
Model Classifications and Automated
Verification

Radek Pelánek ?

Department of Information Technologies, Faculty of Informatics
Masaryk University Brno, Czech Republic

xpelanek@fi.muni.cz

Abstract. Due to the significant progress in automated verification,
there are often several techniques for a particular verification problem.
In many circumstances different techniques are complementary — each
technique works well for different type of input instances. Unfortunately,
it is not clear how to choose an appropriate technique for a specific in-
stance of a problem. In this work we argue that this problem, selection of
a technique and tuning its parameter values, should be considered as a
standalone problem (a verification meta-search). We propose several clas-
sifications of models of asynchronous system and discuss applications of
these classifications in the context of explicit finite state model checking.

1 Introduction

One of the main goals of computer aided formal methods is automated verifica-
tion of computer systems. In recent years, very good progress has been achieved
in automating specific verification problems. However, even automated verifica-
tion techniques like model checking are far from being a push-button technology.
With current verification techniques many realistic systems can be automatically
verified, but only if applied to the right level of abstraction of a system and if
suitable verification techniques are used and right parameter values are selected.

The first problem is addressed by automated abstraction refinement tech-
niques and received lot of attention recently (e.g., [1, 9]). The second problem,
however, did not receive much attention so far and there are only few works in
this direction. Ruys and Brinksma [38] describe methodology for model checking
‘in the large’. Sahoo et al. [39] use sampling of the state space to decide which
BDD based reachability technique is the best for a given model. Mony et al. [29]
use expert system for automating proof strategies. Eytani et al. [11] give a high-
level proposal to use an ‘observation database’ for sharing relevant information
among different verification techniques.

Automation of the verification process is necessary for practical applicability
of formal verification. Any self-respecting verification tool has a large number
of options and parameters, which can significantly influence the complexity of
verification. In order to verify any reasonable system, it is necessary to set these
? Partially supported by GA ČR grant no. 201/07/P035.

parameters properly. This can be done only by an expert user and it requires lot
of time. We believe that the research focus should not be only on the development
of new automated techniques, but also on an automated selection of an existing
technique.

1.1 Verification Meta-Search

So far most of the research in automated verification has been focused on ques-
tions of the verification problem: given a system S and a property (or speci-
fication) ϕ, determine whether S satisfies ϕ. This is a search problem — an
algorithm searches for an incorrect behaviour or for a proof. Research has been
focused on solving the problem for different formalisms and optimizing it for the
most useful ones.

We believe that it is worthwhile to consider the following problem as well:
given a system and a property, find a technique T and parameter values p such
that T (p) can provide answer to the verification problem. This can be viewed as
a verification meta-search problem. Let an entity responsible for the verification
meta-search be called a verification manager. The manager has the following
tasks:

1. Decide which approach to the verification should be used, e.g., symbolic
versus explicit approach, whether to use on-the-fly verification or whether
to generate the full state space and then perform verification, etc.

2. Combine relevant information obtained from different techniques, see e.g.,
Synergy approach [18] for combination of over-approximation and testing.

3. Choose among different techniques (implementations) for a particular veri-
fication task and set parameters of a chosen technique.

In this work we focus mainly on the third task of the manager. To give a
practical example of this task, we provide two specific cases. Firstly, consider on-
the-fly memory reduction techniques — the goal of these techniques is to reduce
memory requirements of exhaustive finite state verification. Examples of such
techniques are partial order reduction, symmetry reduction, state compression,
and caching. Each of these techniques has its merits and disadvantages, none of
them is universal (see [32] for an evaluation). Moreover, most of these techniques
have parameters which can tune a time/memory trade-off. Secondly, consider
algorithms for accepting cycle detection on networks of workstations, which are
used for LTL verification of large finite state models. Currently there are at least
five different algorithms, each with specific disadvantages and parameters [2].

At the moment the verification manager is usually a human expert. Expert
can perform this role rather well, however such ‘implementation’ of the verifica-
tion manager is far from automated. There has been attempts to facilitate the
human involvement, e.g., by using special purpose scripting languages [25], but
such an approach automatizes only stereotypical steps during the verification,
not decisions.

2

The problem can be addressed by an expert system, which perform the meta-
search with the use of a set of rules provided by experts. Example of such rules
may be:

– If the model is a mutual exclusion protocol then use explicit model checking
with partial order reduction.

– If state vector is longer then 30 bytes, then use state compression.
– If the state space is expected to contain a large strongly connected com-

ponent, then use cycle detection algorithm X else use cycle detection algo-
rithm Y.

Another option is to employ an adaptive learning system which remembers
characteristics of verification tasks and their results and learns from its own
experiences.

1.2 The Need for Classifications

At this moment, it is not clear what rules should the verification manager use.
But more fundamentally, it is not even clear what criteria should be used in
rules. Whatever is the realization of the manager, the manager needs to make
decision based on some information about an input model. The information used
for this decision should be carefully chosen:

– If the information was too coarse, the manager would not be able to choose
among potentially suitable techniques.

– If the information was too detailed, it would be very hard for the manager
to apply its expertise and experiences.

We believe that an appropriate approach is to develop several categorical
classifications of models and then use these classification for manager’s deci-
sions. To be applicable, it must be possible to determine suitable techniques for
individual classes of the classification. Moreover, it must be possible to deter-
mine a class of a given model without much effort — either automatically by a
fast algorithm or easily by user judgement.

In this work we focus on asynchronous concurrent systems, for the evaluation
we use models from the BEEM set [35]. For asynchronous concurrent systems
one of the most suitable verification techniques is explicit state space explo-
ration. Therefore, we focus not only on analysis of a model structure, but also
on the analysis of state spaces. In this work we propose classifications based on a
model structure (communication mode, process similarity, application domain)
and also classifications based on properties of state spaces (structure of strongly
connected components, shape and local structure of a state space). We study re-
lation of these classifications and discuss how they can be useful for the selection
of suitable techniques and parameters (i.e., for guiding the meta-search).

The restriction to explicit model checking techniques limits the applicability
of our contribution. Note, however, that even for this restricted area, there is a

3

very large number of techniques and optimizations (there are at least 80 research
papers dealing with explicit model checking techniques, see [34] for a list). More-
over, the goal of this work is not to present the ultimate model classification,
but rather to pinpoint a direction, which can be fruitful.

2 Background

Used models. For the evaluation of properties of practically used models we
employ models from the benchmark set BEEM [35]. This set contains large num-
ber of models of asynchronous systems. The set contains classical models studied
in academic literature as well as realistic case studies. Models are provided in
a low-level specification language (communicating finite state machines) and in
Promela [20]. For our study we have used 115 instances obtained by instantiation
of 57 principally different models.

State spaces. For each instance we have generated its state space. We view a
state space as a simple directed graph G = (V, E, v0) with a set of vertices V , a
set of directed edges E ⊆ V × V , and a distinguished initial vertex v0. Vertices
are states of the model, edges represent valid transitions between states. For our
purposes we ignore any labeling of states or edges. We are concerned only with
the reachable part of the state space.

Let us define several parameters of state spaces. We use these parameters
for classifications. We have also studied other parameters (particularly those
reported in [31]), but these parameters do not lead to interesting classification.

An average degree of G is the ratio |E|/|V |. A strongly connected component
(SCC) of G is a maximal set of states C ⊆ V such that for each u, v ∈ C, the
vertex v is reachable from u and vice versa. Let us consider the breadth-first
search (BFS) from the initial vertex v0. A level of the BFS with an index k is
a set of states with distance from v0 equal to k. The BFS height is the largest
index of a non-empty level, BFS width is the maximal size of a BFS level. An
edge (u, v) is a back level edge if v belongs to a level with a lower or the same
index as u. The length of a back level edge is the difference between the indices
of the two levels.

Reduction techniques. In the following, we often mention two semantics based
reduction techniques. Under the notion partial order reduction (POR) we con-
sider all techniques which aim at reducing the number of explored states by
reducing the amount of interleaving in the model, i.e., we denote by this notion
not just the classic partial order reduction technique [16], but also other related
techniques, e.g., confluence reduction [5], simultaneous reachability analysis [30],
transition compression [24]. Symmetry reduction techniques aim at reducing the
number of explored states by considering symmetric states as equivalent, see
e.g. [22].

4

3 State Space Classifications

We consider three classifications based on properties of state spaces. Two of them
are based on “global” properties (structure of SCC and shape), one is based on
“local” features of state spaces.

3.1 Structure of SCC Components

There is an interesting dichotomy with respect to structure of strongly connected
components, particularly concerning the size of the largest SCC (see Fig. 1). A
state space either contains one large SCC, which includes nearly all states, or
there are only small SCCs. Based on this observation, we propose the following
classification:

A type (acyclic): a state space is acyclic, i.e., it contains only trivial components
with one state,

S type (small components): a state space is not acyclic, but contains only small
components; more precisely we consider a state space to be of this type if
the size of the largest component is smaller then 50% states.

B type (big component): a state space contain one large component, most
states are in this component.

In order to apply the classification for automated verification, we need to be
able to detect the class of a model without searching its full state space. This can
be done by random walk exploration [36], for example by the following simple
method based on detection of cycles by random walk. We run 100 independent
random walks through the state space. Each random walk starts at the initial
state and is limited to at most 500 steps. During the walk we store visited states,
i.e., path through the state space. If a state is revisited then a cycle is detected
and its length can be easily computed. At the end, we return the length of the
longest detected cycle. Fig. 1 shows results of this method. For the class A the
longest detected cycle is, of course, always 0. For the class S the longest detected
cycle is usually between 10 and 35, for the class B it is usually above 30. This
illustrates that even such a simple method can be used to quickly classify state
spaces with a reasonable precision.

What are possible applications of this classification? For the A type it is
possible to use specialized algorithms, e.g., dynamic partial order reduction [12]
or bisimulation based reduction [33, p. 43-47]. The sweep line method [8] deletes
from memory states, which will never be visited again. This method is useful
only for models with state spaces of the type A or S.

The performance of cycle detection algorithms1, which are used for LTL
verification, is often dependent on the SCC structure. For example a distributed
1 Note that cycle detection algorithm are usually executed on the product graph with

a formula [42] and not on the state space itself. However, our measurements indicate
that the structure of product graphs is very similar to structure of plain state spaces.
The measurements were performed on product graphs included in the BEEM [35]
set.

5

Size of the largest component (%)

F
re

qu
en

cy

0 20 40 60 80 100

0
10

20
30

40

A B S

0
10

0
20

0
30

0
40

0

Fig. 1. The first graph shows the histogram of sizes of the largest SCC component
in a state space. The second graph shows the longest detected cycle using random
walk; results are grouped according to class and presented using a boxplot method
(lines denote minimum, 25th quartile, median, 75th quartile and maximum, circles are
outliers).

algorithm based on localization of cycles is suitable only for S type state spaces;
depth-first search based algorithm [21] can also be reasonably applied only for S
type state spaces, because for B type state spaces it tends to produce very long
counterexamples, which are not practical. On the other hand, (explicit) one-way-
catch-them-young algorithm [6] has complexity O(nh), where h is height of the
SCC quotient graph, i.e., this algorithm is more suitable for B type state spaces.
Similarly, the classification can be employed for verification of branching time
logics (e.g., the algorithm in [7] does not work well for state spaces consisting of
one SCC).

3.2 Shape of the State Space

We have found that several global state space parameters are to certain extent
related: average degree, BFS height and width, number and length of back level
edges. In this case the division into classes is not so clear as in the previous case.
Nevertheless, it is possible to identify two main classes with respect to these
parameters2:

H type (high): small average degree, large BFS height, small BFS width, few
long back level edges.

W type (wide): large average degree, small BFS height, large BFS width, many
short back level edges.

This classification can be approximated using an initial sample of the BFS
search. The classification can be used in similar way as the previous one. Sweep
2 Note that this classification is not complete partition of all possible state spaces. The

remaining classes, however, do not occur in practice. The same holds for as several
other classifications which we introduce later.

6

Diamond 3-mond Diamond 3x3 FFL

1

2 3

4

1

2 3 4

5 6 7

8

0

1 2

3 4 5

6 7

8

1

2

3

Fig. 2. Illustrations of motifs

line [8] and caching based on transition locality [37] work well only for state
spaces with short back level edges, i.e., these techniques are suitable only for W
type state spaces. On the other hand, the complexity of BFS-based distributed
cycle detection algorithm [3] is proportional to number of back level edges, i.e.,
this algorithm works well only on H type state spaces.

For many techniques the H/W classification can be used to set parameters
appropriately: algorithms which exploit magnetic disk often work with individ-
ual BFS levels [41]; random walk search [36] and bounded search [23] need to
estimate the height of the state space; techniques using stratified caching [15]
and selective storing of states [4] could also take the shape of the state space
into account.

3.3 Local Structure

Now we turn to a local structure of state spaces, particularly to typical sub-
graphs. Recently, so called ‘network motifs’ [28, 27] were intensively studied in
complex networks. Motifs are studied mainly in biological networks and are used
to explain functions of network’s components (e.g., function of individual pro-
teins) and to study evolution of networks.

We have systematically studied motifs in state spaces. We have found the
following motifs to be of specific interest either for abundant presence or for total
absence in many state spaces: diamonds (we have studied several variations of
diamond-like structures, see Fig. 2), which are well known to be present in state
spaces of asynchronous concurrent systems due to the interleaving semantics;
chains of states with just one successor, we have measured occurrences of chains
of length 3, 4, 5; short cycles of lengths 2, 3, 4, 5, which are not very common in
most state spaces; and feed forward loop (see Fig. 2), which is a typical motif for
networks derived from biological systems [28], in state spaces it is rather rare.

We have measured number of occurrences of these motifs and studied cor-
relations of their occurrences. With respect to motifs we propose the following
classes:

D type (diamond): a state space contains many diamonds, usually no short
cycles and only few chains of feed forward loops,

7

Fig. 3. Correlation matrix displaying correlation of 116 state spaces. Light color means
positive correlation, dark color means negative correlation. The first matrix shows
correlation with respect to average degree, BFS height and width, number and length of
back level edges (all parameters are normalized). The second matrix shows correlations
with respect to presence of studied motifs.

C type (chain): a state space contains many chains, very few diamonds or short
cycles,

O type (other): a state space either contains short cycles and/or feed forward
loops, chains are nearly absent, diamonds may be present, but they are not
dominant.

Identification of these classes can be performed by exploration of a small sam-
ple of the state space. This classification can be used to choose among memory
reduction techniques. For D type state spaces it is reasonable to try to employ
POR, whereas for C type state spaces this reduction is unlikely to yield signif-
icant improvement. On the other hand, for C type state spaces good memory
reduction can be obtained by selective storing of states [4]. The classification
can be also used for tuning parameter values, particularly for technique which
employ local search, e.g., random walk enhancements [36, 40], sibling caching
and children lookahead in distributed computation [26], heuristic search.

3.4 Relation among State Space Classifications

Table 1. presents number of models in different combinations of classes. Specific
numbers presented in the table are influenced by the selection of used models.
Nevertheless, it is clear that presented classifications are rather orthogonal, there
is just slight relation between the shape and the local structure.

8

4 Model Classifications

Now we turn to classifications based directly on a model. At first, we study
classifications according to model structure, which are relevant particularly with
respect to reduction techniques based on semantics (e.g., partial order reduction,
symmetry reduction). Secondly, we study models from different application do-
mains and show that each application domain has its characteristics with respect
to presented classifications.

4.1 Model Structure

Classifications based on structure of a model are to some extent dependent on a
specific syntax of the specification language. There are many specification lan-
guages and individual specification languages significantly differ on syntactical
level. However, if we restrict our attention to models of asynchronous systems,
we find that most specification languages share the following features:

– a model is comprised of a set of processes,
– a process can be viewed as a finite state machine extended with variables,
– processes communicate either via channels or via globally shared variables.

We discuss several possible classifications based on these basic features. Cat-
egorization of a model according to these classifications can be determined auto-
matically by static analysis of a model. This issue is dependent on a particular
specification language and it is rather straightforward, therefore, we do not dis-
cuss it in detail.

Communication Mode With respect to communication we can study the
predominant mean of communication (shared variables or channels) and the
communication structure (ring, line, clique, star). It turns out that these two
features are coupled, i.e., with respect to communication we can consider the
following main classes:

DV type (dense, variable): processes communicate via shared variables, the
communication structure is dense, i.e., every process can communicate with
(nearly) every other process,

SC type (sparse, channel): processes communicate via (buffered) channels, the
communication structure is rather sparse, e.g., ring, star, or tree.

N type (none): no communication, i.e., the model is comprised of just one pro-
cess.

This classification is related particularly to partial order reduction tech-
niques. The classification is completely orthogonal to state space classifications
(see Table 1.).

9

Table 1. Relations among classifications. For each combination of classes we state
the number of models in the combination. In total there are 115 classified models, all
models are from the BEEM set [35]. Reported state space classifications are based on
traversal of the full state space.

State space classifications

all H W D O C

all 115 58 57 75 23 17

A 24 10 14 19 3 2
S 37 18 19 21 9 7
B 54 30 24 35 11 8

H 58 43 3 12
W 57 32 20 5

Model classifications

all S2 S1 S0

all 115 41 39 35

DV 44 31 9 4
SC 61 10 30 21
N 10 0 0 10

State space versus model classifications

all A S B H W D O C

all 115 24 37 54 58 57 75 23 17

S2 41 10 9 22 20 21 37 3 1
S1 39 8 17 14 20 19 20 10 9
S0 35 6 11 18 18 17 18 10 7

DV 44 8 12 24 20 24 33 6 5
SC 61 12 22 27 36 25 40 10 11
N 10 4 3 3 2 8 2 7 1

Process Similarity A common feature in models of asynchronous systems is
the occurrence of several similar processes (e.g., several participants in a mu-
tual exclusion protocol, several users of an elevator, several identical nodes in a
communication protocol). By ‘similarity’ we mean that processes are generated
from one template by different instantiations of some parameters, i.e., we do not
consider symmetry in any formal sense (cf. [22]). With respect to similarity, a
reasonable classification is the following:

S2 type All processes are similar.
S1 type There exists some similar processes, but not all of them.
S0 type There is no similarity among processes.

This classification is clearly related to symmetry reduction. It can also be
employed for state compression [19]. This classification is again orthogonal to
state space classifications and only slightly correlated with the communication
mode classification (S1 is related to SC, S2 is related to DV), for details see
Table 1.

Other We briefly mention several other possible classifications and their appli-
cations:

10

Table 2. Relation of state space classification and model type

SCC struct. shape local struct comm. proc. sim.
all A S B H W C D O SC DV N S2 S1 S0

all 115 24 37 57 58 57 17 75 23 61 44 10 41 39 35

com. protocol 24 0 10 14 15 9 5 18 1 24 0 0 0 7 17
controller 17 1 7 9 15 2 3 12 2 12 5 0 0 13 4
leader el. 12 12 0 0 6 6 0 12 0 8 4 0 9 3 0
mutex 28 0 8 20 13 15 0 25 3 2 26 0 28 0 0
sched. 18 9 3 6 4 14 2 5 11 2 6 10 1 5 12
other 16 2 9 5 5 11 7 3 6 13 3 0 3 11 2

– Data/Control intensity of a model (Is a model concerned with data manip-
ulation and arithmetic?); related to abstraction techniques [17, 1, 9], which
focus on reducing the data part of the model.

– Tightly/Loosely coupled processes (What is the proportion of interprocess
and intraprocess computation?); important for thread-modular techniques [13].

– Length of a state vector; relevant particularly for state compression tech-
niques [19].

4.2 Application Domain

Finally, we discuss application domains of asynchronous concurrent systems.
Table 2. presents relations among application domains and previously discussed
classifications. The table demonstrates that models from each application do-
main have specific characteristics. Knowledge of these characteristics can be
helpful for the development of (commercial) verification tools specialized for
a particular application domain. Beside that, characteristics of models can be
used to develop templates and design patterns [14, 10], which can facilitate the
modeling process.

Mutual exclusion algorithms The goal of a mutual exclusion algorithm is to
ensure an exclusive access to a shared resource. Models of these algorithms usu-
ally consist of several nearly identical processes which communicate via shared
variables; communication structure is either clique or ring; individual processes
are usually rather simple. State vectors are relatively short; state space usually
contains one big strongly connected component, with many diamonds. POR and
symmetry reduction may be useful, but careful modeling may be necessary in
order to make them applicable.

Communication protocols The goal of communication protocols is to ensure
communication over an unreliable medium. The core of a model is a sender
process, a receiver process, and a bus/medium; the communication structure is
therefore usually linear (or simple tree). Processes communicate by handshake;
shared variables are not used. Processes are not similar, sender/receiver processes
can be rather complicated. State vectors are rather long; state space is not
acyclic, it is rather high, often with many diamonds. POR is usually applicable.

11

Leader election algorithms The goal of leader election algorithms is to choose
a unique leader from a set of nodes. Models consist of a set of (nearly) identi-
cal processes, which are rather simple. Processes are connected in a ring, tree,
or arbitrary graph; communication is via (buffered) channels. State spaces are
acyclic with diamonds. POR, symmetry reduction, and specialized techniques
for acyclic state spaces [12] may be applicable.

Controllers Models of controllers usually have centralized architecture: a con-
troller process communicates with processes representing individual parts of the
system. The controller process is rather complex, other processes may be sim-
ple. The communication can be both by shared variables and handshake. State
vectors are rather long; state spaces are high, usually with diamonds. Due to the
centralized architecture semantics-based reduction techniques are hard to apply.

Scheduling, planning, puzzles Planning and scheduling problems and puzzles
are not the main application domain of explicit model checkers. Nevertheless,
there are good reasons to consider them together with asynchronous systems
(similar modeling formalism, research in combinations of model checking and
artificial intelligence techniques). Models often consist of just one process. Plan-
ning, scheduling problems have wide state space without prevalence of diamonds
or chains. State spaces are often acyclic.

Other application domains Similar characterizations can be provided for
many other application domains. Examples of other often studied application
domains are cache coherence protocols, device drivers or data containers.

5 Conclusions and Future Work

We argue that it is important not just to develop (narrowly focused) techniques
for automated verification, but also to automatize the verification process, which
is currently usually performed by an expert user. To this end, it is desirable to
have classifications of models. We propose such classifications for asynchronous
systems; these classifications are based on properties of state spaces and on struc-
ture of models. We also discuss examples of applications of these classifications;
particularly the following two types of application:

– indication of suitable techniques to use for verification of the given model,
– setting suitable parameter values for the verification.

In the paper we provide several specific examples of such application; we note
that these are just examples, not a full list of possible applications. The presented
classifications are also not meant to be the final classifications of asynchronous
systems. We suppose that further research will expose the need for other classifi-
cation or for the refinement of presented classification. Moreover, for other appli-
cation domains and verification techniques (e.g., synchronous systems, symbolic
techniques, bounded model checking) it will be probably necessary to develop
completely new classifications. Nevertheless, we believe that our approach can
provide valuable inspiration even for this direction.

12

This work is a part of a long term endeavour. We are continuously developing
the benchmark set BEEM [35]. Using the presented classification, we are working
on experimental evaluation of the relation of classes and performance of differ-
ent techniques. We are also developing techniques for estimation of state space
parameters from samples of a state spaces, such estimations (e.g., the size of a
state space), can be useful for guiding the verification meta-search. Finally, the
long term goal is to develop an automated ‘verification manager’, which would
be able to learn from experience.

References

1. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predi-
cate abstraction of c programs. In Proc. of Programming Language Design and
Implementation (PLDI 2001), pages 203–213. ACM Press, 2001.

2. J. Barnat, L. Brim, and I Cerná. Cluster-based ltl model checking of large systems.
In Proc. of Formal Methods for Components and Objects (FMCO’05), Revised
Lectures, volume 4111 of LNCS, pages 259–279. Springer, 2006.

3. J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model-
checking. In Proc. Automated Software Engineering (ASE 2003), pages 106–115.
IEEE Computer Society, 2003.

4. G. Behrmann, K. G. Larsen, and R. Pelánek. To store or not to store. In Proc. of
Computer Aided Verification (CAV’03), volume 2725 of LNCS. Springer, 2003.

5. S. Blom and J. van de Pol. State space reduction by proving confluence. In Proc.
of Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 596–609,
2002.

6. I. Černá and R. Pelánek. Distributed explicit fair cycle detection. In Proc. SPIN
workshop, volume 2648 of LNCS, pages 49–73. Springer, 2003.

7. A. Cheng, S. Christensen, and K. Mortensen. Model checking coloured petri nets
exploiting strongly connected components. Technical Report DAIMI PB – 519,
Computer Science Department, University of Aarhus, 1997.

8. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In Proc. of Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2001), volume 2031 of LNCS, pages 450–464. Springer, 2001.

9. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. of Computer Aided Verification (CAV 2000),
volume 1855 of LNCS, pages 154–169. Springer, 2000.

10. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. In Proc. Workshop on Formal Methods in Software
Practice, pages 7–15. ACM Press, 1998.

11. Y. Eytani, K. Havelund, S. D. Stoller, and S. Ur. Toward a Framework and Bench-
mark for Testing Tools for Multi-Threaded Programs. Concurrency and Compu-
tation: Practice and Experience, 19(3):267–279, 2007.

12. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proc. of Principles of programming languages (POPL’05), pages 110–
121. ACM Press, 2005.

13. C. Flanagan and S. Qadeer. Thread-modular model checking. In Proc. of SPIN
Workshop, volume 2648 of LNCS, pages 213–224, 2003.

14. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

13

15. J. Geldenhuys. State caching reconsidered. In Proc. of SPIN Workshop, volume
2989 of LNCS, pages 23–39. Springer, 2004.

16. P. Godefroid. Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem, volume 1032 of LNCS. Springer-Verlag,
1996.

17. S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In Proc. of
Computer Aided Verification (CAV ’97), pages 72–83, London, UK, 1997. Springer-
Verlag.

18. B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.
Synergy: a new algorithm for property checking. In Proc. of Foundations of software
engineering, pages 117–127. ACM Press, 2006.

19. G. J. Holzmann. State compression in SPIN: Recursive indexing and compression
training runs. In Proc. of SPIN Workshop, 1997.

20. G. J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

21. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
Proc. SPIN Workshop, pages 23–32. American Mathematical Society, 1996.

22. C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1–2):41–75, 1996.

23. P. Krčál. Distributed explicit bounded ltl model checking. In Proc. of Parallel and
Distributed Methods in verifiCation (PDMC’03), volume 89 of ENTCS. Elsevier,
2003.

24. R. P. Kurshan, V. Levin, and Hüsnü Yenigün. Compressing transitions for model
checking. In Proc. of Computer Aided Verification (CAV’02), volume 2404 of
LNCS, pages 569–581, 2002.

25. F. Lang. Compositional verification using svl scripts. In Proc. of Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 465–469. Springer, 2002.

26. F. Lerda and W. Visser. Addressing dynamic issues of program model checking.
In Proc. of SPIN Workshop, volume 2057 of LNCS, pages 80–102. Springer, 2001.

27. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Shef-
fer, and U. Alon. Superfamilies of evolved and designed networks. Science,
303(5663):1538–1542, March 2004.

28. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298(5594):824–
827, October 2002.

29. H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann. Scal-
able automated verification via expert-system guided transformations. In Proc. of
Formal Methods in Computer-Aided Design (FMCAD’04), volume 3312 of LNCS,
pages 159–173. Springer, 2004.

30. K. Ozdemir and H. Ural. Protocol validation by simultaneous reachability analysis.
Computer Communications, 20:772–788, 1997.

31. R. Pelánek. Typical structural properties of state spaces. In Proc. of SPIN Work-
shop, volume 2989 of LNCS, pages 5–22. Springer, 2004.

32. R. Pelánek. Evaluation of on-the-fly state space reductions. In Proc. of Mathemat-
ical and Engineering Methods in Computer Science (MEMICS’05), pages 121–127,
2005.

33. R. Pelánek. Reduction and Abstraction Techniques for Model Checking. PhD thesis,
Faculty of Informatics, Masaryk University, Brno, 2006.

14

34. R. Pelánek. Web portal for benchmarking explicit model checkers. Techni-
cal Report FIMU-RS-2006-03, Masaryk University Brno, 2006. Available at
http://anna.fi.muni.cz/models/.

35. R. Pelánek. Beem: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263–267. Springer, 2007.

36. R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing random walk state
space exploration. In Proc. of Formal Methods for Industrial Critical Systems
(FMICS’05), pages 98–105. ACM Press, 2005.

37. G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Exploiting transi-
tion locality in automatic verification of finite state concurrent systems. Software
Tools for Technology Transfer (STTT), 6(4):320–341, 2004.

38. T. C. Ruys and E. Brinksma. Managing the verification trajectory. International
Journal on Software Tools for Technology Transfer (STTT), 4(2):246–259, 2003.

39. D. Sahoo, J. Jain, S. K. Iyer, D. Dill, and E. A. Emerson. Predictive reachability
using a sample-based approach. In Proc. of Correct Hardware Design and Verifi-
cation Methods (CHARME’05), volume 3725 of LNCS, pages 388–392. Springer,
2005.

40. H. Sivaraj and G. Gopalakrishnan. Random walk based heuristic algorithms for
distributed memory model checking. In Proc. of Parallel and Distributed Model
Checking (PDMC’03), volume 89 of ENTCS, 2003.

41. U. Stern and D. L. Dill. Using magnetic disk instead of main memory in the
Murphi verifier. In Proc. of Computer Aided Verification (CAV’98), volume 1427
of LNCS, pages 172–183. Springer, 1998.

42. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In D. Kozen, editor, Proc. of Logic in Computer Science (LICS ’86),
pages 332–344. IEEE Computer Society Press, 1986.

15

