Recommender Systems: Practical Aspects, Case Studies

Radek Pelánek

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- \bullet "practical aspects": attacks, shared accounts, context, \ldots
- case studies, illustrations of application
- illustration of different evaluation approaches
- examples of data analysis
- specific requirements for particular domains

focus on "ideas", quick discussion (consult cited papers for technical details)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

even simple implementation often brings most of the advantage $% \left({{{\left[{{{{\bf{n}}_{{\rm{s}}}}} \right]}_{{\rm{s}}}}} \right)$

complexity of implementation

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

potential inspiration for projects, for example:

- taking context into account
- highlighting specific aspects of each domain

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- specific techniques used in case studies
- analysis of data, visualizations
- evaluation

Attacks on Recommender System

- Why?
- What type of recommender systems?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- How?
- Countermeasures?

susceptible to attacks: collaborative filtering

reasons for attack:

- make the system worse (unusable)
- influence rating (recommendations) of a particular item
 - push attacks improve rating of "my" items
 - nuke attacks decrease rating of "opponent's" items

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Example

Fig. 2 Simplified system database showing authentic user profiles and a number of attack profiles inserted. In this example, user h is seeking a prediction for item 7, which is the subject of a product nuke attack.

Robust collaborative recommendation, Burke, O'Mahony, Hurley

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

more knowledge about system \rightarrow more efficient attack

random attack generate profiles with random values (preferably with some typical ratings)

- average attack effective attack on memory-based systems (average ratings \rightarrow many neighbors)
- bandwagon attack high rating for "blockbusters", random values for others
- segment attack insert ratings only for items from specific segment
- special nuke attacks love/hate attack, reverse bandwagon

Example

Fig. 3 Prediction shift (left) and hit ratio (right) for product push attacks mounted against the user-based collaborative recommendation algorithm. Hit ratio results relate to a 10% attack size.

Robust collaborative recommendation, Burke, O'Mahony, Hurley

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Sac

- more robust techniques: model based techniques (latent factors), additional information
- increasing injection costs: Captcha, limited number of accounts for single IP address

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• automated attack detection

- $\bullet~{\rm cheating}\sim{\rm false}~{\rm rating}$
- gaming the system using hints as solutions

can have similar consequences as attacks breaks models that (implicitly) assume honest students

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Cheating Using Page Source Code

consider data for your project:

• Is there a risk that there are fake data in the dataset?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• Can you check? How?

common (implicit) assumption in recommender system:

database ID \sim one person

when violated?

Top-N Recommendation for Shared Accounts (2015)

typical example: family sharing single account

Is this a problem? Why?

Top-N Recommendation for Shared Accounts (2015)

typical example: family sharing single account

Is this a problem? Why?

- dominance: recommendations dominated by one user
- generality: too general items, not directly relevant for individual users

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

confusing presentation

• hard to get "ground truth" data

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

log data insufficient

How to study and evaluate?

- hard to get "ground truth" data
- log data insufficient

How to study and evaluate?

- artificial shared accounts mix of two accounts
- not completely realistic, but "ground truth" now available

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• combination of real data and simulation

user ID	562	4385
I(u)	Wes Craven's New Nightmare, The Exorcist III, Serial Mom, Scream, Scream 2, The Blair Witch Project, Good Will Hunting, Misery, Interview with the Vampire, Candyman, Freddy's Dead: The Final Nightmare	American Beauty, The Shawshank Redemption, Being John Malkovich, L.A. Confidential, Boys Don't Cry, Croupier, Dogma, Cider House Rules, Girl Interrupted, Saving Grace, The Talented Mr. Ripley
individual top-5: IB, $k = 25$	A Nightmare on Elm Street, Halloween, Halloween:H20, The Shining, Seven	Pulp Fiction, Fargo, The Sixth Sense, The Silence of the Lambs, Shindler's List
$R_{sa} = IB$	The Silence of the Lambs, Fargo, Pulp Fiction, The Sixth Sense, Saving Private Ryan, The Usual Suspects, Shindler's List, Shakespeare in Love, Star Wars: Episode V, The Matrix	
$R_{sa} =$ DAMIB-COVER (p=0.75)	The Silence of the Lambs, Fargo, Schindler's List, A Nightmare on Elm Street, Halloween:H20, Pulp Fiction, Shakespeare in Love, The Shining, The Exorcist, Sleepy Hollow	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Table 3: Example of user 562 suffering from sharing an account with user 4385.

taking context into account - improving recommendations

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- when relevant?
- what kind of context?

Context-aware recommender systems (Recommender systems handbook chapter)

context:

- physical location, time
- environmental weather, light, sound
- personal health, mood, schedule, activity
- social who is in room, group activity
- system network traffic, status of printers

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• tourism: accommodation, restaurants, visitor guides

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- museum guides
- home computing and entertainment
- social events

- pre- post- filtering
- model based
 - multidimensionality: user \times item \times time $\times...$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• tensor factorization

Context-Aware Event Recommendation in Event-based Social Networks (2015)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- social events (meetup.com)
- inherent item cold-start problem
 - short-lived
 - in the future, without "historical data"
- contextual information useful

social groups, social interaction content textual description of events, TF-IDF location location of events attended time time of events attended

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Context: Location

Figure 1: Geographical densities of two users.

・ロト ・四ト ・ヨト ・ヨト ・ヨー

990

Context: Time

(ロト (個) (E) (E) (E) (E) のへの

- machine learning feature weights (Coordinate Ascent)
- historical data, train-test set division
- ranking metric: normalized discounted cumulative gain (NDCG)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- recommender systems widely commercially applied
- nearly no studies about "business value" and details of applications (trade secrets)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• some of the studies relatively old, focus on specific interesting ideas or aspects

- Game Recommendations
- App Recommendations
- YouTube
- Google News
- Yahoo! Music Recommendations
- Book Recommendations for Children

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

"textbook case study, focusing on basic algorithms"

- Recommender Systems An Introduction book, chapter 8 Personalized game recommendations on the mobile internet
- A case study on the effectiveness of recommendations in the mobile internet, Jannach, Hegelich, Conference on Recommender systems, 2009

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

setting:

- mobile Internet portal, telecommunications provider in Germany
- catalog of games (nonpersonalized in the original version):
 - manually edited lists
 - direct links teasers (text, image)
 - predefined categories (e.g., Action&Shooter, From 99 Cents)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• postsales recommendations

Figure 1: Catalog navigation and categories

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

personalization:

- new "My Recommendations" link
- choice of teasers
- order of games in categories
- choice of postsales recommendations

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- nonpersonalized:
 - top rating
 - top selling
- personalized:
 - item-based collaborative filtering (CF)
 - Slope One (simple CF algorithm)
 - content-based method (using TF-IDF, item descriptions, cosine similarity)
 - hybrid algorithm (< 8 ratings: content, \geq 8 ratings: CF)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Figure 2: Average number of item detail views per "My Recommendations" visits

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure 3: Average number of downloads per "My Recommendations" visit

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure 4: Average number of game purchases and demo downloads in post-sales situation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Figure 5: Total number of non-free game downloads.

App recommendations (e.g., Google Play, Apple App store)

- What are the main differences? (e.g., compared to movies/book recommendations)
- Why the basic application of recommendation techniques may fail?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

App recommendation: a contest between satisfaction and temptation (2013)

- one-shot consumption (books, movies) vs continuous consumption (apps)
- impact on alternative (closely similar) apps, e.g., weather forecast

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• when to recommend alternative apps?

App Recommendations: Failed Recommendations

Figure 2: Three scenarios of failed recommendation. The solid arrow means the user downloads the app while the dashed arrow indicates the particular app is recommended to the user.

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Actual Value, Tempting Value

- actual value "real satisfactory value of the app after it is used"
- tempting value "estimated satisfactory value" (based on description, screenshots, ...)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

computed based on historical data: users with installed App i who view description of App j and decide to (not) install j

Actual Value minus Tempting Value

Figure 5: Actual-tempting difference with regarding to app category. Note that negative value means the app's actual value is smaller than its tempting value and vice versa.

Recommendations, Evaluation

• AT model, combination with content-based, collaborative filtering

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- evaluation using historical data
- relative precision, recall

- The YouTube video recommendation system (2010)
 - description of system design (e.g., related videos)
- The impact of YouTube recommendation system on video views (2010)
 - analysis of data from YouTube
- Video suggestion and discovery for YouTube: taking random walks through the view graph (2008)
 - algorithm description, based on view graph traversal
- Deep neural networks for youtube recommendations (2016)
 - use of context, predicting watch times

YouTube videos compared to movies (Netflix) or books (Amazon)

What are the specifics? Challenges?

YouTube videos compared to movies (Netflix) or books (Amazon)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

What are the specifics? Challenges?

- poor meta-data
- many items, relatively short
- short life cycle
- short and noisy interactions

- content data
 - raw video streams
 - metadata (title, description, ...)
- user activity data
 - explicit: rating, liking, subscribing, ...

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• implicit: watch, long watch

in all cases quite noisy

goal: for a video v find set of related videos

relatedness score for two videos v_i, v_j:

$$r(v_i, v_j) = \frac{c_{ij}}{f(v_i, v_j)}$$

• c_{ij} - co-visitation count (within given time period, e.g. 24 hours)

• $f(v_i, v_j)$ - normalization, "global popularity", e.g., $f(v_i, v_j) = c_i \cdot c_j$ (view counts)

top N selection, minimum score threshold

Generating Recommendation Candidates

- seed set S watched, liked, added to playlist, ...
- candidate recommendations related videos to seed set

$$C_1(S) = \cup_{v_i \in S} R_i$$

$$C_n(S) = \cup_{v_i \in C_{n-1}} R_i$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Ranking

video quality

- "global stats"
- total views, ratings, commenting, sharing, ...
- user specificity
 - properties of the seed video
 - user watch history
- o diversification
 - balance between relevancy and diversity
 - limit on number of videos from the same author, same seed video

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

screenshot in the paper:

Recommended for You

Note: explanations "Because you watched..." – not available in the current version

Edit 📉 🗙

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"batch-oriented pre-computation approach"

- data collection
 - user data processed, stored in BigTable
- ecommendation generation
 - MapReduce implementation
- recommendation serving
 - pre-generated results quickly served to user

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Evaluation

 recommending news stories

- What are the specifics?
- What approach would you use?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

specific aspects:

- value of immediacy
- short time span of items (high churn)
- scale, timing requirements

Google News Personalization: Scalable Online Collaborative Filtering (2007) basic idea: clustering

another example: *Scene: a scalable two-stage personalized news recommendation system*

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Google News – System Setup

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へ⊙

• datasets:

- MovieLens \sim 1000 users; 1700 movies; 54,000 ratings
- NewsSmall \sim 5000 users; 40,000 items; 370,000 clicks
- $\bullet~$ NewsBig \sim 500,000 users, 190,000 items; 10,000,000 clicks
- repeated randomized cross-validation (80% train set, 20% test set)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• metrics: precision, recall

Evaluation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Evaluation

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

- large portion of life traffic on Google news
- comparison of two algorithms:
 - each algorithms generates sorted list of items
 - interlace these two lists
 - measure which algorithm gets more clicks
- baseline: "Popular" (age discounted click count)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Evaluation

・ロト・西・・田・・田・・日・ ひゃう

Evaluation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Yahoo! Music Recommendations: Modeling Music Ratings with Temporal Dynamics and Item Taxonomy (2011)

 large dataset (KDD cup 2011): 600 thusand items, 1 million users, 250 million ratings

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- multi-typed items: tracks, albums, artists, genres
- taxonomy
- temporal dynamics

Ratings

Figure 1: The distribution of ratings. The approximately discrete nature of the distribution is evident

イロト イボト イヨト イヨト

E

500

Why the peaks?

Ratings

Figure 1: The distribution of ratings. The approximately discrete nature of the distribution is evident

・ロト ・ 同ト ・ ヨト ・ ヨト

э

naa

Why the peaks? Different widgets used for collecting ratings, including "5 stars" (translated into 0, 30, 50, 70, 90 values)

Item Mean Ratings

Figure 2: The distribution of item mean ratings

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

User Mean Ratings

Figure 3: The distribution of user mean ratings

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Item vs user means - why the discrepancy?

Item vs user means - why the discrepancy?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Users who rate less, rate higher. Long term users are more critical.

Number of Ratings and Mean Rating

Figure 4: Median of user ratings as a function of the number of ratings issued by the user. The vertical lines represent interquartile range.
Types of Items

Also the type of rated items differs:

Figure 5: The fraction of ratings the four item types receive as a function of the number of ratings a user gives.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Get to know your data before you start to use it.

Temporal Dynamics

Figure 6: Items temporal basis functions $\{f_i(t)\}_{i=1}^4$ vs. time since an item's first rating measured in weeks

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • の Q ()~

Evaluation

#	Model Name	RMSE
1	Mean Score	38.0617
2	Items and Users Bias	26.8561
3	Taxonomy Bias	26.2553
4	User Sessions Bias	25.3901
5	Items Temporal Dynamics Bias	25.2095
6	MF	22.9533
7	Taxonomy	22.7906
8	Final	22.5918

Table 2: Root Mean Squared Error (RMSE) of the evolvingmodel. RMSE reduces while adding model components.

Book Recommendations for Children

What are the specific challenges compared to book recommendations for adults?

What type of data would you use? What techniques?

What to read next?: making personalized book recommendations for K-12 users (2013)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

books for children, specific aspects:

- focus on text difficulty
- less ratings available

Readability Analysis

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

3

Sac

Evaluation of Readability Analysis

dataset: > 2000 books, "gold standard": publisher-provided grade level

Figure 2: Performance evaluation of ReLAT

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

identifying candidate books (based on readability)

- 2 content similarity measure
- I readership similarity measure
- I rank aggregation

• brief descriptions from book-affiliated websites (not the content of book itself)

- cosine similarity, TF-IDF
- word-correlation factor based on frequencies of co-occurrence and relative distance in Wikipedia documents

Content Similarity – Equations Preview

$$CSim(B,P) = \max_{P_B \in P} \frac{\sum_{i=1}^{n} VB_i \times VP_{B_i}}{\sqrt{\sum_{i=1}^{n} VB_i^2} \times \sqrt{\sum_{i=1}^{n} VP_{B_i}^2}} \quad (3)$$

where B and P_B are represented as *n*-dimensional vectors $VB = \langle VB_1, ..., VB_n \rangle$ and $VP_B = \langle VP_{B_1}, ..., VP_{B_n} \rangle$, respectively, *n* is the number of distinct words in the descriptions of *B* and *P_B*, and *VB_i* (*VP_{B_i}*, respectively), which is the weight assigned to word *B_i* (*P_{B_i}*, respectively), is calculated as shown in the equations in Table 2.

Condition	Weight Assignment
$B_i \in B$ and	$V_{B_i} = t f_{B_i,B} \times i d f_{B_i}$ and
$P_{B_i} \in P_B$	$V_{P_{B_i}} = tf_{P_{B_i}, P_B} \times idf_{P_{B_i}}$
$B_i \in B$ and	$V_{B_i} = tf_{B_i,B} \times idf_{B_i}$ and
$P_{B_i} \not \in P_B$	$V_{P_{B_i}} = \frac{\sum_{c \in HS_{B_i}} tf_{c,P_B} \times idf_c}{ HS_{B_i} }$
$B_i \not\in B$ and	$V_{B_i} = \frac{\sum_{c \in HS_{P_{B_i}} tf_c, B \times idf_c}}{ HS_{P_{B_i}} } \text{ and }$
$P_{B_i} \in P_B$	$V_{P_{B_i}} = tf_{P_{B_i}, P_B} \times idf_{P_{B_i}}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Table 2: TF-IDF weighting scheme used in the enhanced cosine similarity measure in Equation 3

- collaborative filtering, item-item similarity
- co-occurrence of items bookmarked by users
- Lennon similarity measure

$$RSim(B, P) = \max_{P_B \in P} \left(1 - \frac{min(|S_B - S_{\cap}|, |S_{P_B} - S_{\cap}|)}{min(|S_B - S_{\cap}|, |S_{P_B} - S_{\cap}|) + |S_{\cap}|} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• combine ranking from content and readership similarity

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Borda Count voting scheme
 - simple scheme to combine ranked list
 - $\bullet\,$ points $\sim\,$ order in a list

- data: BiblioNasium (web page for kids), bookmarked books
- evaluation protocol: five-fold cross validation
- ranking metrics: Precision10, Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain (nDCG)

Evaluation

□ Traditional Cosine Senhanced Cosine (EC) □ EC + ReLAT Filtering □ EC + Readership □ BReK12 2 TVS □ L-Cos SIICE

Recommender Systems conference

- \bullet Google Scholar \rightarrow metrics \Rightarrow top cited publications from last 5 years
 - following screenshots are snapshots from different years

• lot of deep learning techniques... but also scepticism about them (2019 best paper)

Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation

Approaches

• best papers from the conference

https://recsys.acm.org/best-papers/

\leftarrow	ACM Conference on Recommender Systems		
	h5-index:50 h5-median:84 #6 Data Mining & Analysis #11 Databases & Information Systems		
	Title / Author	Cited by	Year
	Deep Neural Networks for YouTube Recommendations P Covington, J Adams, E Sargin Proceedings of the 10th ACM Conference on Recommender Systems, 191-198	<u>1506</u>	2016
	Convolutional Matrix Factorization for Document Context-Aware Recommendation D Kim, C Park, J Oh, S Lee, H Yu Proceedings of the 10th ACM Conference on Recommender Systems, 233-240	483	2016
	Field-aware Factorization Machines for CTR Prediction Y Juan, Y Zhuang, WS Chin, CJ Lin Proceedings of the 10th ACM Conference on Recommender Systems, 43-50	389	2016
	Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks M Quadrana, A Karatzoglou, B Hidasi, P Cremonesi Proceedings of the Eleventh ACM Conference on Recommender Systems, 130-137	300	2017
	Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations B Hidasi, M Quadrana, A Karatzogiou, D Tikk Proceedings of the 10th ACM Conference on Recommender Systems, 241-248	274	2016
	Ask the GRU: Multi-task Learning for Deep Text Recommendations T Bansal, D Belanger, A McCallum Proceedings of the 10th ACM Conference on Recommender Systems, 107-114	238	2016
	Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction S Seo, J Huang, H Yang, Y Lu Proceedings of the Eleventh ACM Conference on Recommender Systems, 297-305	<u>236</u>	2017
	When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation D Jannach, M Ludewig Proceedings of the Eleventh ACM Conference on Recommender Systems, 306-310	228	2017
	Are we really making much progress? A worrying analysis of recent neural recommendation approaches MF Dacrema, P Cremonesi, D Jannach Proceedings of the 13th ACM Conference on Recommender Systems, 101-109	224	2019

≡ ∽ ९ (~

h5-index:47 h5-median:111

#9 Data Mining & Analysis

#14 Databases & Information Systems

Title / Author	Cited by	Year
Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks M Quadrana, A Karatzoglou, B Hidasi, P Cremonesi Proceedings of the Eleventh ACM Conference on Recommender Systems, 130-137	434	2017
Are we really making much progress? A worrying analysis of recent neural recommendation approaches MF Dacema, P Gremonesi, D Jannach Proceedings of the 13th ACM Conference on Recommender Systems, 101-109	<u>394</u>	2019
Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction S Seo, J Huang, H Yang, Y Llu Proceedings of the Eleventh ACM Conference on Recommender Systems, 297-305	<u>352</u>	2017
When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation D Jannach, M Ludewig Proceedings of the Eleventh ACM Conference on Recommender Systems, 306-310	300	2017
Deep reinforcement learning for page-wise recommendations X Zhao, L Xia, L Zhang, Z Ding, D Yin, J Tang Proceedings of the 12th ACM Conference on Recommender Systems, 95-103	<u>281</u>	2018
Translation-based Recommendation R He, WC Kang, J McAuley Proceedings of the Eleventh ACM Conference on Recommender Systems, 161-169	277	2017
Sequential User-based Recurrent Neural Network Recommendations T Donkers, B Loepp, J Ziegler Proceedings of the Eleventh ACM Conference on Recommender Systems, 152-160	228	2017
TransNets: Learning to Transform for Recommendation R Catherine, W Cohen Proceedings of the Eleventh ACM Conference on Recommender Systems, 288-296	218	2017

h5-index:53 h5-median:81

#7 Data Mining & Analysis #13 Databases & Information Systems

Title / Author	Cited by	Year
Are we really making much progress? A worrying analysis of recent neural recommendation approaches M Ferrari Darcema, P Cremonesi, D Jannach Proceedings of the 13th ACM Conference on Recommender Systems, 101-109	<u>696</u>	2019
Neural Collaborative Filtering vs. Matrix Factorization Revisited S Rendle, W Krichene, L Zhang, J Anderson Proceedings of the 14th ACM Conference on Recommender Systems, 240-248	<u>417</u>	2020
Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations H Tang, J Liu, M Zhao, X Gong Proceedings of the 14th ACM Conference on Recommender Systems, 269-278	<u>384</u>	2020
Recommending what video to watch next: a multitask ranking system Z Zhao, L Hong, L Wei, J Chen, A Nath, S Andrews, A Kumthekar, Proceedings of the 13th ACM Conference on Recommender Systems, 43-51	<u>347</u>	2019
Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5) 5 Geng. 51.u.g. 7e.u. 7 Ge. y Zhang Proceedings of the 16th ACM Conference on Recommender Systems, 299-315	<u>280</u>	2022
FIBINET: combining feature importance and bilinear feature interaction for click-through rate prediction T Huang, Z.Zhang, J.Zhang Proceedings of the 13th ACM Conference on Recommender Systems, 169-177	<u>260</u>	2019
SSE-PT: Sequential Recommendation Via Personalized Transformer L.Wu, S.Li, CJ.Haleh, J.Sharpnack Proceedings of the 14th ACM Conference on Recommender Systems, 328-337	217	2020
Sampling-bias-corrected neural modeling for large corpus item recommendations X Yi, J Yang, L Hong, DZ Cheng, L Heldt, A kumthekar, Z Zhao, L Wei, Proceedings of the 13th ACM Conference on Recommender Systems, 269-277	205	2019
TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation	<u>173</u>	2023

K Bao, J Zhang, Y Zhang, W Wang, F Feng, X He

E • 9 Q (P

illustration of many aspects relevant in development of recommender systems:

- attacks
- context
- groups, shared accounts
- approaches to evaluation
- diversity
- differences between domains (books, movies, news...)