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ABSTRACT
Personalized educational systems are able to provide learners ques-
tions of speci�ed di�culty. Since learners di�er, the appropriate
level of di�culty may vary and it may be impossible to �nd an
universal se�ing. We implemented a version of an adaptive ed-
ucational system for geography practice that allows learners to
adjust di�culty of questions. We evaluated this feature using a
randomized control experiment. �e overall results show only a
small e�ect of the adjustment. A more detailed analysis, however,
shows that for some groups of learners the e�ect can be important,
although not necessarily advantageous. �e collected data from
the experiment provide insight into how to tune question di�culty
automatically.
ACM Reference format:
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1 INTRODUCTION
User modeling allows us to develop personalized learning environ-
ments that make learning experience tailored towards individual
learners. Using learner modeling techniques [2] we can estimate
probability that a learner can answer a question or solve a problem.
Based on these predictions we can automatically choose items of ap-
propriate di�culty [9]. But what is an appropriate level of di�culty?
�is is typically a parameter that is speci�ed externally by devel-
opers of a learning system. �e choice of this parameter has been
addressed in previous research, but without clear results [4, 5, 8].

A natural idea is to allow learners to manipulate the di�culty of
questions. In addition to be�er tailored system behaviour, previous
research suggests that a sense of control (or even perception of con-
trol, rather than the actual objective level of control) can increase
engagement [6]. On the other hand, research on self-regulated
study [1] shows that people are prone to mismanaging their own
learning. A recent research explored self-adaptation of di�culty in
math practice [3]. �e authors did not �nd any impact of the avail-
ability of di�culty se�ing on learning, engagement, or students’
self-belief. �e study, however, has several limitations, e.g., the
se�ing of an error rate interacted with gami�cation aspects of the
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user interface and the used sample size was small (48 students in
each condition). We present a similar experiment, but for a di�erent
type of knowledge (learning geography facts) and using a large
scale experiment with thousands of users and millions of answers.

2 EXPERIMENT
We use a system for an adaptive practice of geographical facts, e.g.,
names and locations of countries or cities. �e system is available
online at outlinemaps.org. Learners can use the system with dif-
ferent ‘contexts’ (combinations of a map and a type of place, e.g.,
European states) . �e system collects data about the correctness
of answers and based on the collected data it estimates the current
knowledge of a particular learner and personalizes the provided
practice [9]. A key parameter in the adaptive algorithm is “target
di�culty”, which sets the average error rate of learners that the
system is aiming at.

In our experiment we let some learners modify the parameter
based on their preferences. �e practice within the system is pre-
sented in groups of 10 questions; a�er each series of 10 questions
the systems shows a summary feedback to learners. At this moment
we have inserted a new dialog box with a question “How di�cult
would you like the questions to be?” with 5 choices: “much harder”,
“harder”, “same”, “easier”,’ “much easier”. We call answers to these
questions “ratings” (not “se�ings”, because in a placebo condition
they do not have any impact on the algorithm).

We have performed a standard randomized control trial with
three experimental conditions: 1) normal – a control group, a stan-
dard version of the system without the dialog box; 2) placebo – the
dialog is shown, but does not have any impact on the behaviour of
the adaptive algorithm; 3) adjustment – the dialog is shown and the
answer changes the target error rate (+20%, +10%, 0%, -10%, -20%).

In all cases the initial se�ing of the target error rate parameter is
35% (the value is based on results of the previous experiment [8]).
�e experiment was performed from October 2016 to January 2017
and we have collected roughly 8 200 000 answers from 85 000 learn-
ers. To make our research reproducible we make the analyzed data
set available1.

3 RESULTS
At �rst, we analyze ratings provided by users. Mostly, we have
only one rating from a particular learner per context. Majority
of learners do not provide any rating at all. Since the ratings are
provided a�er �nishing a practice set, we assume the main factor
determining a learner’s rating is an error rate achieved during the
recent practice set, therefore we divide all ratings to buckets based

1h�p://data.outlinemaps.org/2016-ab-user-di�culty-adjustment.zip
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Figure 1: Learners’ ratings with respect to the error rate
achieved during the recent practice set. Solid lines stand for
placebo condition, dashed lines stand for adjustment condi-
tion. �e shaded areas shows 95% con�dence intervals.

on the error rate. Figure 1 shows the relation between ratings and
the recent error rate (based on the last 10 questions).

�e basic relation is intuitive – successful learners want more
di�cult questions, unsuccessful learners want easier questions. �e
“appropriate” ratings have the shape of inverted-U curve with the
maximum at the error rate around 35%. �is result is in agreement
with our previous experiments that showed that target error rate
35% is suitable [8].

For high error rates the results are intriguing. As could be ex-
pected the ratio of “bit harder” ratings is very small. Unexpectedly,
highly unsuccessful learners o�en provide “more di�cult” rating.
Although the number of highly unsuccessful learners is relatively
small, this trend is statistically signi�cant and consistent for both
placebo and adjustment conditions. We interpret this trend as pres-
ence of a systematic “irony” in responses of a subgroup of users and
we hypothesize that this behaviour is connected to disengagement
with the system. �is result should serve as a caution – preferences
expressed by learners may re�ect not just their true preferences
with respect to the concerned question, but may also incorporate
other aspects of their (a�ective) state.

�e data also show a relation between ratings and context dif-
�culty. �e percentage of “much harder” ratings increases with
decreasing context di�culty (e.g., European states are easier than
African cities, at least for users of the used system). �is observation
indicates that our algorithm for adaptive practice is not adaptive
enough and there is room for improvement – the algorithm could
take into account the di�culty of a particular context.

�e main point of the experiment is to �nd whether the dynamic
adjustment leads to higher engagement and learning. As a measure
of engagement we use a survival rate – the ratio of learners who
answer at least 100 questions. To compare learning among condi-
tions, we utilize “reference questions” – for each context separately
every tenth question is selected randomly without any in�uence
of the adaptive algorithm and we use data from these questions to
construct learning curves. For more detailed discussion of the used
evaluation approach see [7].

On the global level, we do not see any large di�erences among
conditions (100 question survival rates are: normal 29.1%, placebo

27.5%, adjustment 28.3%). As expected, the engagement for the
placebo condition is worse than for the control group. �e dialog
box asking for learners’ ratings has negative impact on learners’
engagement. For the adjustment condition the negative e�ect of the
dialog is partially compensated by the bene�ts of the di�culty ad-
justment. However, the bene�ts of the di�culty adjustment are not
su�cient to overweight the disadvantage of the additional dialog
box. For learning we also do not have any signi�cant di�erences
in overall learning rates. Since many learners do not provide any
ratings at all, it is not much surprising – most learners in placebo
and adjustment conditions keep the original target error rate and
thus their practice is the same as for the control group.

However, a more detailed analysis shows that for speci�c cases
there are some trends. When we consider 30% easiest contexts (e.g.,
Europe states), the learning is actually worse for the adjustment
condition. It is probably caused by learners’ tendency to set lower
di�culty even on easy contexts (e.g., by externally motivated learn-
ers from schools). Another more detailed analysis disaggregates the
overall results with respect to learners – speci�cally based on their
preference for easy or di�cult questions. �e results are interesting
particularly for the group of learners who prefer easy questions –
for this group the adjustment hampers the speed of learning, but
increases engagement. �e adjustment is clearly bene�cial only for
the group of learners who prefer di�cult questions – for them it
improves the speed of learning without any signi�cant impact on
engagement.

Overall, however, our experiment suggests that instead of giving
learners control over the di�culty se�ing, we should rather develop
be�er methods for automatic adjustment of target di�culty.
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