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e recommendations: selection (ranked list) of items
@ explanations: (some) reasons for the choice
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Why explanations?
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Goals of Providing Explanations

Why explanations?
@ transparency, trustworthiness, validity, satisfaction (users
are more likely to use the system)

@ persuasiveness (users are more likely to follow
recommendations)

o effectiveness, efficiency (users can make better/faster
decisions)

@ education (users understand better the behaviour of the
system, may use it in better ways)



Examples of Explanations

@ knowledge-based recommenders
e "“Because you, as a customer, told us that simple
handling of car is important to you, we included a
special sensor system in our offer that will help you park

your car easily.”
e algorithms based on CSP representation



Examples of Explanations

@ knowledge-based recommenders
e "“Because you, as a customer, told us that simple
handling of car is important to you, we included a
special sensor system in our offer that will help you park
your car easily.”
e algorithms based on CSP representation
@ recommendations based on item-similarity
e “Because you watched X we recommend Y"
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Explanations — Collaborative Filtering

Ratings for Sixth Sense, The (1999) by your
Neighbors
Rating Your Neighbors' Ratings
Must See
Tt's OK || || ”I
Fairly
Bad
Awful
Strong
. Weak
DT s Neighhzrs
(very similar)
Click on a bar to see that neighbor's profile!

Figure 4. A screen explaining the recommendation for the movie
“The Sixth Sense.”” Each bar represents a rating of a neighbor.
Upwardly trending bars are positive ratings, while downward trending
ones are negative. The x-axis represents similarity to the user.
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e Why?

@ What type of recommender systems?
e How?

@ Countermeasures?
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Attacks

susceptible to attacks: collaborative filtering

reasons for attack:
@ make the system worse (unusable)

@ influence rating (recommendations) of a particular item
e push attacks — improve rating of “my” items

e nuke attacks — decrease rating of “opponent’s” items



Example

ltems
1 2 3 4 5 6 7
a + - + + +
b - + + - - -
c + - - - -
4 — N N Authentic
profiles
e _ _ _ _ _
P f + - + + + +
3 g - + + - - +
> h + = + + + ? Target
profile
i + - + - -
J + +
k _ — — — — Anack
profiles
! + - + + + -
m - + - - -

Fig. 2 Simplified system database showing authentic user profiles and a number of attack profiles
inserted. In this example, user / is seeking a prediction for item 7, which is the subject of a product
nuke attack.

Robust collaborative recommendation, Burke, O'Mahony, Hurley



Types of Attacks

more knowledge about system — more efficient attack

random attack generate profiles with random values
(preferably with some typical ratings)

average attack effective attack on memory-based systems
(average ratings — many neighbors)

bandwagon attack high rating for “blockbusters”, random
values for others

segment attack insert ratings only for items from specific
segment

special nuke attacks love/hate attack, reverse bandwagon



Prediction Shift
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Fig. 3 Prediction shift (left) and hit ratio (right) for product push attacks mounted against the

user-based collaborative recommendation algorithm. Hit ratio results relate to a 10% attack size.

Robust collaborative recommendation, Burke, O'Mahony, Hurley
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@ more robust techniques: model based techniques,
additional information

@ increasing injection costs: Captcha, limited number of
accounts for single IP address

@ automated attack detection
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Attacks and Educational Systems

@ cheating ~ false rating
example: Problem Solving Tutor, Binary crossword

@ gaming the system — using hints as solutions

can have similar consequences as attacks



Context Aware Recommendations

context:
@ physical — location, time
e environmental — weather, light, sound
@ personal — health, mood, schedule, activity
@ social — who is in room, group activity

@ system — network traffic, status of printers



@ pre- post- filtering
@ model based

o multidimensionality: user x item X time X...
e tensor factorization
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@ tourism, visitor guides

@ museum guides

@ home computing and entertainment
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