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ABSTRACT
Many different metrics are used to evaluate and compare
performance of student models. The aim of this paper is to
provide an overview of commonly used metrics, to discuss
properties, advantages, and disadvantages of different met-
rics, and to summarize current practice in research papers.
The paper should serve as a starting point for workshop
discussion about the use of metrics in student modeling.

1. INTRODUCTION
A key part of intelligent tutoring systems are models that
estimate the knowledge of students. To compare and im-
prove these models we use metrics that measure quality of
model predictions. Metrics are also used (sometimes implic-
itly) for parameter fitting, since many fitting procedures try
to optimize parameters with respect to some metric.

At the moment there is no standard metric for model eval-
uation and thus researchers have to decide which metric to
use. The choice of metric is an important step in the research
process. Differences in predictions between competing mod-
els are often small and the choice of metric can influence the
results more than the choice of a parameter fitting proce-
dure. Moreover, fitted model parameters are often used in
subsequent steps in educational data mining and thus the
choice of metric can indirectly influence many other aspects
of the research.

However, despite the fact that the choice of metric is im-
portant and that there is no clear consensus on the usage
of performance metrics, the topic gets very little attention
in most research papers. Most authors do not provide any
rationale for their choice of metric. Sometimes it is not even
clear what metric is exactly used, so it may be even difficult
to use the same metric as previous authors. The main aim
of this paper is to give an overview of performance metrics
relevant for evaluation of student models and to explicitly
discuss points that are in most papers omitted.

2. OVERVIEW OF METRICS
To attain clear focus we discuss only models that predict
probability of a correct answer. We assume that we have
data about n answers, numbered i ∈ {1, . . . , n}, correctness
of answers is given by ci ∈ {0, 1}, a student models provides
predictions pi ∈ [0, 1]. A model performance metric is a
function f(~p,~c). Note that the word “metric” is here used
in a sense “any function that is used to make comparisons”,
not in the mathematical sense of a distance function. Since
we are interested in using the metrics for comparison, mono-
tone transformations (square root, logarithm, multiplication
by constant) are inconsequential and are used mainly for
better interpretability (or sometimes rather for traditional
reasons).

2.1 Mean Absolute Error
This basic metric consider the absolute differences between
predictions and answers: MAE = 1

n

∑n
i=1 |ci − pi|. This is

not a suitable performance metric, because it prefers models
which are biased towards the majority results. As a simple
illustration, consider a simulated student which answers cor-
rectly with constant probability 0.7. If we compare differ-
ent constant predictors with respect to this metric, we get
that the best model is the one which predicts probability
of correct answer to be 1. This is clearly not a desirable
result. As this example illustrates, the use of MAE can lead
to rather misleading conclusions. Despite this clear disad-
vantage, MAE is sometimes used for evaluation (although
mostly in combination with other metrics, which reduces
the risk of misleading conclusions in published papers).

2.2 Root Mean Square Error
A similar metric is obtained by using squared values instead

of absolute values: RMSE =
√

1
n

∑n
i=1(ci − pi)2. Note that

from the perspective of model comparison, the important
part is only the sum of square errors (SSE). The square
root in RMSE is traditionally used to get the result in the
same units of as the original “measurements” and thus to
improve interpretability of the resulting number. In the
particular context of student modeling and evaluation of
probabilities, this is not particularly useful, since the result-
ing numbers are hard to interpret anyway. In order to get
better interpretability researchers sometimes use R2 metric:
R2 = 1−

∑n
i=1(ci−pi)2/

∑n
i=1(ci−c̄)2. With respect to com-

parison of models, R2 is equivalent to RMSE since here again
the only model dependent part is the sum of square errors.
In the context of the standard linear regression (where it is



most commonly used) R2 has a nice interpretation as “ex-
plained variability”. In the case of logistic regression (which
is more similar to student models) this interpretation does
not hold and different “pseudo R2” metrics are used (e.g.,
Cox and Snell, McFadden, Nagelkerke). Thus a disadvan-
tage of R2 is that unless the authors are explicit about which
version of R2 they use (usually they are not), a reader cannot
know for sure which metric is reported.

In educational data mining the use of RMSE metric is very
common (it was also used as a metric in KDD Cup 2010
focused on student performance evaluation). In other ar-
eas, particularly in meteorology, mean square error (RMSE
without the square root) is called the Brier score [1]. The
Brier score is often decomposed into additive components
(e.g., reliability and refinement) which provide further in-
sight into the behaviour of the predictor. Moreover, in an
analogy to AUC metric and ROC curve (described below),
this metric can be interpreted as area under Brier curves.
These methods may provide interesting inspirations for stu-
dent modeling.

2.3 Metrics Based on Likelihood
The likelihood of data (the answers) given a model (pre-

dicted probabilities) is L =
∏n

i=1 p
ci
i · (1 − pi)

(1−ci). Since
we are indifferent to monotonic transformations we typically
work with the numerically more stable logarithm of the like-
lihood LL =

∑n
i=1 ci log(pi)+(1−ci) log(1−pi). This metric

can also be interpreted from information theoretic perspec-
tive as measure of data compression provided by a model [4].
The log-likelihood metric can be further extended into met-
rics like Akaike information criterion (AIC) and Bayesian
information criterion (BIC). These metrics penalize large
number of model parameters and thus aim to avoid overfit-
ting. In the context of student modeling it is typically much
better to address the issue of overfitting by cross-validation.
Since AIC and BIC provide a faster way to assess models
than cross-validation, they may be useful as heuristics in
some algorithms (e.g., learning factor analysis), but they
are not serious contenders for proper model comparison.

MAE, RMSE and LL have all the form of “sum of penalties
for individual errors” and differ only in the function which
specifies the penalty. For RMSE and LL values of penalty
functions are quite similar, the main difference is in the in-
terval [0.95, 1], i.e., in cases where the predictor is confident
and wrong. These cases are penalized very prohibitively by
LL, whereas RMSE is relatively benevolent. In fact the LL
metric is unbounded, so single wrong prediction (if it is too
confident) can ruin the performance of a model. This prop-
erty is usually undesirable and an artificial bound is used.
This corresponds to basically forcing a possibility of a slip
and guess behaviour into a model. After this modification
the penalties for RMSE and LL are rather similar. Never-
theless, the LL approach “penalize mainly predictions which
are confident and wrong” is reasonable thus it is rather sur-
prising that this metric is used only marginally in evaluation
of student models (it is used mostly in connection with AIC
or BIC).

2.4 Area Under an ROC Curve
Another popular metric is based on the receiver operating
characteristics (ROC) curve. If we want to classify pre-

dictions into just two discrete classes (correct, incorrect),
we need to select a threshold for the classification. For a
fixed threshold we can compute standard metrics like preci-
sion, recall, and accuracy. If we do not want to use a fixed
threshold, we can use the ROC curve, which summarises the
behaviour of the prediction model over all possible thresh-
olds. The curve has “false positive rate” on x-axis and “true
positive rate” on the y-axis, each point of the curve corre-
sponds to a choice of a threshold. Area under the ROC curve
(AUC) provides a summary performance measure across all
possible thresholds. It is equal to the probability that a
randomly selected correct answer has higher predicted score
than a randomly selected incorrect answer. The area under
the curve can be approximated using a A’ metric, which is
equivalent to the well-studied Wilcoxon statistics [2]. This
connection provides ways to study statistical significance of
results (but requires attention to assumptions of the tests,
e.g., independence).

The ROC curve and AUC metric are successfully used in
many different research areas, but their use is sometimes
also criticised [3], e.g., because the metric summarises per-
formance over all possible thresholds, even over those for
which the classifier would never be used in practice. From
the perspective of student modeling the main reservation
seems to be that this approach focuses on classification and
considers predictions only in relative way – note that if all
predictions are divided by 2, the AUC metric stays the same.

In the context of student modeling we are usually not in-
terested in classification, we are often interested directly in
absolute values of probabilities and we need these values
to be properly calibrated. The probabilities are often com-
pared to a fixed constant (typically 0.95) as an indication of
a mastered skill and the specific value is meant to carry a
certain meaning. Probabilistic estimates can be also used to
guide the behaviour of a system to achieve suitable challenge
for students, e.g., by choosing question of right difficulty or
modifying difficulty by number of options in multiple choice
questions.

Nevertheless, despite this disadvantage, AUC is widely used
for evaluation of student models, often as the only metric.
It seems that in some cases AUC is used as the only metric
for final evaluation, but the parameter fitting procedure uses
(implicitly) different metric (RMSE or LL). Particularly in
cases of brute force fitting this approach seems strange and
should be at least explicitly mentioned.
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