Radek Pelanek

(O <@ <=

«=

3

Q>

How would you do it?
@ data

@ computation, algorithms
@ presentation

«O» «Fr «=»

« =

DA

Notes

on Lecture

the most technical lecture of the course

includes some “math with many indices”, but typically
with intuitive interpretation

use of standard machine learning techniques, which are
briefly described

projects: at least basic versions of the presented
algorithms (when relevant)

-

Collaborative: "Tell me what's popular
— among my peers"

User profile & emyp

contextual prameters &

% itemn | score

c ity data - T

ommuni a i2 1

* ’ i3 03
Recommendation Recommendation
component list

Recommender Systems: An Introduction (slides)

=

DA

@ simplifying assumption: users with similar taste in past
will have similar taste in future

@ requires only matrix of ratings
= applicable in many domains

@ widely used in practice

u}

8]
it
it

DA

@ input: matrix of user-item ratings (with missing values,
often very sparse)

@ output: predictions for missing values

«O» «Fr «=»

« =

DA

@ Netflix — video rental company

@ contest: 10% improvement of the quality of
recommendations

@ prize: 1 million dollars

@ data: user ID, movie ID, time, rating

«O>» «Fr «=)r « =)

DA

Let us start with something simple:

non-personalized recommendations
How?

« =

DA

Non-personalized Recommendations

“most popular items”
@ compute average rating for each item
@ recommend items with highest averages

o (filter those already known to user)

problems?

Non-personalized Predictions

“averages”, issues:

@ uncertainty, size of data
e average 5 from 3 ratings
e average 4.9 from 100 ratings

@ bias, normalization
e some users give systematically higher ratings
e ratings not distributed uniformly
o (specific example in later lecture)

= even a simple idea like “most popular items” is not that
simple to realize properly

Exploitation vs Exploration

@ “pure exploitation” — always recommend “top items”

@ what if some other item is actually better, rating is poorer
just due to noise?

@ “exploration” — presenting items to get more data

@ how to balance exploration and exploitation?

e too much exploitation: we may omit some very good
items
e too much exploration: we present poor items needlessly

Multi-armed Bandit

standard model for exploitation vs exploration
arm = (unknown) probabilistic reward
how to choose arms to maximize reward?

well-studied, many algorithms (e.g., upper confidence
bounds)

related to reinforcement learning

@ typical application: online advertisements

Core ldea

do not use just “averages”
quantify uncertainty (e.g., standard deviation)

combine average & uncertainty for decisions

example: TrueSkill, ranking of players (leaderboard)

systematic approach: Bayesian statistics

pragmatic approach: U(n) ~ % roulette wheel selection,

now we want to make recommendations:

@ personalized: based on the user’'s previous rankings

@ collaborative filtering: using other user’s rankings

4O «F»r « =

Er» «E»

DA

@ memory based

e find “similar” users/items, use them for prediction
e nearest neighbors (user, item)
@ model based

o model “taste” of users and “features” of items
o latent factors

o matrix factorization

<O < Fr <=

« =)

DA

Neighborhood Methods: lllustration

Figure 1. The user-oriented neighborhood method. Joe likes the three
movies on the left. To make a prediction for him, the system finds similar
users who also liked those movies, and then determines which other movies
they liked. In this case, all three liked Saving Private Ryan, so that is the first
recommendation. Two of them liked Dune, so that is next, and so on.

Matrix factorization techniques for recommender systems

Latent Factors: lllustration

Serious

IBraveheart
The Color Purple I Amadeus %

Lethal Weapon

Geated Ocearrs 11 Geared
toward 3 toward
females males

Escapist

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Matrix factorization techniques for recommender systems

Latent Factors: Netflix Data

15 "
& &
& & &
& 200 &8 & o
& S &
1wk X & S E
S Sang® &
SR A RN A
S SRS &
N & &
£
05 | & & &
& & ¥ & &
Eid &
& e - o
o N I\ S &
g &s\“;@“ & it @“&
g <& & &
5 &, S
bl S O
=05 é'\ &\‘@ ’\\&\\\Q@.@'
SE s o S0
ST B
N e 5% 60
10 & ¥ & SO o
-0) O
S -§‘QN
&
sl ol 1 1 1 1]
-15 -10 -05 0.0 05 10
Factor vector 1

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Matrix factorization techniques for recommender systems

@ explicit

e e.g., “stars” (1 to 5 Likert scale)

e issues: users may not be willing to rate = data sparsity
e implicit

e “proxy’ data for quality rating

o clicks, page views, time on page

the following applies directly to explicit ratings, modifications
may be needed for implicit (or their combination)

«O» «Fr «=»

« =

DA

Note on Improving Performance

@ simple predictors often ["—~Random

1 —Average
provide reasonable Gl
performance | —Pettect |

o further improvements
often small

RMSE

@ but can have significant
impact on behavior
(not easy to evaluate)

@ = evaluation lecture

Introduction to Recommender Systems, Xavier Amatriain

User-based Nearest Neighbor CF

user Alice:
@ item / not rated by Alice:

e find “similar” users to Alice who have rated i
e compute average to predict rating by Alice

@ recommend items with highest predicted rating

User-based Nearest Neighbor CF

Some first questions
— How do we measure similarity?
— How many neighbors should we consider?

— How do we generate a prediction from the neighbors' ratings?

e e L L

Alice 5 3 4

Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 1 5 5 2 1

Recommender Systems: An Introduction (slides)

User Similarity

Pearson correlation coefficient (alternatives: Spearman cor.

coef., cosine similarity, ..

)

Alice
Userl
User2
User3
Userd

5
3
4
3
1

U W W R, W

v BN B

N W W A

sim =0,85
sim = 0,00
sim=0,70
sim=-0,79

(S NENT, RO

Recommender Systems: An Introduction (slides)

r

_ X = XY - V)
VL (X = X2/, (v = V2

Test your intuition: https://www.umimematiku.cz/rozhodovacka-korelacni-koeficient-2

DA

https://www.umimematiku.cz/rozhodovacka-korelacni-koeficient-2

r,i — rating of user a, item i
neighbors N = k most similar users

prediction = average of neighbors’ ratings

Ibi
pred(a, i) = —ZbeN b

[N
improvements?

«O> «F

it
it
v

DA

Making Predictions: Naive

r,i — rating of user a, item |

neighbors N = k most similar users
prediction = average of neighbors’ ratings

. Tbi
pred(a, i) = ETETAI

improvements?
@ user bias: consider difference from average rating
(roi — 7b)

@ user similarities: weighted average, weight sim(a, b)

pred(a, i) = Z:beN sim(a, b) - (ro; —)

> pen sim(a, b)
@ 1y —

rating of user a, item /

@ 7,,Tp, — user averages

DA

@ number of co-rated items

@ agreement on more “exotic” items more important

@ case amplification — more weight to very similar neighbors
@ neighbor selection

«O> «Fr o«

it

-
it

v
[y

DA

ltem-based Collaborative Filtering

@ compute similarity between items
@ use this similarity to predict ratings

@ more computationally efficient, often:
number of items << number of users

@ practical advantage (over user-based filtering): feasible to
check results using intuition

ltem-based Nearest Neighbor CF

Recommender Systems: An Introduction (slides)

>

rating by Bob

>

rating by Alice

cos(a) = ﬁ

1Al

u}
8]
it
it

DA

o (adjusted) cosine similarity — similar to Pearson’s r, works
slightly better
°

e SIM(1, p)ryi
pred(u, p) _ ZIER ! (’ p)

ZieR Sim(ia P)
@ neighborhood size limited (20 to 50)

DA

Notes on Similarity Measures

Pearson’s r? (adjusted) cosine similarity? other?

°
@ no fundamental reason for choice of one metric
@ mostly based on practical experiences

°

may depend on application

Preprocessing

e O(N?) calculations — still large

@ original article: /tem-item recommendations by Amazon
(2003)

@ calculate similarities in advance (periodical update)

@ supposed to be stable, item relations not expected to
change quickly

@ reductions (min. number of co-ratings etc)

Practical Note: NaNs and zeros

common student mistake:
@ creating matrix of ratings
@ replacing missing values (NaN) by zeros
@ computing similarity measures (e.g., Pearson r)

@ using similarity measures for recommendations

Where is the mistake? Why is it a problem?

@ main idea: latent factors of users/items
@ use these to predict ratings

@ related to singular value decomposition

«O> «Fr o«

« =

DA

Notes

singular value decomposition (SVD) — theorem in linear
algebra

in CF context the name “SVD" usually used for an
approach only slightly related to SVD theorem

related to “latent semantic analysis” and “embeddings”

introduced during the Netflix prize, in a blog post (Simon
Funk)

http://sifter.org/~simon/journal/20061211.html

http://sifter.org/~simon/journal/20061211.html

Singular Value Decomposition (Linear Algebra)

X =USvT’

e U,V orthogonal matrices

@ S diagonal matrix, diagonal entries ~ singular values

low-rank matrix approximation (use only top k singular values)

X
T11 T12
T21 T2

Tm1
mXn

. U S v
e Hn Uy ... Uiy su 0 .. Vi1 ... Vin
. - E ., . 0 T . E .. .
’ U, u :) v, v,
T m1 mr : Spr 1 rn

T

mXrTr TXn

TXT

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html

X =USsv’

@ X — matrix of ratings
@ U — user-factors strengths
e V — item-factors strengths

@ S — importance of factors

«O>» «Fr «=)r « =)

DA

Latent Factors

Serious

|Braveheart |
[The Color Purple [Amadeus %

e

Lethal Weapon
Sense and -
Geared MI ﬁ | Geared

toward toward
females males
ﬁ ;
., !
Dumb and
] Dumber

Escapist

Figure 2. A simplified illustration of the latent factor approach, which

characterizes both users and movies using two axes—male versus female
and serious versus escapist.

Matrix factorization techniques for recommender systems

Latent Factors

15 "
& &
PO S
S S &
S & S
10 |- ™ F S
N & e ™
RE NN ‘&\“\9"\@‘9 ,“Z\T}
> NN € s
05 & o F &
T F&E e & 5
\b FS a8 ‘éxk
é§ Sy S
< N o &y
S 00 S5 & N &
g &) & e
g & 8 & &
g * AR
R .\m\“ & &8)
05 |- q@} & & @\\é‘p‘
EORSIIROJES s
&F qﬁ&f & 2 A :@ ¢
& &G 5 P S <
& 3 < S A
-0 & o S 0
S
%@b
ey] 1] 1]
-15 -10 -05 0.0 05 1.0
Factor vector 1

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Matrix factorization techniques for recommender systems

KING

Country and Capital Vectors Projected by PCA

Missing Values

@ matrix factorization techniques (SVD) work with full
matrix
@ ratings — sparse matrix
@ solutions:
e value imputation — expensive, imprecise

e alternative algorithms (greedy, heuristic): gradient
descent, alternating least squares

u — user, | — item

r,i — rating

fui — predicted rating
b, b,, b; — bias

qi, pu — latent factor vectors (length k)

«O» «Fr «=»

« =

DA

Simple Baseline Predictors

[note: always use baseline methods in your experiments |

@ naive: f,; = i, p is global mean
@ biases: 7, = pu+ b, + b;
e by, b; — biases, average deviations
e some users/items — systematically larger/lower ratings

(for a while assume centered data without bias)

S T
ryi = q; Pu
@ vector multiplication

@ user-item interaction via latent factors
illustration (3 factors):

@ user (p,): (0.5,0.8,—-0.3)
e item (qg;): (0.4,—0.1,—-0.8)

DA

- T
fui = 4 Pu
@ vector multiplication

@ user-item interaction via latent factors

we need to find g;, p, from the data (cf content-based
techniques)

note: finding g;, p, at the same time

DA

Learning Factor Vectors

@ we want to minimize “squared errors” (related to RMSE,
more details leater)

min Z (rui - qiTpu)2

q.p
(u,i)eT

e regularization to avoid overfitting (standard machine
learning approach)

min Z (rui — a pu)? + A(llail]? + l1pul)

q,p

(u,NeT

How to find the minimum?

@ standard technique in machine learning
@ greedy, may find local minimum

Gradient Descent

«O» «Fr «=»

« =

DA

Gradient Descent for CF

prediction error e,; = r,; — q; p,

update (in parallel):
o gi = qi +y(ewiPu — Aqi)
e pi=py+ ’Y(euiqi -)\pu)
math behind equations — gradient = partial derivatives

v, A — constants, set “pragmatically”

o learning rate v (0.005 for Netflix)
o regularization A (0.02 for Netflix)

Advice

if you want to learn/understand gradient descent (and also
many other machine learning notions) experiment with linear
regression

@ can be (simply) approached in many ways: analytic
solution, gradient descent, brute force search

@ easy to visualize
@ good for intuitive understanding

@ relatively easy to derive the equations

Advice |l

recommended sources:

@ Koren, Yehuda, Robert Bell, and Chris Volinsky. Matrix
factorization techniques for recommender systems.
Computer 42.8 (2009): 30-37.

@ Koren, Yehuda, and Robert Bell. Advances in

collaborative filtering. Recommender Systems Handbook.
Springer US, 2011. 145-186.

predictions:
Pui = W+ b, + bi + qiTpu
function to minimize:

" (ui)eT

min Y~ (ru—p—by=bi—q] p.)>+A(|lail |*+|lpu|[*+ b5+ b7)]

DA

@ additional data sources (implicit ratings)
@ varying confidence level

@ temporal dynamics

«O» «Fr «=»

« =

DA

Netflix data

Rating by movie age
3.9

3.8

mean score

34

3.3

32

0 500 1000 1500

2000 2500
movie age (days)

Y. Koren, Collaborative Filtering with Temporal Dynamics

v
[y

DA

Netflix data, jump early in 2004

39

Rating by date

3z

time (days)

Y. Koren, Collaborative Filtering with Temporal Dynamics

«Or < Fr o«

>

DA

baseline = behaviour influenced by exterior considerations
interaction = behaviour explained by match between users and

items

baseline score

0.2

38

baseline ©
interaction x

interaction score

-0.2

0 500

1000

1500 2000 2500
time (days)

Y. Koren, Collaborative Filtering with Temporal Dynamics
o & = = =

DA

Results for Netflix Data

091 il
0 [—
L 5 03 — With biases -
) 18 s \With implicit feedback
09 200 With temporal dynamics (v.1)] __
: === W\ith temporal dynamics (v.2)
08%5 a2
a 10
2 \znu
089
0.885
W gy D
088 0
0875
10 100 1000 10,000 100,000

Millions of parameters

Figure 4. Matrix factorization models’ accuracy. The plots show the root-mean-square
error of each of four individual factor models (lower is better). Accuracy improves when
the factor model’s dimensionality (denoted by numbers on the charts) increase:

addition, the more refined factor models, whose descriptions involve more di
sets of parameters, are more accurate. For comparison, the Netflix system achieves
RMSE = 0.9514 on the same dataset, while the grand prize’s required accuracy is
RMSE = 0.8563.

Matrix factorization techniques for recommender systems

Filtering

Slope One Predictors for Online Rating-Based Collaborative

1.5-1=05 ~——
[=

1.5

User A }
? User B }
Item I Item J

2=2+(15-1)=25

average over such simple prediction

«O>» «Fr « =

Er» «E»

DA

@ accurate within reason

@ easy to implement

@ updateable on the fly

e efficient at query time

@ expect little from first visitors

«O>» «Fr «=)r « =)

DA

@ clustering

@ association rules
@ classifiers

« =

DA

main idea:

@ cluster similar users

@ non-personalized predictions (“popularity”) for each
cluster

«O>» «Fr « =

Er» «E»

DA

X

X

Customers B, C and D are « clustered » together.
Customers A and E are clustered into another separate
group
+ « Typical » preferences for CLUSTER are:

« Book 2, very high

+ Book 3, high

« Books 5 and 6, may be recommended

« Books 1 and 4, not recommended at all

Introduction to Recommender Systems, Xavier Amatriain

DA

@ unsupervised machine learning

@ many algorithms — k-means, EM algorithm,

«O>» «Fr « =

3

« =

DA

Q>

Association Rules

@ relationships among items, e.g., common purchases
e famous example (google it for more details): “beer and
diapers”
@ general machine learning algorithms
@ “Customers Who Bought This Item Also Bought..."
e advantage: provides explanation, useful for building trust

@ closely related to item-based collaborative filtering

@ general machine learning techniques

@ positive / negative classification
@ train, test set

@ logistic regression, support vector machines, decision
trees, Bayesian techniques,

«O> «Fr o«

it
-
it
v

DA

Q>

@ cold start problem

@ impact of noise (e.g., one account used by different
people)
@ possibility of attacks

@ popularity bias — difficult to recommend items from the
long tail

4O «F)r <

it
-
it
v

[y

DA

@ How to recommend new items?

@ What to recommend to new users?

«O> «Fr o«

« =

DA

@ use another method (non-personalized, content-based ...)
in the initial phase

@ ask/force user to rate items
@ use defaults (means)

@ better algorithms (e.g., recursive CF)

4O «F)r <

it
-
it
v

[y

DA

@ requires only ratings, widely applicable
@ neighborhood methods, latent factors

@ use of machine learning techniques

«O> «F

it
it
v

DA

