Non-preemptive Scheduling

Precedence Constraints

Aperiodic Task Scheduling

Radek Pelánek

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Preemptive Scheduling: The Problem

- 1 processor
- arbitrary arrival times of tasks
- preemption
- performance measure: maximum lateness
- no resources, no precedence constraints

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

	J 1	J 2	J 3	J 4	J 5
a i	0	0	2	3	6
Ci	1	2	2	2	2
d _i	2	5	4	10	9

- Solve the example (manually).
- **2** Try to find out a scheduling algorithm.

Non-preemptive Scheduling

Precedence Constraints

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

Earliest Deadline First

Earliest Deadline First Algorithm

EDF

At any instant execute the task with the earliest absolute deadline among all the ready tasks.

Non-preemptive Scheduling

Precedence Constraints

Summary

Earliest Deadline First

Example – EDF Schedule

	J 1	J 2	J 3	J 4	J 5
a i	0	0	2	3	6
Ci	1	2	2	2	2
d i	2	5	4	10	9

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Earliest Deadline First

Theorem (Horn)

Given a set of n independent tasks with arbitrary arrival times, the EDF algorithm is optimal with respect to minimazing the maximum lateness.

Non-preemptive Scheduling

Precedence Constraints

Summary

Earliest Deadline First

Proof of Horn's Theorem

Basic idea of the proof:

- let σ be optimal schedule; we transform it into EDF schedule σ_{EDF} without increasing maximum lateness
- schedule is divided into time slices of 1 unit
- transformation: interchange 1 appropriate time slice

Non-preemptive Scheduling

Precedence Constraints

< 注→

æ

Earliest Deadline First

Proof of Horn's Theorem (cont.)

Figure 3.4 Proof of the optimality of the EDF algorithm. a. schedule σ at time t = 4. b. new schedule obtained after a transposition.

Non-preemptive Scheduling

Precedence Constraints

Earliest Deadline First

Guarantee Test

- is the set of tasks schedulable?
- sort tasks by increasing deadlines
- synchronous activation (a_i = 0) schedulability guaranteed by conditions:

$$\forall i: \Sigma_{k=1}^i C_k \leq d_i$$

 asynchronous activation: "dynamical version" of the previous test

Preemptive	Scheduling
0000000	000

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Earliest Deadline First

EDF is Fine

EDF:

- is optimal
- works on-line
- easy to implement
- simple guarantee test

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Earliest Deadline First

... but Not a Silver Bullet

- EDF is not optimal with more than 1 processor
- Try to find a specific set of tasks:
 - the set is schedulable on 2 processor
 - EDF schedule misses some deadline

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Earliest Deadline First

EDF with More Processors

Schedulable, but EDF schedule misses deadline for J_3 .

Non-preemptive Scheduling

Precedence Constraints

Summary

Least Slack Time

Least Slack Time Algorithm

LST

At any instant execute the task with the least slack time (that is $d_i - C_i$) among all the ready tasks.

LST is also optimal.

Least Slack Time

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find a set of task such that EDF and LST produce different schedules.

Non-preemptive Scheduling

Precedence Constraints

Summary

Non-preemptive Scheduling: The Problem

- I processor
- arbitrary arrival times of tasks
- preemption not allowed
- performance measure: maximum lateness
- no resources, no precedence constraints

EDF

Non-preemptive Scheduling

Precedence Constraints

Summary

Non-optimality of EDF

EDF is not optimal for non-preemptive scheduling.

Find a set of task such that EDF does not produce optimal schedule.

EDF

Non-preemptive Scheduling

Precedence Constraints

Summary

Non-optimality of EDF

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の � @

EDF

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EDF and Non-idle Schedules

- non-idle algorithm does not permit the processor to be idle when there are active jobs
- $\bullet\,$ restriction to non-idle algorithms $\Rightarrow\, \mathsf{EDF}$ is optimal

Non-preemptive Scheduling

Precedence Constraints

Summary

Brute Force

Optimal Scheduling

- no on-line algorithm can generate optimal schedule (example above: time 0, stay idle or start J₁?)
- off-line: non-preemptive scheduling is NP-complete
- branch-and-bound (backtracking) algorithms, worst case complexity O(n · n!)

Non-preemptive Scheduling

Precedence Constraints

Summary

Brute Force

Search Tree

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Non-preemptive Scheduling

Precedence Constraints

Summary

Brute Force

Reminder: Backtracking, n Queen Problem

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Brute Force

Pruning

- branch is abandoned when:
 - the addition of any node to the current path causes a missed deadline
 - a feasible schedule is found at the current path
- size of the search tree is exponential in the worst case
- significant pruning in the average case

Non-preemptive Scheduling

Precedence Constraints

Summary

Brute Force

Pruning: Example

_	J 1	J 2	J 3	J 4
a _i	4	1	1	0
Ci	2	1	2	2
d i	7	5	6	4

Number in the node = scheduled task

Number outside the node = finishing time

) = feasible schedule

▲■▼▲車▼▲車▼ 車 めんの

Brute Force

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

	$ J_1 $	J_2	J_3	J_4
ai	0	4	2	6
C_i	6	2	4	2
di	18	8	9	10

Draw the search tree (with pruning).

Non-preemptive Scheduling

Precedence Constraints

Summary

Scheduling with Precedence Constraints

- generally NP-complete
- we consider two special cases, polynomial algorithms
- remark on heuristical approach

Non-preemptive Scheduling

Precedence Constraints

Summary

Latest Deadline First

Precedence Constraints: Problem 1

- 1 processor
- precedence constraints
- synchronous activation $(\forall i : a_i = 0)$
- (preemption does not matter)
- performance measure: maximum lateness

Latest Deadline First

Example

Non-preemptive	Scheduling

Precedence Constraints

	J1	J ₂	J 3	J 4	J 5	J 6	-	DAG
Ci	1	1	1	1	1	1		(
d i	2	5	4	3	5	6		

- solve the example (manually)
- construct the EDF schedule
- Stry to find out an optimal scheduling algorithm

Non-preemptive Scheduling

Precedence Constraints

Summary

Latest Deadline First

Latest Deadline First Algorithm

- one possible solution: *latest deadline first* (LDF)
- note: different interpretations
 - EDF algorithm = *earliest deadline* job is scheduled to run *first*
 - LDF algorithm = *latest deadline* job is put into schedule *first*

Non-preemptive Scheduling

Precedence Constraints

Summary

Latest Deadline First

Latest Deadline First Algorithm

LDF

- among tasks without successors select the task with the latest deadline
- remove this task from the precedence graph and put it into a stack
- repeat until all tasks are in the stack
- the stack represents the order in which tasks should be scheduled

LDF is optimal.

Non-preemptive Scheduling

2

0

3

Precedence Constraints

Summary

Latest Deadline First

LDF: example

5

7

6

. ≣ ▶ ≣ • • • • •

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Modified EDF

Precedence Constraints: Problem 2

- 1 processor
- precedence constraints
- arbitrary arrival times of tasks
- preemption
- performance measure: maximum lateness

Non-preemptive Scheduling

Precedence Constraints

Modified EDF

Precedence constraints: $A \rightarrow C; A \rightarrow D; B \rightarrow D, B \rightarrow E; E \rightarrow D; C \rightarrow F; D \rightarrow F$

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Modified EDF

Basic Idea

- transform set J of dependent tasks into set J* of independent tasks
- ② apply EDF to set J*

transformation done by modification of arrival times and deadline times

Non-preemptive Scheduling

Precedence Constraints

Summary

Modified EDF

Modification of Arrival Times

- If $J_Y \to J_X$ then:
 - $s_X \ge a_X$ J_X cannot start earlier than its activation time
 - $s_X \ge a_Y + C_Y$

 J_X cannot start earliear than the minimum finishing time of J_Y

Non-preemptive Scheduling

Precedence Constraints

Summary

Modified EDF

Modification of Arrival Times (cont.)

new arrival time:

$$a_X * = max(a_X, max(a_Y + C_Y, J_Y \rightarrow J_X))$$

modified arrival time must be computed in the correct order (given by precedence constraints)

Non-preemptive Scheduling

Precedence Constraints

Modified EDF

Modification of Deadlines

- If $J_X \to J_Y$ then:
 - $f_X \le d_X$ J_X must finish within its deadline

•
$$f_X \leq d_Y - C_Y$$

 J_X must finish not later than the maximum starting time of J_Y

Non-preemptive Scheduling

Precedence Constraints

Summary

Modified EDF

Modification of Deadlines (cont.)

new deadline:

$$d_X * = \min(d_X, \min(d_Y - C_Y, J_X \to J_Y))$$

modified deadline times must be computed in the correct order (given by precedence constraints)

Modified EDF

Optimality

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

Theorem

There exists feasible schedule for the modified task set J* under EDF if and only if the original task set is schedulable.

Non-preemptive Scheduling

Precedence Constraints

Summary

Modified EDF

Precedence constraints: $A \rightarrow C; A \rightarrow D; B \rightarrow D, B \rightarrow E; E \rightarrow D; C \rightarrow F; D \rightarrow F$

	A	В	С	D	Ε	F
а	0	2	5	4	1	2
С	3	2	2	3	1	3
d	8	8	13	4 3 10 5 10	5	14
a*	0	2	5	5	4	8
d*	7	4	11	10	5	14

Non-preemptive Scheduling

Precedence Constraints

Modified EDF

Example

- precedence constraints: $A \rightarrow C, B \rightarrow C, C \rightarrow E, D \rightarrow F, B \rightarrow D, C \rightarrow F, D \rightarrow G$
- all tasks: a_i = 0, D_i = 25, computation times: 2, 3, 3, 5, 1, 2, 5
- compute modified arrival times and deadlines
- compute schedule according to EDF

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Heuristical algorithms

Heuristical search

- more complicated problems (e.g., non-preemptive, precedence constraints) NP-complete
- brute-force search (with pruning)
- heuristical search
 - only some schedules are considered
 - no guarantee of optimality
- note: general computer science approach

Non-preemptive Scheduling

Precedence Constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Heuristical algorithms

Heuristical search

- constructs partial schedules (like brute-force search)
- considers only one (or few) tasks for extension of a schedule
- selection based on heuristic function H

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Heuristical algorithms

Heuristic function

- $H(i) = a_i$ first come first serve $H(i) = C_i$ shortest job first
- $H(i) = d_i$ earliest deadline first
 - more complicated parameters (taking into account precedence relations, resources, ...)
 - weighted combinations of different parameters

Non-preemptive Scheduling

Precedence Constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Overview of Problems and Algorithms

	sync. act.	preemptive		non-	
		async. act.		preem	ptive
				async.	act.
independent	EDF,	EDF, LST,		tree	search,
	$O(n \log n)$) $O(n^2)$		O(n ·	n!)
precedence	LDF,	modified EDF,		heuristic	
	$O(n^2)$	$O(n^2)$		search	1

Summary

- aperiodic task scheduling (arbitrary arrival times)
- 1 processor, no resources
- precedence constraints: yes/no
- preemption: yes/no
- performance measure: maximum lateness
- algorithms: earliest deadline first (EDF), least slack time (LST), branch and bound, latest deadline first (LDF), transformations