
Introduction Mutual Exclusion Scheduling with Resources

Resource Access Control

Radek Pelánek



Introduction Mutual Exclusion Scheduling with Resources

Notions

Resources: notions

resource something needed to advance execution of a
task; e.g. printer, file, database lock, ...

shared resource resource used by several tasks

mutually exclusive resource shared resource that can be used
by only one task at a time

critical section piece of code executed under mutual exclusion
constraint



Introduction Mutual Exclusion Scheduling with Resources

Notions

Problems

1 how do we assure mutually exclusive access?
(see also Operating systems, Parallel Algorithms)

mutual exclusion algorithms
semaphores

2 how to do scheduling with resources?

priority inversion problem
priority inheritance/ceiling protocol



Introduction Mutual Exclusion Scheduling with Resources

Notions

Mutual Exclusion and This Course

mutual exclusion – recurring theme

today: overview of protocols

later:

programming: exercises (implementation of protocols)
verification: basic example for explanation, exercises



Introduction Mutual Exclusion Scheduling with Resources

Motivation

Alice, Bob, and Pets

Alice has a cat

Bob has a dog

they share a yard, cat and dog should not be in yard at
the same time

Alice and Bob cannot see the whole yard, but they see
each others window

device a “visual protocol” to ensure the “mutual
exclusion” (using e.g. flags in windows)



Introduction Mutual Exclusion Scheduling with Resources

Motivation

Alice, Bob, and their First Attempt

Alice:
1 If there is no flag in Bob’s

window:

raise flag
unleash cat

2 When cat comes back,
lower flag.

Bob:
1 If there is no flag in

Alice’s window:

raise flag
unleash dog

2 When dog comes back,
lower flag.



Introduction Mutual Exclusion Scheduling with Resources

Motivation

Alice, Bob, and Flag Protocol

Alice:

1 Raise flag.

2 When Bob’s flag is
lowered, unleash cat.

3 When cat comes back,
lower flag.

Bob:

1 Raise flag.
2 While Alice’s flag is

raised:

Lower flag.
Wait until Alice’s flag
is lowered.
Raise flag.

3 Unleash dog.

4 When dog comes back,
lower flag.



Introduction Mutual Exclusion Scheduling with Resources

Basic Setting

Several processes of the following type:

while (true) {

<noncritical section>;

<entry section>;

<critical section>;

<exit section>;

}



Introduction Mutual Exclusion Scheduling with Resources

Requirements

1 mutual exclusion: only one process at a time in the CS

2 absence of deadlock: in every situation some process can
make progress

3 absence of starvation (liveness): if a process wants to
access CS, it will eventually be able to do so

4 a process that halts in its noncritical section must do so
without interference with other processes



Introduction Mutual Exclusion Scheduling with Resources

Assumptions

each process spends only finite time in a critical section

no assumptions about relative speed of processes

process interleaving can happen at any point → protocol
must work for any possible interleaving



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

Test-and-Set Instruction

testset(i): atomic instruction (hardware support):
if i = 0 then { i := 1; return true; } else

return false;

shared variable busy (initial value 0)

while (true) {

<noncritical section>;

while not testset(busy) do {};

<critical section>;

busy := 0;

}



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

Importance of Atomicity

what happens if the testset instruction is not atomic?

which requirement is violated?

find the execution which violates mutual exclusion



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

Software Realization

now we discuss several software realizations of mutual
exclusion

at first we consider just 2 processes

we start with wrong attempts – used to illustrate concepts



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The First Attempt

shared variable turn (initial value 0)

Process 0:

while (true) {

<noncritical section>;

while turn != 0 do { };

<critical section>;

turn := 1;

}

Process 1:

while (true) {

<noncritical section>;

while turn != 1 do { };

<critical section>;

turn := 0;

}



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The First Attempt: Discussion

mutual exclusion: OK

absence of deadlock: OK

strict alternation of processes ⇒ starvation
if one process does not want to access CS or one process
wants to access CS much more often than the other one,
the protocol does not work (well)



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The Second Attempt

shared variables flag[0], flag[1] (initialised to false) –
meaning I’m in CS

Process 0:

while (true) {

<noncritical section>;

while flag[1] do { };

flag[0] := true;

<critical section>;

flag[0] := false;

}

Process 1:

while (true) {

<noncritical section>;

while flag[0] do { };

flag[1] := true;

<critical section>;

flag[1] := false;

}



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The Second Attempt: Discussion

same as non-atomic testset

absence of starvation: OK

absence of deadlock: OK

mutual exclusion not satisfied



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The Third Attempt

shared variables flag[0], flag[1] (initialed to false) –
meaning I want to access CS

Process 0:

while (true) {

<noncritical section>;

flag[0] := true;

while flag[1] do { };

<critical section>;

flag[0] := false;

}

Process 1:

while (true) {

<noncritical section>;

flag[1] := true;

while flag[0] do { };

<critical section>;

flag[1] := false;

}



Introduction Mutual Exclusion Scheduling with Resources

Simple Protocols

The Third Attempt: Discussion

absence of starvation: OK

mutual exclusion: OK

deadlock can occur



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Peterson’s Algorithm

flag[0], flag[1] (initialed to false) – meaning I
want to access CS

turn (initialized to 0) – used to resolve conflicts

Process 0:

while (true) {

<noncritical section>;

flag[0] := true;

turn := 1;

while flag[1] and

turn = 1 do { };

<critical section>;

flag[0] := false;

}

Process 1:

while (true) {

<noncritical section>;

flag[1] := true;

turn := 0;

while flag[0] and

turn = 0 do { };

<critical section>;

flag[1] := false;

}



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Peterson’s Algorithm: Discussion

mutual exclusion: OK

absence of starvation: OK

absence of deadlock: OK

Can be extended for more than 2 processes (non-trivial).



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Lamport’s Bakery Algorithm

protocol which works for n processes

simulation of a “ticket system” at post office (bakery)

process wants to access CS ⇒ it is assigned the “next”
ticket

process with the lowest ticket is allowed to access CS

non-atomicity of ticket assignment – requires special
checking



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Lamport’s Bakery Algorithm

number[i] – current ticket number
choosing[i] – I’m choosing my ticket number

Process i:

while (true) {

<noncritical section>;

choosing[i] := 1;

number[i] := 1 + max(number[0], ..., number[N-1]);

choosing[i] := 0;

for j:=0 to N-1 {

while (choosing[j]) do {}

while (number[j] != 0 and

(number[j], j) < (number[i], i)) do {}

}

<critical section>;

number[i] := 0;

}



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Fischer’s Protocol

real-time protocol – correctness depends on timing
assumptions

simple, just 1 shared variable, arbitrary number of
processes

assumption: known upper bound D on reading/writing
variable in shared memory

each process has it’s own timer (for delaying)



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Fischer’s Protocol

id – shared variable, initialized -1
each process has it’s own timer (for delaying)
for correctness it is necessary that K > D

Process i:

while (true) {

<noncritical section>;

while id != -1 do {}

id := i;

delay K;

if (id = i) {

<critical section>;

id := -1;

}

}



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Fischer’s Protocol: Exercise

1 suppose K < D: find a run which violates mutual
exclusion

2 suppose K > D: prove the correctness (advanced)



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Alur and Taubenfeld’s protocol

Fischer’s protocol: process delays even if it is the only
trying to access CS

Alur and Taubenfeld’s protocol eliminates this waiting

same assumptions as Fischer’s protocol (particularly
known D)

x, y – shared int variables, z – shared boolean variable



Introduction Mutual Exclusion Scheduling with Resources

Well-known Protocols

Alur and Taubenfeld’s protocol

Process i:

while (true) {

<noncritical section>;

start: x:=i;

while (y != 0) do {}

y := i;

if (x != i) { delay 2*D;

if (y != i) goto start;

while (! z) do {}; }

else {z := true; }

<critical section>;

z := false;

if (y == i) y:= 0;

}



Introduction Mutual Exclusion Scheduling with Resources

Semaphores

Semaphores

operating system support for resource access control

semaphore: initialized to non-negative value (typically 1)

atomic operations wait, signal

decreasing/increasing value
blocking



Introduction Mutual Exclusion Scheduling with Resources

Semaphores

Semaphores

wait:

decrements the semaphore value
value becomes negative ⇒ the caller becomes blocked

signal:

increments the semaphore value
value not positive ⇒ one process blocked by the
semaphore is unblocked (usually in FIFO order)

How can we use semaphores for mutual exclusion?



Introduction Mutual Exclusion Scheduling with Resources

Semaphores

Mutual Exclusion with Semaphores

semaphore S (initialized to value 1)

while (true) {

<noncritical section>;

wait(S);

<critical section>;

signal(S);

}



Introduction Mutual Exclusion Scheduling with Resources

Scheduling: The Problem

we assume

fixed priorities of tasks – set by user or by some
scheduling algorithm
correct algorithm for controlling access to critical section

preemption

resources

access to resources is only in critical sections
critical sections guarded by semaphores



Introduction Mutual Exclusion Scheduling with Resources

Example of Blocking



Introduction Mutual Exclusion Scheduling with Resources

Blocking on Critical Section

previous example:

necessary blocking

needed for ensuring mutually exclusive access

bounded waiting, typically very short



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Priority Inversion Problem?

suppose straightforward scheduling:

the ready process with highest priority is running
exception: waiting for access to critical section

can the following happen?

process J1 has higher priority than process J2
J1 is waiting
J2 is running noncritical code



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Priority Inversion Problem!

tree jobs: J1, J2, J3, priorities p1 > p2 > p3

J1, J3 share a resource R

sample run:

J3 acquires access to R
preempted by J1; later J1 wants access to R, thus J1 is
blocked, control returns to J3
preempted by J2

a lower priority task (J2) is running although a higher
priority task (J1) is blocked even through these two tasks
do not have a conflict on a resource ⇒ priority inversion

priority inversion is potentially unbounded



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Illustration



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Mars Pathfinder

unmanned spacecraft, landed on Mars in 1997

frequent deadlocks ⇒ resets, loss of time



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Mars Pathfinder

information bus – shared resource

tasks:

meteorological data gathering task – infrequent, low
priority thread
communications task – medium priority
bus management task – frequent, high priority thread

priority inversion ⇒ bus management task late ⇒ system
watchdog assumes fatal error ⇒ system reset

no data loss, but remainder of that day activities were not
accomplished until the next day



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Solution?

how would you solve the problem?

devise a scheduling protocol such that “priority inversion
problem” does not occur



Introduction Mutual Exclusion Scheduling with Resources

Priority Inversion Problem

Solutions

simple solution: non-preemptive critical sections
disadvantage: a higher priority task can be unnecessary
blocked by an “irrelevant” critical section of a lower
priority task

we will consider two more sophisticated solutions:

priority inheritance protocol
priority ceiling protocol



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Priority Inheritance Protocol

The idea

When a task blocks one or more higher-priority tasks, it
temporarily assumes (inherits) the highest priority of the
blocked tasks.

realization non-trivial: (not just) nested critical sections



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Protocol Definition

basic scheduling based on priorities (FIFO)

if job Ji tries to acquire a resource which is already used
by a lower priority job Jk then:

Ji is blocked
Jk resumes and temporarily inherits priority of Ji

when a job Jk releases a resource, then:

the highest priority job blocked on that resource (if there
is any) is awakened
Jk assumes the highest priority of jobs still blocked by
Jk , if there are none then Jk assumes its normal priority

priority inheritance is transitive



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Example: Blocking



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Two Kinds of Blocking

direct blocking

high-priority job tries to acquire a resource
already held by a lower-priority job
necessary to ensure the consistency of shared
resources

push-through blocking

medium-priority job is blocked by a
lower-priority job that has inherited a higher
priority from a job it directly blocks
necessary to avoid unbounded priority
inversion



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Example 2: Nested Critical Sections



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Example 3: Transitive Inheritance

transitive inheritance can occur only in the presence of nested
critical sections



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Key Property

Priority Inheritance Protocol ensures bounded waiting for
resources.



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Implementation Considerations

each tasks: nominal priority, active priority

semaphore:

additional field: holder (identification of a process that
has the lock)
pi wait() – if locked then: store to the queue, inherit
priority
pi signal() – update active priority, if queue not
empty then awaken the highest priority task in queue
(update holder)



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Priority Inheritance Protocol

Recapitulation:

The idea

When a task blocks one or more higher-priority tasks, it
temporarily assumes (inherits) the highest priority of the
blocked tasks.



Introduction Mutual Exclusion Scheduling with Resources

Priority Inheritance Protocol

Example

τ1 τ2 τ3
Ci 2(= 1 + 1) 2(= 2 + 0) 4(= 0 + 4)
Ti 6 8 12

C (= X + Y ) means: X time units before critical section,
Y time units in critical section

priorities τ1 > τ2 > τ3, scheduling according to RM

construct schedules:

without any protocol
with priority inheritance protocol



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Deadlock

another problem with (multiple) resources: possible
deadlocks

nested critical sections

exercise: find the exact scenario

priority inheritance protocol does not adress this issue

priority ceiling protocol prevents both:

deadlocks
priority inversion



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Priority Ceiling Protocol

The idea

The protocol does not allow a job to enter a critical section if
there are locked semaphores that could block it.
Once a job enters its first critical section, it can never be
blocked by lower-priority jobs until completion of the critical
section.



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Protocol Definition – Semaphores

access to critical sections controlled by semaphores

each semaphore Sk is assigned a priority ceiling C (Sk) =
priority of the highest priority job that can lock it

static value, can be computed off-line



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Protocol Definition – Jobs

let Ji be a ready job with the highest priority

let S∗ be the semaphore with the highest priority ceiling
among all the semaphores locked by jobs other then Ji

to enter any critical section, Ji must have priority higher
then C (S∗); otherwise Ji becomes blocked

when a job Ji is blocked, it transmits its priority to a job
that holds the resource – details are similar to priority
inheritance



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Example

semaphore S0 S1 S2
priority ceiling p(J0) p(J0) p(J1)



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Properties

Priority Ceiling Protocol:

ensures bounded blocking time of high priority jobs

prevents deadlocks due to circular blocking of resources



Introduction Mutual Exclusion Scheduling with Resources

Priority Ceiling Protocol

Summary

1 how do we assure mutually exclusive access?

mutual exclusion, absence of deadlock, absence of
starvation, ...
protocols: peterson, fischer, bakery, ...
semaphores

2 how to do scheduling with resources?

priority inversion problem
priority inheritance protocol
priority ceiling protocol


	Introduction
	Notions
	Motivation

	Mutual Exclusion
	Simple Protocols
	Well-known Protocols
	Semaphores

	Scheduling with Resources
	Priority Inversion Problem
	Priority Inheritance Protocol
	Priority Ceiling Protocol


