Formal Verification of Real Time Systems Timed Automata

Radek Pelánek

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Aim of the Lecture

- knowledge of a basic formalism for modeling timed systems
- basic understanding of verification algorithms for timed systems

Motivation

Example: Peterson's Algorithm

- flag[0], flag[1] (initialed to false) meaning I want to access CS
- turn (initialized to 0) used to resolve conflicts

```
Process 0:
while (true) {
    <noncritical section>;
    flag[0] := true;
    turn := 1;
    while flag[1] and
        turn = 1 do { };
    <critical section>;
    flag[0] := false;
}
```

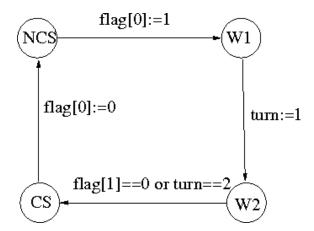
```
Process 1:
while (true) {
    <noncritical section>;
    flag[1] := true;
    turn := 0;
    while flag[0] and
        turn = 0 do { };
    <critical section>;
    flag[1] := false;
}
```

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

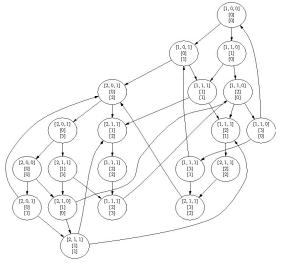
Example: Peterson's Algorithm



Summary

Motivation

Example: Peterson's Algorithm



Motivation

Fischer's Protocol

- real-time protocol correctness depends on timing assumptions
- simple, just 1 shared variable, arbitrary number of processes
- assumption: known upper bound D on reading/writing variable in shared memory
- each process has it's own timer (for delaying)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Motivation

Fischer's Protocol

- id shared variable, initialized -1
- each process has it's own timer (for delaying)
- for correctness it is necessary that K > D

```
Process i:
while (true) {
   <noncritical section>;
   while id != -1 do \{\}
   id := i;
   delay K;
   if (id = i) {
      <critical section>;
      id := -1:
   }
```

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Motivation

Modeling Fischer's Protocol

- how do we model clocks?
- how do we model waiting (delay)?

Motivation

Modeling Real Time Systems

Two models of time:

- discrete time domain
- continuous time domain

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

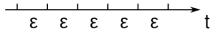
Motivation

Discrete Time Domain

- clocks tick at regular interval
- at each tick something may happen
- between ticks the system only waits

Motivation

Discrete Time Domain



- choose a fixed sample period $\boldsymbol{\epsilon}$
- $\bullet\,$ all events happen at multiples of $\epsilon\,$
- simple extension of classical model (time = new integer variable)
- main disadvantage how to choose ϵ ?
 - big $\epsilon \Rightarrow$ too coarse model
 - $\bullet~{\rm low}~\epsilon \Rightarrow {\rm time}$ fragmentation, too big state space
- usage: particularly synchronous systems (hardware circuits)

Motivation

Continuous Time Domain

- time \sim real number
- delays may be arbitrarily small
- more faithful model, suited for asynchronous systems
- $\bullet\,$ model checking (automatic verification) \sim traversal of state space
- uncountable state space ⇒ cannot be directly handled automatically by "brute force"

TA Introduction

Timed Automata

- extension of finite state machines with clocks
- continuous real semantics
- limited list of operations over clocks ⇒ automatic verification is feasible
- allowed operations:
 - comparison of a clock with a constant
 - reset of a clock
 - uniform flow of time (all clocks have the same rate)
- note: even simple extensions lead to undecidability

TA Introduction

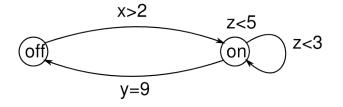
What is a Timed Automaton?

- an automaton with locations (states) and edges
- the automaton spends time only in locations, not in edges

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

TA Introduction

What is a Timed Automaton? (2)



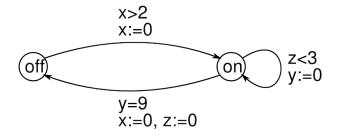
- real valued clocks
- all clocks run at the same speed
- clock constraints can be guards on edges

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

TA Introduction

What is a Timed Automaton? (3)



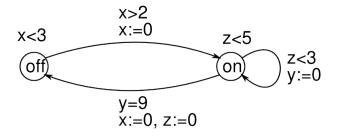
- clocks can be reseted when taking an edge
- only a reset to value 0 is allowed

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

TA Introduction

What is a Timed Automaton? (4)



- location invariants forbid to stay in a state too long
- invariants force taking an edge

Syntax

Clock Constraints

Definition (Clock constraints)

Let X be a set of clock variables. Then set C(X) of clock constraints is given by the following grammar:

$$\phi \equiv x \leq k \mid k \leq x \mid x < k \mid k < x \mid \phi \land \phi$$

where $x \in X, k \in N$.

Syntax

Timed Automata Syntax

Definition (Timed Automaton)

A timed automaton is a 4-tuple: $A = (L, X, I_0, E)$

- L is a finite set of locations
- X is a finite set of clocks
- $I_0 \in L$ is an initial location
- $E \subseteq L \times C(X) \times 2^X \times L$ is a set of edges

 $edge = (source \ location, \ clock \ constraint, \ set \ of \ clocks \ to \ be resetted, \ target \ location)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Semantics

Semantics: Main Idea

- semantics is a state space (reminder: guarded command language, extended finite state machines)
- states given by:
 - location (local state of the automaton)
 - clock valuation
- transitions:
 - waiting only clock valuation changes
 - action change of location

Semantics

Clock Valuations

- a clock valuation is a function $\nu: X \to \mathbb{R}^+$
- ν[Y := 0] is the valuation obtained from ν by resetting clocks from Y:

$$\nu[Y := 0](x) = \begin{cases} 0 & x \in Y \\ x & \text{otherwise} \end{cases}$$

• $\nu + d =$ flow of time (*d* units):

$$(\nu+d)(x)=\nu(x)+d$$

• $\nu \models c$ means that valuation ν satisfies the constraint c

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Semantics

Evaluation of Clock Constraints

Evaluation of a clock constraint ($\nu \models g$):

•
$$\nu \models x < k$$
 iff $\nu(x) < k$

•
$$\nu \models x \leq k$$
 iff $\nu(x) \leq k$

•
$$\nu \models g_1 \land g_2$$
 iff $\nu \models g_1$ and $\nu \models g_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semantics

Examples

let
$$\nu = (x \rightarrow 3, y \rightarrow 2.4, z \rightarrow 0.5)$$

- what is $\nu + 1.2?$
- does $\nu \models y < 3?$
- does $\nu \models x < 4 \land z \ge 1$?

Semantics

Timed Automata Semantics

Definition (Timed automata semantics)

The semantics of a timed automaton A is a transition system $S_A = (S, s_0, \longrightarrow)$:

•
$$S = L \times (X \to \mathbb{R}^+)$$

•
$$s_0 = (l_0, \nu_0), \ \nu_0(x) = 0$$
 for all $x \in X$

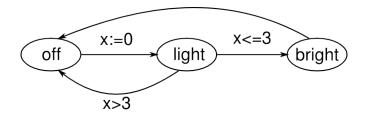
- transition relation $\longrightarrow \subseteq S \times S$ is defined as:
 - (delay action) $(I, \nu) \xrightarrow{\delta} (I, \nu + \delta)$
 - (discrete action) $(I, \nu) \longrightarrow (I', \nu')$ iff there exists
 - $(I, c, Y, I') \in E$ such that $\nu \models c, \nu' = \nu[Y := 0]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semantics

Example



- What is a clock valuation?
- What is a state?
- Find a run = sequence of states

Semantics

Example

- clock valuation: assignment of a real value to x
- initial state (off, 0)
- example of a run: $(off, 0) \xrightarrow{2.4} (off, 2.4) \longrightarrow$ $(light, 0) \xrightarrow{1.5}$ $(light, 1.5) \longrightarrow$ $(bright, 1.5) \longrightarrow ...$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Construct a timed automaton, which models the following schedule of a student:

- the student wakes up between 7 and 9
- if the student wakes up before 8, he has a breakfast, which takes exactly 15 minutes
- the students travels to school, it takes between 30 and 45 minutes
- if the student arrives to school before 10, he goes to the lecture, otherwise he goes to the library

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semantics

Semantics: Notes

- the semantics is infinite state (even uncountable)
- the semantics is even infinitely branching

Summary

Verification Problems

Reachability Problem

Reachability Problem

Input: a timed automaton A, a location I of the automaton Question: does there exists a run of A which ends in I

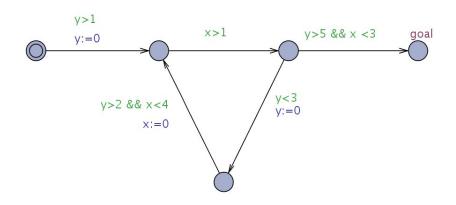
This problem formalises the verification of *safety* problems – is an erroneous state reachable?

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Verification Problems

Example



How to do it algorithmically?

Verification Problems

Other Verification Problems

- verification of temporal (timed) logic
- equivalence checking (timed) bisimulation of timed automata
- universality, language inclusion (undecidable)

Verification Problems

Reachability: Attempt 1

- discretization (sampled semantics)
- allow time step (delay) 1
- clock above maximal constant \Rightarrow value does not increase
- finite state space
- but not equivalent \Rightarrow find counterexample

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Verification Problems

Reachability: Attempt 2

• what about time step 0.5

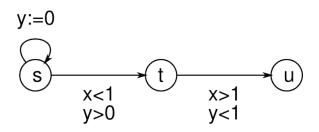
Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Verification Problems

Reachability: Attempt 2

• what about time step 0.5



Verification Problems

Reachability: Attempt X

- what about time step 0.25?
- what about time step 2^{-n} ?

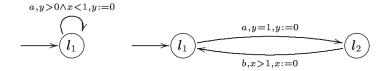
Verification Problems

Reachability and Discretization

- for each automaton there exists ϵ such that sampled and dense semantics are reachability equivalent
 - why?
 - how to determine e?
- no fixed ϵ is sufficient for all timed automata
- more complex equivalences (trace equivalence, bisimulation) and verification problems – sampled and dense semantics are not equivalent

Verification Problems

Sampled vs Dense Semantics



- dense semantics: arbitrary long words
- sampled semantics: bounded length of words

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Verification Problems

Another Approach?

- discretization (sampling) is not sufficient
- any other idea?

Verification Problems

Another Approach?

- discretization (sampling) is not sufficient
- any other idea?
- is it necessary to distinguish the following valuations? (0.589, 1.234) and (0.587, 1.236)

Verification Problems

Another Approach?

- discretization (sampling) is not sufficient
- any other idea?
- is it necessary to distinguish the following valuations? (0.589, 1.234) and (0.587, 1.236)
- some clock valuations are equivalent \sim the automaton cannot distinguish between them \sim any run possible from one valuation is also possible from the second
- let us find these equivalence classes (regions)

Verification Problems

Reachability Problem

Theorem

The reachability problem is PSPACE-complete.

- note that even decidability of the problem is not straightforward – the semantics is infinite state
- decidability proved by region construction (to be discussed)
- completeness proved by general reduction from linearly bounded Turing machine (not discussed)

Summary

Region Construction

Main idea:

- some clock valuations are equivalent
- work with regions of valuations instead of valuations
- finite number of regions

Region Construction

Preliminaries

Let $d \in \mathbb{R}^{\geq 0}$. Then:

- let $\lfloor d \rfloor$ be the integer part of d
- let fr(d) be the fractional part of d

Thus $d = \lfloor d \rfloor + fr(d)$.

Example: $\lfloor 42.37 \rfloor = 42$, fr(42.37) = 0.37

Region Construction

Equivalence on Clock Valuation

- we want an equivalence \cong such that if $\nu \cong \nu'$ then the automaton "cannot distinguish between ν and ν' "
- formally: bisimulation
- informally: whatever action an automaton can do in ν , it can also do it in ν' (and vice verse, repeatedly)
- what conditions on \cong do we need?

Region Construction

Equivalence on Clock Valuation: Condition 1

Let c_x by the largest constant compared to a clock x ("max bound").

Condition 1:

Clock x is in both valuations ν and ν' are above its max bound, or it has the same integer part in both of them.

$$u(x) \ge \mathsf{c}_{\mathsf{x}} \wedge
u'(x) \ge \mathsf{c}_{\mathsf{x}} ext{ or } \lfloor
u(x)
floor = \lfloor
u'(x)
floor$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Region Construction

Equivalence on Clock Valuation: Condition 2

Condition 2:

If the value of clock is below its max bound, then either it has zero fractional part in both ν and ν' or in neither of them.

$$u(x) \leq c_x \Rightarrow (fr(\nu(x)) = 0 \Leftrightarrow fr(\nu'(x) = 0))$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Region Construction

Equivalence on Clock Valuation: Condition 3

Condition 3:

For two clocks that are below their max bound, the ordering of fractional parts must be the same in both ν and ν' .

$$\nu(x) \leq c_x \wedge \nu(y) \leq c_y \Rightarrow fr(\nu(x)) \leq fr(\nu(y)) \Leftrightarrow fr(\nu'(x)) \leq fr(\nu'(y))$$

Region Construction

Equivalence on Clock Valuation

Let c_x by the largest constant compared to a clock x ("max bound").

 \cong is equivalence on clock valuations such that $\nu \cong \nu'$ iff for all clocks x, y holds:

- $\nu(x) \ge c_x \wedge \nu'(x) \ge c_x \text{ or } \lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$

Region Construction

Why Do We Need Condition 3?

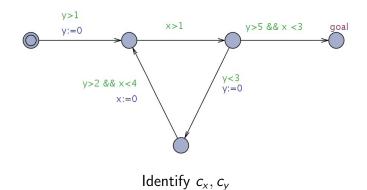
- Why do we need condition 3, when the automaton cannot compare clocks?
- Find an automaton and clock valuations ν_1 , ν_2 such that:
 - ν_1 , ν_2 satisfy condition 1 and 2, but not condition 3
 - automaton can "distinguish" between ν₁, ν₂, i.e. there exists timed run r such that r is possible from ν₁ but not from ν₂

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Region Construction

Equivalence: Example 1



Region Construction

Equivalence: Example 2

• suppose
$$c_x = 4, c_y = 5, c_z = 1$$

(
$$(0, 0.14, 0.3) \cong (0.05, 0.1, 0.32)$$
?

$$(1.9, 4.2, 0.4) \cong (2.8, 4.3, 0.7) ?$$

$$(0.05, 0.1, 0.3) \cong (0.2, 0.1, 0.4) ?$$

$$(0.03, 1.1, 0.3) \cong (0.05, 1.2, 0.3) ?$$

$$(3.9, 5.3, 0.4) \cong (3.8, 6.9, 0.8) ?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Region Construction

Regions

Definition (Region)

Classes of equivalence \cong are called regions, denoted $[\nu]$.

Lemma

The number of regions is at most $|X|! \cdot 2^{|X|} \cdot \prod_{x \in X} (2c_x + 2)$.

Summary

Region Construction

Regions: Example

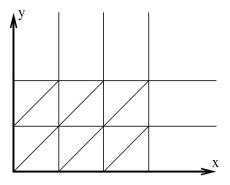
- suppose TA with two clocks, $c_x = 3, c_y = 2$
- draw all regions (since we have just 2 clocks, we can draw them in plane)
- hints:
 - what is the region [(x = 0.3, y = 0.2)]?
 - what is the region [(x = 1.3, y = 0.3)]?
 - what is the region [(x = 2.0, y = 1.0)]?

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Region Construction

Regions: Example



Regions for TA with two clocks $c_x = 3, c_y = 2$.

- states are 2-tuples location + clock region: $(I, [\nu])$
- there is a transition from $(I, [\nu])$ to $(I', [\nu'])$ if there exists $\omega \cong \nu, \omega' \cong \nu'$ such that $(I, \omega) \to (I', \omega')$
- region graph is equivalent to the semantics of A with respect to reachability (note: in fact it is equivalent wrt bisimulation equivalence)
- moreover region graph is finite and can be effectively constructed ⇒ region graph can be used to answer the reachability problem

Region Construction

Operations on Regions

To construct the region graph, we need the following operations:

- let time pass go to adjacent region at top right
- intersect with a clock constraint (note that clock constraints define supersets of regions)
 - if region is in the constraint: no change
 - otherwise: empty
- reset a clock go to a corresponding region

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Region Construction

Example: Automaton

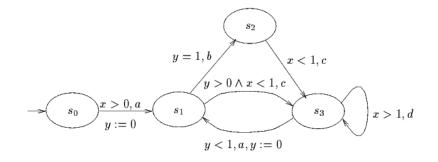


Figure 6: The automaton A_0

(source: R. Alur)

Region Construction

Example: Region Graph

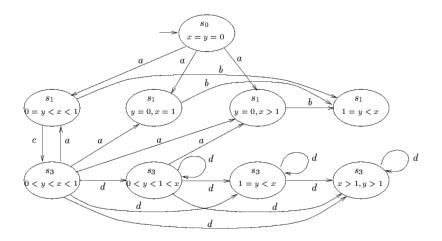


Figure 7: The region automaton $R(A_0)$

- ロ ト - 4 回 ト - 4 □ - 4

Zones

Zones

- regions ... nice theory, but inefficient and hard to implement
- zones:
 - convex sets of clock valuations
 - defined by conjunction of constraints x y < k
 - allows efficient representation and manipulation (Difference Bound Matrix)

Zones

Difference Bound Matrix

$$x < 20 \land y \le 20 \land y - x \le 10 \land x - y \le -10 \land z > 5$$

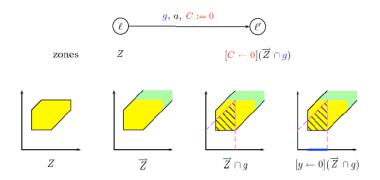
$$M(D) = \begin{pmatrix} (0, \le) & (0, \le) & (0, \le) & (5, <) \\ (20, <) & (0, \le) & (-10, \le) & \infty \\ (20, \le) & (10, \le) & (0, \le) & \infty \\ \infty & \infty & \infty & (0, \le) \end{pmatrix}$$

matrix representation can be used to perform necessary operation: passing of time, resetting clock, intersection with constraint, ...

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Zones

Zones: Operations



(source: J.P. Katoen)

< 注→ 注

Zones

Zone Graph: Example

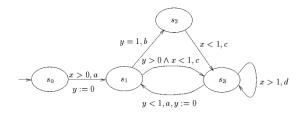


Figure 6: The automaton A_0

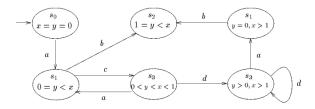


Figure 8: Reachable zone automaton

Extensions

Extensions

For practical modeling we use several extensions:

- location invariants
- parallel composition of automata
- channel communication, synchronization
- integer variables

These issues are solved in the 'usual way'. Here we focused on the basic model, basic aspects dealing with time.

Extensions

Example: Parallel Composition

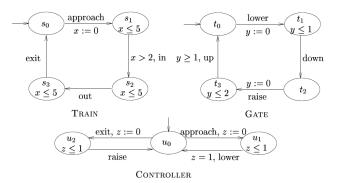


Fig. 2. Train-gate controller

(source: R. Alur)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Extensions

Fischer's Protocol

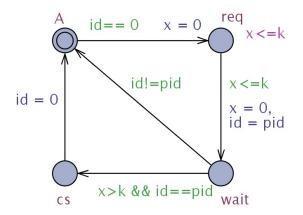
- id shared variable, initialized -1
- assumption: known upper bound D on reading/writing variable in shared memory, for correctness it is necessary that K > D

```
Process i:
while (true) {
   <noncritical section>;
   while id != -1 do \{\}
   id := i;
   delay K;
   if (id = i) {
      <critical section>;
      id := -1;
```

Summary

Extensions

Fischer's Protocol: Model



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- timed automata: formal syntax and semantics
- reachability problem, equivalence of valuations, region automaton
- practical verification: zones, extensions