Recommender Systems: Case Studies

Radek Pelánek

2014
Case Studies: Note

- recommender systems widely commercially applied
- nearly no studies about “business value” and details of applications (trade secrets)
Case Studies

- Game Recommendations
- Amazon
- YouTube
- Google News
- Book Recommendations for Children
Personalized Game Recommendations

- Recommender Systems - An Introduction book, chapter 8
 Personalized game recommendations on the mobile internet

- A case study on the effectiveness of recommendations in the mobile internet, Jannach, Hegelich, Conference on Recommender systems, 2009
Personalized Game Recommendations

setting:
- mobile Internet portal, telecommunications provider in Germany
- catalog of games (nonpersonalized in the original version):
 - manually edited lists
 - direct links – teasers (text, image)
 - predefined categories (e.g., Action&Shooter, From 99 Cents)
 - postsales recommendations
Personalized Game Recommendations

personalization:
 - new “My Recommendations” link
 - choice of teasers
 - order of games in categories
 - choice of postsales recommendations
Algorithms

- nonpersonalized:
 - top rating
 - top selling

- personalized:
 - item-based collaborative filtering (CF)
 - Slope One (simple CF algorithm)
 - content-based method (using TF-IDF, item descriptions, cosine similarity)
 - hybrid algorithm (< 8 ratings: content, ≥ 8 ratings: CF)
Figure 1: Catalog navigation and categories
Figure 2: Average number of item detail views per “My Recommendations” visits
Figure 3: Average number of downloads per “My Recommendations” visit
Figure 4: Average number of game purchases and demo downloads in post-sales situation.
Figure 5: Total number of non-free game downloads.
• Amazon.com recommendations: item-to-item collaborative filtering (2003)
• introduced item-item CF and methods for delivery of recommendations (common today)
• discussion of scalability issues, approaches to deal with it (clustering, offline processing)
• no evaluation or technical details
YouTube

- *The YouTube video recommendation system* (2010)
 - description of system design (e.g., related videos)
 - evaluation, application (weak)
 - analysis of data from YouTube
- *Video suggestion and discovery for YouTube: taking random walks through the view graph* (2008)
 - algorithm description, based on view graph traversal
YouTube: Challenges

compare to movies (Netflix) or books (Amazon)

- poor meta-data
- many items, relatively short
- short life cycle
- short and noisy interactions
Input Data

- content data
 - raw video streams
 - metadata (title, description, ...)
- user activity data
 - explicit: rating, liking, subscribing, ...
 - implicit: watch, long watch

in all cases quite noisy
Related Videos

goal: for a video v find set of related videos

relatedness score for two videos v_i, v_j:

$$r(v_i, v_j) = \frac{c_{ij}}{f(v_i, v_j)}$$

- c_{ij} – co-visititation count (within given time period, e.g. 24 hours)
- $f(v_i, v_j)$ – normalization, “global popularity”, e.g., $f(v_i, v_j) = c_i \cdot c_j$ (view counts)

top N selection, minimum score threshold
Generating Recommendation Candidates

- seed set S – watched, liked, added to playlist, ...
- candidate recommendations – related videos to seed set

\[
C_1(S) = \bigcup_{v_i \in S} R_i
\]
\[
C_n(S) = \bigcup_{v_i \in C_{n-1}} R_i
\]
Ranking

1. video quality
 - “global stats”
 - total views, ratings, commenting, sharing, ...

2. user specificity
 - properties of the seed video
 - user watch history

3. diversification
 - balance between relevancy and diversity
 - limit on number of videos from the same author, same seed video
User Interface

screenshot in the paper:

screenshot from current application:
System Implementation

“batch-oriented pre-computation approach”

1. data collection
 - user data processed, stored in BigTable
2. recommendation generation
 - MapReduce implementation
3. recommendation serving
 - pre-generated results quickly served to user
Evaluation

![Graph showing normalized click through rate by day of the week for different categories: Most Viewed, Top Favorited, Top Rated, Recommended. The graph illustrates steady click through rates with slight variations throughout the week.](image-url)
Google News

specific aspects:

- short time span of items
- scale, timing requirements
collaborative filtering using MinHash clustering
probabilistic latent semantic indexing
covisitation counts

MapReduce implementations
Evaluation

- datasets:
 - MovieLens \(\sim\) 1000 users; 1700 movies; 54,000 ratings
 - NewsSmall \(\sim\) 5000 users; 40,000 items; 370,000 clicks
 - NewsBig \(\sim\) 500,000 users, 190,000 items; 10,000,000 clicks

- repeated randomized cross-validation (80% train set, 20% test set)

- metrics: precision, recall
Evaluation
Evaluation on Life Traffic

- large portion of life traffic on Google news
- comparison of two algorithms:
 - each algorithms generates sorted list of items
 - interlace these two lists
 - measure which algorithm gets more clicks
- baseline: “Popular” (age discounted click count)
Evaluation
What to read next?: making personalized book recommendations for K-12 users (RecSys conference, 2013)

books for children:
- focus on text difficulty
- less ratings available
Readability Analysis

- An excerpt
- Topical information
- Author information
- Metadata on B

Grammar concepts
- Shallow features
- US curriculum subject areas
- Subject Headings
- Audience level
- Subject Headings of author's other books
- Subject areas of author's other books

Predictors

Multiple Regression Model
- Regression intercept
- Regression coefficients
- Values for predictors

The Grade Level of B
Evaluation of Readability Analysis

dataset: > 2000 books, “gold standard”: publisher-provided grade level

Figure 2: Performance evaluation of ReLAT
Book Recommender

1. identifying candidate books (based on readability)
2. content similarity measure
3. readership similarity measure
4. rank aggregation
Content Similarity

- brief descriptions from book-affiliated websites (not the content of book itself)
- cosine similarity, TF-IDF
- word-correlation factor – based on frequencies of co-occurrence and relative distance in Wikipedia documents
Content Similarity – Equations Preview

\[CSim(B, P) = \max_{P_B \in P} \frac{\sum_{i=1}^{n} VB_i \times VP_{B_i}}{\sqrt{\sum_{i=1}^{n} VB_i^2} \times \sqrt{\sum_{i=1}^{n} VP_{B_i}^2}} \]

(3)

where \(B \) and \(P_B \) are represented as \(n \)-dimensional vectors \(VB = <VB_1, ..., VB_n> \) and \(VP_B = <VP_{B_1}, ..., VP_{B_n}> \), respectively, \(n \) is the number of distinct words in the descriptions of \(B \) and \(P_B \), and \(VB_i \) (\(VP_{B_i} \), respectively), which is the weight assigned to word \(B_i \) (\(P_{B_i} \), respectively), is calculated as shown in the equations in Table 2.

Table 2: TF-IDF weighting scheme used in the enhanced cosine similarity measure in Equation 3

<table>
<thead>
<tr>
<th>Condition</th>
<th>Weight Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_i \in B) and (P_{B_i} \in P_B)</td>
<td>(VB_i = tf_{B_i,B} \times idf_{B_i}) and (VP_{B_i} = tf_{P_{B_i},P_B} \times idf_{P_{B_i}})</td>
</tr>
<tr>
<td>(B_i \in B) and (P_{B_i} \notin P_B)</td>
<td>(VB_i = tf_{B_i,B} \times idf_{B_i}) and (VP_{B_i} = \frac{\sum_{c \in HS_{B_i}} tf_{c,P_B} \times idf_{c}}{</td>
</tr>
<tr>
<td>(B_i \notin B) and (P_{B_i} \in P_B)</td>
<td>(VB_i = \frac{\sum_{c \in HS_{P_{B_i}}} tf_{c,B} \times idf_{c}}{</td>
</tr>
</tbody>
</table>
Readership Similarity

- collaborative filtering, item-item similarity
- co-occurrence of items bookmarked by users
- Lennon similarity measure

$$RSim(B, P) = \max_{P_B \in P} \left(1 - \frac{\min(|S_B - S_n|, |S_{PB} - S_n|)}{\min(|S_B - S_n|, |S_{PB} - S_n|) + |S_n|} \right)$$
Rank Aggregation

- combine ranking from content and readership similarity
- Borda Count voting scheme
- simple scheme to combine ranked list
Evaluation

- data: BiblioNasium (web page for kids), bookmarked books
- evaluation protocol: five-fold cross validation
- ranking metrics: Precision10, Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain (nDCG)
Evaluation