
Concurrency Communication and Synchronization RT Facilities

Real Time Programming: Concepts

Radek Pelánek

Concurrency Communication and Synchronization RT Facilities

Plan

at first we will study basic concepts related to real time
programming

then we will have a look at specific programming
languages and study how they realize these concepts

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Real Time and Concurrency

typical architecture of embedded real time system:

several input units
computation
output unit
data logging/storing

i.e., handling several concurrent activities

concurrency is natural for real time systems

motivation: Johan Nordlander’s slides

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Concurrent Programming

programming notation and techniques

expressing potential parallelism and solving the resulting
synchronization and communication problems

implementation of parallelism is essentially independent of
concurrent programming

concurrent programming provides an abstract setting in
which to study parallelism without getting bogged down
in the implementation details

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Automatic Interleaving

interleaving of processes (threads) is automatic

programmer doesn’t have to execute specific instructions
to make switching processes happen, or take specific
action to save the local context when switching occurs

programmer must be prepared that switching might occur
at any time

who does the switching?

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Support for Concurrent Programming

support by the programming language

examples: Ada, Java
advantages: readability, OS independence, checking of
interactions by compiler

support by libraries and the operating system

examples: C/C++ with POSIX
advantages: multi-language composition, possibly more
efficient, OS standards

More about these issues in the next lecture.

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Implementation of Concurrent Programming

multiprogramming processes multiplex their execution on a
single processor

multiprocessing processes multiplex their execution on a
multiprocessor system with access to shared
memory

distributed processing processes multiplex their execution on
several processors which do not share memory

Concurrency Communication and Synchronization RT Facilities

Concurrent Programming

Variation

Concurrent programming languages differ in:

structure:

static: the number of processes fixed and known at
compile time
dynamic: processes created at run-time

level:

flat: processes are defined only at the outermost level of
the program
nested: processes are allowed to be defined within
another processes

granularity:

coarse: few long-lived processes
fine: many short-lived processes

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

About Processes...

what is process

process vs thread

lifecycle of a process – creation, termination

interprocess relations

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Process

process is a running instance of a program

processes execute their own virtual machine to avoid
interference from other processes

it contains information about program resources and
execution state, e.g.:

environment, working directory,...
program instructions
registers, heap, stack
file descriptors
signal actions, inter-process communication tools (pipes,
messages)

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Thread

exists within a process, uses process resources

unique execution of machine instructions, can can be
scheduled by OS and run as independent entities

keeps it own: execution stack, local data, etc.

share global process data and resources

“lightweight” (compared to processes)

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Processes and Threads

Unix process Threads within a unix process

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Threads: Resource Sharing

changes made by one thread to shared system resources
(such as closing a file) will be seen by all other threads

two pointers having the same value point to the same
data

reading and writing to the same memory locations is
possible, and therefore requires explicit synchronization by
the programmer

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Processes and Threads

in most of the following we will not strictly distinguish
between processes and threads

we use ‘process’ as a general term

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Process States

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Process Representation

explicit process declaration

cobegin, coend

fork and join

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Process Termination

completion of execution of the process body

‘suicide’ by execution of a self-terminate statement

abortion, through the explicit action of another process

occurrence of an error condition

never (process is a non-terminating loop)

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Interprocess Relations

parent-child: a parent is a process that created a child;
parent may be delayed while child is being created and
initialized

guardian-dependent: a guardian is affected by termination
of a dependent

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Process States II

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Concurrency is Complicated ...

Source: G. Holzmann

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Source: G. Holzmann

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Source: G. Holzmann

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Source: G. Holzmann

Concurrency Communication and Synchronization RT Facilities

Processes and Threads

Puzzle

(puzzle illustrating that concurrency is complicated)

c := 1, x1 := 0, x2 := 0

x1 := c x2 := c
x1 := x1 + c ‖ x2 := x2 + c
c := x1 c := x2

Both processes repeat the given block of 3 commands.

Can c attain value 5?

Can c attain any natural value?

Concurrency Communication and Synchronization RT Facilities

Communication and Synchronization

synchronization

satisfaction of constraints on the interleaving
of actions of processes
e.g., action by one process occurring after an
action by another

communication

the passing of information from one process
to another

Concurrency Communication and Synchronization RT Facilities

Communication and Synchronization

Linked concepts:

communication requires synchronization

synchronization ∼ contentless communication

Concurrency Communication and Synchronization RT Facilities

Data Communication

shared variables

message passing

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Shared Variables Communication

unrestricted use of shared variables is unreliable

multiple update problem

example: shared variable X , assignment X := X + 1

load value of X into a register
increment value of the register
store the value in the register back to X

two processes executing these instructions ⇒ certain
interleavings can produce incorrect results

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Avoiding Interference

parts of process that access shared variables must be
executed indivisibly with respect to each other

these parts are called critical section

required protection is called mutual exclusion

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Process States III

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Mutual Exclusion

specialized protocols (Peterson, Fischer, ...)

semaphores

monitors

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Semaphores

semaphore may be initialized to non-negative value
(typically 1)

wait operation: decrements the semaphore value, if the
value becomes negative, the caller becomes blocked

signal operation: increments the semaphore value, if the
value is not positive, then one process blocked by the
semaphore is unblocked (usually in FIFO order)

both operations are atomic

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Criticism of Semaphores

elegant low-level primitive

usage is error-prone

hard to debug

more structured synchronization primitive is useful

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Monitores

encapsulation and efficient condition synchronization

critical regions are written as procedures

all encapsulated in a single module

all variables that must be accessed under mutual
exclusion are hidden

procedure calls into the module are guaranteed to be
mutually exclusive

Concurrency Communication and Synchronization RT Facilities

Shared Variables

Monitors

Hoare style Java style

Concurrency Communication and Synchronization RT Facilities

Message Passing

Messages Passing: Synchronization Models

asynchronous (no-wait) send operation is not blocking,
requires buffer space

synchronous (rendezvous) send operation is blocking, no
buffer required

remote invocation (extended rendezvous) sender is blocked
until reply is received

Concurrency Communication and Synchronization RT Facilities

Message Passing

Synchronous Messages

Concurrency Communication and Synchronization RT Facilities

Message Passing

Asynchronous Messages

Concurrency Communication and Synchronization RT Facilities

Message Passing

Asynchronous with Bounded Buffer

Concurrency Communication and Synchronization RT Facilities

Message Passing

Message Passing: Naming

(in)direction

direct naming: send msg to process-name
indirect naming: send msg to mailbox

symmetry

symmetric: both sender and receiver name each other
asymmetric: receiver names no specific source

Concurrency Communication and Synchronization RT Facilities

General Remarks

Aspects of Real Time

An external process to sample

a program can read a real-time clock just as it samples
any external process value (e.g. the temperature)

An external process to react to

a program can let certain points in time denote events
(e.g. by means of interrupts by a clock)

An external process to be constrained by

a program might be required to ”hurry” enough so that
some externally visible action can be performed before a
certain point in time

Concurrency Communication and Synchronization RT Facilities

General Remarks

What Time?

units?
seconds, milliseconds, cpu cycles, system “ticks”, ...

since when?
Christ’s birth, Jan 1 1970, system boot, program start,
explicit request, ...

real time, cpu time, ...

resolution

Concurrency Communication and Synchronization RT Facilities

General Remarks

Importance of Units

Mars Climate Orbiter, $125 million project

failure

mix up between metric and imperial units

Concurrency Communication and Synchronization RT Facilities

General Remarks

Requirements for Interaction with ‘time’

For RT programming, it is desirable to have:

access to clocks

delays

timeouts

deadline specification and scheduling

Concurrency Communication and Synchronization RT Facilities

General Remarks

Access to Clock

requires a hardware clock that can be read like a regular
external device

mostly offered as an OS service, if direct interfacing to
the hardware is not allowed

Concurrency Communication and Synchronization RT Facilities

General Remarks

Delays

absolute delay (wake me at 2 hours)

relative delay (wake me in 2 hours)

delaying (sleeping) amounts to defining a point in time
before which execution will not continue — a lower
real-time constraint

Concurrency Communication and Synchronization RT Facilities

Delays

Delays

Concurrency Communication and Synchronization RT Facilities

Delays

A Cyclic Task (An Attempt)

while (1) {

delay(100);

do_work();

}

What is wrong with this piece of code?

Concurrency Communication and Synchronization RT Facilities

Delays

A Cyclic Task (An Attempt)

while (1) {

delay(100);

do_work();

}

What is wrong with this piece of code? Nothing, but ...

if the intent is to have do work() run every 100
miliseconds

the effect will not be the expected one

accumulating drift

Concurrency Communication and Synchronization RT Facilities

Delays

Accumulating Drift

Each turn in the loop will take at least 100 + x milliseconds,
where x is the time taken to perform do work()

Concurrency Communication and Synchronization RT Facilities

Delays

Accumulating Drift II

Delay is just lower bound, a delaying process is not guaranteed
access to the processor (the delay does not compensate for
this)

Concurrency Communication and Synchronization RT Facilities

Delays

Eliminating Drift: Timers

set an alarm clock, do some work, and then wait for
whatever time is left before the alarm rings

this is done with timers

a timer could be set to ring at regular intervals

thread is told to wait until the next ring — accumulating
drift is eliminated

even with timers, drift may still occur, but it does not
accumulate (local drift)

Concurrency Communication and Synchronization RT Facilities

Delays

Timeouts

timeouts useful for communication and synchronization

implemented by timers

Concurrency Communication and Synchronization RT Facilities

Delays

Summary

real time programming is closely connected with
concurrent programming

processes (threads), process states, initialization,
termination, relations

communication, synchronization: shared variables (mutual
exclusion), message passing

real time requirements: access to clocks, delaying,
timeouts

	Concurrency
	Concurrent Programming
	Processes and Threads

	Communication and Synchronization
	Shared Variables
	Message Passing

	RT Facilities
	General Remarks
	Delays

