic-
tion precision will not change the behaviour of the system
in significant way. The important aim of the more complex
models is to give us additional information about students
and problems, e.g., the student’s learning rate, which can
be used for guiding the behaviour of tutoring system and
for providing feedback to users.

Since the model with learning does not improve predictions,
it may be, however, that the additional parameters overfit
the data and thus do not contain any valuable information.
To test this hypothesis we performed the following experi-
ment: we split the data into two disjoint halves, we use each
half to train one model, and then we compare the parame-
ter values in these two independent models. Specifically, we
measure the Spearman correlation coefficient for values of
each parameter.

Table 2 shows results for the model with learning. The re-
sults show, that estimates of basic difficulty and basic skill
correlate highly, the weakest correlation between the esti-
mates from the two halves is for the discrimination param-
eter. For students’ learning rate, the additional parameter
of the extended model, we get the correlation coefficient be-
tween 0.5 and 0.7 – a significant correlation which signals,
that the fitted parameters contain meaningful values.

We also analyzed correlations among different model param-
eters, e.g., between skill θ and learning rate δ. Generally
there is only weak correlation between parameters, which
shows that the new parameters bring additional informa-
tion.

4. REFERENCES
[1] J. Anderson, C. Boyle, and B. Reiser. Intelligent

tutoring systems. Science, 228(4698):456–462, 1985.

[2] F. Baker. The basics of item response theory.
University of Wisconsin, 2001.

[3] Y. Bergner, S. Droschler, G. Kortemeyer, S. Rayyan,
D. Seaton, and D. Pritchard. Model-based
collaborative filtering analysis of student response
data: Machine-learning item response theory. In
Educational Data Mining, pages 95–102, 2012.

[4] C. Bishop. Pattern recognition and machine learning.

Springer, 2006.

[5] A. Corbett and J. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[6] M. C. Desmarais and R. S. J. de Baker. A review of
recent advances in learner and skill modeling in
intelligent learning environments. User Model.
User-Adapt. Interact., 22(1-2):9–38, 2012.

[7] P. Jarušek and R. Pelánek. Problem response theory
and its application for tutoring. In Educational Data
Mining, pages 374–375, 2011.

[8] P. Jarušek and R. Pelánek. Analysis of a simple model
of problem solving times. In Proc. of Intelligent
Tutoring Systems (ITS), volume 7315 of LNCS, pages
379–388. Springer, 2012.

[9] P. Jarušek and R. Pelánek. A web-based problem
solving tool for introductory computer science. In
Proc. of Innovation and technology in computer
science education, pages 371–371. ACM, 2012.

[10] P. Kantor, F. Ricci, L. Rokach, and B. Shapira.
Recommender systems handbook. Springer, 2010.

[11] Y. Koren and R. Bell. Advances in collaborative
filtering. Recommender Systems Handbook, pages
145–186, 2011.

[12] B. Martin, A. Mitrovic, K. R. Koedinger, and
S. Mathan. Evaluating and improving adaptive
educational systems with learning curves. User
Modeling and User-Adapted Interaction,
21(3):249–283, 2011.

[13] A. Newell and P. Rosenbloom. Mechanisms of skill
acquisition and the law of practice. Cognitive skills
and their acquisition, pages 1–55, 1981.

[14] N. Thai-Nghe, T. Horváth, and L. Schmidt-Thieme.
Factorization models for forecasting student
performance. In Proc. of Educational Data Mining,
pages 11–20, 2011.

[15] K. Vanlehn. The behavior of tutoring systems.
International Journal of Artificial Intelligence in
Education, 16(3):227–265, 2006.

