
Automatic Fusions of CUDA-GPU Kernels for Parallel Map

Jan Fousek
Faculty of Informatics
Masaryk University
izaak@mail.muni.cz

Jiří Filipovič∗
Faculty of Informatics
Masaryk University

fila@ics.muni.cz

Matúš Madzin
Faculty of Informatics
Masaryk University
gotti@mail.muni.cz

ABSTRACT
When implementing a function mapping on the contem-
porary GPU, several contradictory performance factors
affecting distribution of computation into GPU kernels
have to be balanced. A decomposition-fusion scheme
suggests to decompose computational problem to be
solved by several simple functions implemented as stan-
dalone kernels and to fuse some of these functions later
into more complex kernels to improve memory locality.
In this paper, a prototype of source-to-source compiler
automating the fusion phase is presented and the im-
pact of fusions generated by the compiler as well as
compiler efficiency is experimentally evaluated.

1. INTRODUCTION
In this paper, we address the optimization of the im-

plementation of function mapping by optimizing the
distribution of the computation into kernels. We call
the function f is mapped to lists of input elements
L1, .., Ln when f is applied element-wise to L1, .., Ln
producing list of output elements. Formally map(f, L1,
.., Ln) = [f(l1,1, .., ln,1), .., f(l1,m, .., ln,m)], where li,j is
j-th element of Li. The function f is mapped to partic-
ular elements independently, thus it can be massively
parallelized. However, it can be difficult to implement
the mapped function efficiently as it is necessary to find
efficient distribution of the solved task into kernels.

CUDA GPUs use several levels of explicitly managed
memories, which differ in their size, latency, bandwidth
and lifetime. We distinguish between two major types
of memory – off-chip and on-chip. The off-chip memory
has usually greater size, longer latencies, lower band-
width and a lifetime of the application. The on-chip
memory is smaller and faster, thus it is used to store
data which is accessed frequently during the computa-
tion. It has also restricted lifetime, thus the on-chip
memory can be used only for intermediate data used
during GPU kernel execution and data passed from one
kernel to another have to be stored in off-chip memory.

The instruction throughput of the GPUs is signif-
icantly higher than the off-chip memory throughput.
Thus, it is necessary to perform enough operations per
data passed from or to the off-chip memory within single
kernel to exploit the computational power of the GPU.

∗The financial support provided by Ministry of Education,
Youth and Sport of the Czech Republic under the research
program MSM0021622419 is acknowledged.

However, it is not always beneficial to put more com-
putation into a single kernel. During the computation,
the size of processed data as well as number of threads
which can efficiently process data in parallel vary signif-
icantly. If it happens within single kernel, there is risk
that the achievable parallelism is reduced in part of the
kernel computation which can decrease the overall per-
formance. Moreover, the larger amount of computation
within single kernel can consume more on-chip memory
by intermediate data, which can reduce parallelism too
as the size of on-chip memory is limited.

Because putting more computation into single kernel
can bring performance benefit due to reducing off-chip
bandwidth pressure as well as performance loss due to
reduced parallelism, finding the optimal distribution of
computation to kernels can be difficult.

To handle the problem of distributing computation
into kernels, we have suggested a decomposition-fusion
scheme [3]. The whole function is decomposed into
several elementary functions and implemented as stan-
dalone kernels, which are often memory-bounded, as
they have usually low computations to memory trans-
fers ratio. After that, sets of these functions, which can
perform better in one kernel, are fused.

This scheme brings several advantages. The elemen-
tary functions are easier to implement and often reusable,
as they can be more general compared to the more
complex ones. To develop more complex kernels, the
simple functions are fused (which basically means that
their computation parts using data in on-chip memory
are serialized), which is easier and less error-prone that
manually developing complex functions from scratch.

The kernels fusions are not provided by general com-
pilers, as it is very hard to maintain code correctness of
fused code (e. g.there is implicit global barrier between
kernels invocations and the thread-to-data arrangement
can be different in different kernels). On the other hand,
with scheme proposed in [3] and extended in this paper
it is possible to develop a source-to-source compiler,
which is able to automatically optimize sequences of
simple functions by fusing them.

The contributions of this paper are as follows:

• we define the space of all possible fusions and al-
gorithm used to traverse and prune it

• we introduce performance prediction method al-
lowing us to search for implementation available in
pruned fusions space which should have the high-
est performance

42

• based on these observations, we introduce proto-
type of source-to-source compiler automatizing gen-
eration of code with fusions

• we evaluate the performance of the generated code
and the compiler efficiency

2. RELATED WORK
Our original motivation comes from finite element

analysis, where the same computations are mapped to
many elements of mesh during assembly of equations. In
the literature, several GPU acceleration of per-element
computations can be found [6] [7] [8] with manually op-
timized code to kernels distribution. The manual op-
timization is possible, because concrete computational
problem is solved [6] [7], or several quite complex ker-
nels are developed to solve specific class of problems [8].
We have introduced the fusion of elementary functions
in [3], however, without detail study on searching for
most the effective fusions.

The fusions of GPU kernels are studied in several pa-
pers from different fields. The GPU implementation
of MapReduce fuses map kernels [1] exchanging data
in on-chip memory. However, all functions are always
fused here as there cannot be significant differences in
on-chip memory usage and single data element is always
processed by one thread. The more heterogeneous fu-
sions are allowed in Thrust library [4], which allows pro-
grammer to explicitly fuse memory-bounded functions
into single kernel. The additional value of research pre-
sented in our paper is automating the decision which
kernels should be fused to maximize performance.

3. COMPILER DESIGN
The complex mapped function is decomposed to sev-

eral elementary functions and is solved by sequence of
their calls. The compiler works with library of such ele-
mentary functions and simple user high-level code which
describes sequence of their calls. It is possible to exe-
cute elementary functions as standalone kernels, or fuse
some subsets of them into more complex kernels. The
compiler searches the space of possible fusions and fuse
the functions when it is expected to improve the per-
formance. The compiler’s results can be improved by
automatic empirical evaluation of several implementa-
tions of the complex function with the highest expected
performance.

The current implementation of the compiler intro-
duces several restrictions for the elementary functions
design and their fusion.

All elementary functions are expected to have one or
more inputs and single output element. They have to
be implemented as call of loads (separate for each input
element), compute and store routines. This eases the
fusion generation, as when some functions are fused,
the stores and loads for elements that resists in on-chip
memory are omitted and the rest of calls are glued into
single kernel (see Figure 1).

Another simplification restricts on-chip memory allo-
cation such that all data elements are expected to be
stored in shared memory. Thus, the memory consump-
tion of the fusion can be determined easily and functions
with different parallel granularity (number of threads

load
compute

store

load
compute

store

load
compute

compute
store

Figure 1: Example of simple fusion.

solving single instance) can be fused without difficult
data rearrangement.

The code generator has to maintain correct on-chip
memory allocation, computation of thread coordinates
(when some fused functions runs in different parallel
granularity) and synchronizations.

However, these simplifications bring some limitations
too. First, as the fusion is performed by omitting loads
and stores and does not affect compute routines (e. g.
performing loop fusions). Second, the data elements
used by functions have to be small enough to be pro-
cessed in single load(s)-compute-store sequence (the only
way to process larger data elements which require itera-
tive loading and computing is to divide them to smaller
elements). Third, as only shared memory can be used to
store processed data elements, the performance can be
reduced, because registers cannot reduce shared mem-
ory usage and because some computations can be faster
using registers [9].

4. AUTOMATIC FUSIONS GENERATION
There is a large number of possibilities how to gen-

erate fusions of elementary functions. The subset of
elementary functions that is to be fused is called fu-
sion. The concrete implementation of a fusion (i. e. the
form that the CUDA code can be unambiguously gener-
ated from) is called fusion implementation and the se-
lection of fusion implementations and standalone func-
tions that together solve the complex function is called
fusions combination.

In this section, we describe the space of possible fu-
sions, their implementations and combinations of fusion
implementations. As the space is large, we introduce
several methods to prune it and predict the performance
of the remaining fusions implementations.

4.1 Example of Mapped Function
Example Listing 1 shows high-level description of map-

ped function f : F = ||A · B · v||2 · (C · D + C) where
A and B are 3× 3 matrices, the v is a vector of size 3,
the C and D are 5× 5 matrices and ||x||2 is a vector l2-
norm. Recall that this code describes the computation
of a single instance of the function (i. e. all input and
output variables are single elements of input and out-
put lists of the map function) and multiple instances
are applied to multiple elements in parallel by map.

We note that this function is artificial and not op-
timized from algebraic point of view – it is example of
function where the size of data elements and exploitable
parallelism varies significantly, thus the searching for
efficient fusions is difficult here. As you can see, the

43

original function has been decomposed to elementary
functions with explicitly named and typed intermedi-
ate results. First four rows declare the types of the
used variables. Lines 6 and 15 denote the input and
output arguments of the mapped function.

Listing 1: Example description of the mapped
function

1 MATRIX3x3 A, B, M1;
2 MATRIX5x5 D, E, F , M2, M3;
3 VECTOR3 c , v1 ;
4 SCALAR s1 ;
5

6 input A, B, c , D, E;
7

8 M1 = mmul33(A, B) ; // M1 = A · B
9 v1 = mvmul33(M1, c) ; // v1 = M1 · c

10 s1 = venorm3 (v1) ; // s1 = ||v1||2
11 M2 = mmul55(D, E) ; // M2 = D · E
12 M3 = madd55(M2, D) ; // M3 = M2 +D
13 F = smmul55 (M3, s1) ; // F = M3 · s1
14

15 re turn F ;

Most of used functions are implemented with mul-
tiple parallel granularities: single instance of mmul33
can be solved by 1, 3 or 9 threads, mvmul33 by 1 or 3,
mmul55, madd55 and smmul55 in 1, 5 or 25 threads.
We note that shared memory access in these functions
must be implemented carefully to minimize bank con-
flicts between their individual instances (see [2] for more
details).

We will use this example throughout the rest of the
paper to illustrate the particular steps of the optimiza-
tion process and code generation.

4.2 Degrees of Freedom
There are several degrees of freedom in fusing given

decomposition of mapped function. The computation
is defined by direct acyclic graph (DAG) G = (V,E),
where vertices V represent simple functions calls and
edges E represent data dependency between functions.

The space of all possible fusions consists of:

• all fusible subgraphs of the DAG

• all linearizations of particular fusions

• all implementations of elementary functions within
fusion

• all valid (non-overlapping) combinations of the fu-
sions implementations

These degrees of freedom are elaborated in more de-
tail in following paragraphs.

4.2.1 Fusible Subgraphs
The subgraph GF ⊆ G can in general be fused, if

there is no outgoing edge from GF such that there is a
path beginning with this edge and returning back to the
component in GF . Such a path needs to compute some
data outside the fusion but during fusion computation,
which cannot be efficiently performed with current GPU
synchronization mechanisms. In our example in Section
4.1, this situation occurs for example if we try to fuse
A ·B and || ||2, as to compute || ||2, we need to compute
whole A ·B ·v and the last multiplication is not included
in the fusion.

Figure 2: Left: the worst case structure of a
DAG. Right: the easiest structure.

Although the fusible subgraphs are limited by this
condition, the number of such subgraphs for more com-
plex functions can grow quickly. In general the num-
ber of possible fusions on a given G = (V,E) is in the
worst case near the number of subsets of all vertices,
i. e. O(|2V |) (see Figure 2 left). On the other hand the
amount of possible fusions is O(|V |2) when the struc-
ture of the DAG is linear as depicted on the Figure 2
on the right.

4.2.2 Linearization
To translate a DAG representing the fusion subgraph

to the CUDA code a linearization has to be made. A lin-
earization of a DAG GF = (V,E) is an ordering on the
vertices such that for every vertex there is no edge lead-
ing to previous vertex. There can be obviously multiple
possible linearizations for a given DAG corresponding
to different order of execution of data-independent ker-
nels. The number of possible linearizations of a fusion
is highly dependent on the corresponding DAG com-
plexity and can reach up to |V |! different linearizations
(e. g. the worst case structure on Figure 2). The ex-
ecution order can affect the amount of used on-chip
memory and hence the parallelism reduction. Thus, the
space of possible linearizations has to be searched for
the one with lowest memory consumption. An example
of linearization and corresponding allocation is depicted
on Figure 3.

4.2.3 Implementation of Elementary Functions
Every elementary function can be present in the li-

brary in multiple distinct implementations, which differ
for example in parallel granularity (using only functions
with the best performance in unfused form is generally
insufficient as some of them can perform worse in fusion,
e.g. because of higher sensitivity to parallelism reduc-
tion). Therefore for every vertex in a GF some function
implementation has to be chosen. Let the fusion con-
tain n calls of functions, where #fi denotes number of
implementations of i-th called function. The number of
possible implementations is

∏n
i=1 #fi.

4.2.4 Fusions Combinations
Finally multiple fusions can be part of the DAG rep-

resenting the mapped function f . Therefore from all
possible candidates most effective combination has to
be chosen according to the resulting performance gain.

For example the previously defined function f can be
implemented as {||A ·B · v||2}·{(C ·D +C)}, or ||{A ·
B} · v||2·{(C ·D+C)} etc, where {f1, .., fn} expresses
that f1, .., fn are fused.

44

4.3 Search Space Pruning

4.3.1 Generation of Valid Fusions
The space of all valid fusions is large, however, it can

be pruned. We can discard fusion if it does not form a
connected component of the graph G. This condition
prunes the fusions that cannot reduce memory band-
width – in example presented in Section 4.1, if we fuse
A ·B and C ·D, there is no significant performance ben-
efit as these two multiplication do not reuse any data.

The more important observation is that the size of fu-
sions (number of fused vertices) can be limited by a cho-
sen constant. It is important to realize, that the perfor-
mance gain of the fusion stagnates for large number of
fused vertices so it is possible to consider only fusions of
limited size. The stagnation is caused by increasing the
ratio of the computations to off-chip memory transfers,
thus the large fusions become computationally bounded
and adding more functions into the fusion does not im-
prove performance. Moreover, in many cases of the
large fusions the amount of required on-chip memory
and varying parallelism reduces the performance more
significantly than the spared memory transfers can in-
crease. Therefore the number of fusions of size lower
then k is bound by the number of subsets of V of size

at most k is then in worst case:
∑k
i=1

(|V |
i

)
.

The reduction of maximal fusion size decreases sig-
nificantly the complexity of the following space explo-
ration. First, it reduces the overall number of the fu-
sions and second, the following steps are performed on
fusions with size limited by constant, thus even expo-
nential algorithms are feasible.

4.3.2 Linearizing the Fusions and Memory Alloca-
tion

The linearization is chosen to minimize expected on-
chip memory requirements. The space of all lineariza-
tions is explored and the linearization with lowest bound
of memory consumption is selected.

The algorithm generating linearizations is based on
basic recursive algorithm presented in [5]. It enumer-
ates all possible linearizations in a recursive manner
and keeps only the one with lowest bound of consump-
tion of the on-chip memory. The complexity of this
algorithm is in O(|V |!), however recall that the size of
the fusion is limited, thus there is no significant benefit
in using more sophisticated algorithm with complexity

O(|V |22|V |
) presented also in [5].

While an elementary function f is executed within a
fusion, all elements processed by f have to be stored in
the on-chip memory as well as all elements that are pro-
duced by any function before f and consumed after f .
The lower bound of memory consumption of the whole
fusion is a maximum of memory requirements during all
executions of functions within the fusion. Recall that
only shared memory is currently used by the compiler
and it is used in continuous blocks for all elements,
thus the fragmentation of the memory can occur and
the fusion with particular linearization can need more
memory, that is expected by using the lower bound.
In current implementation, we select linearization only
comparing their lower bound of memory consumption.

It is possible to compute the memory requirements of
each linearization exactly, however, it is more computa-
tionally expensive and in fusion of bounded size it seems
the fragmentation does not occur frequently.

smmul55

venorm3

madd55

mvmul33

F

M3

M2 D

v1

s1

M1 c

mvmul33

smmul55

venorm3

madd55

F

M3
s1

v1

M1 c

M2
D

M1

M2 D

M3

s1

v1

c

F

Figure 3: DAG - linearization - allocation

To determine exact allocation of elements in the shared
memory, a branch and bound algorithm is used. The
branching part of the algorithm moves elements offset
in the memory, the bounding part discards allocations
which exceeds memory requirements of the best already
explored allocation. The algorithm ends when lower
bound is found or when all possible allocations are ex-
plored. The time complexity is O(mn), where n is num-
ber of elements and m is sum of memory requirements
of all elements, as there is no reason to place any el-
ement in offset larger than m. The n is bounded by
maximal fusion size, the m is bounded by need of usage
of small elements due to small on-chip memory.

4.3.3 Fusions Combinations
As a last step a subset of all candidate fusions imple-

mentations is to be chosen. Fusions in this subset must
include all vertices of the original DAG and no vertex
of the original DAG can be included more than once.
The total predicted performance of the whole mapped
function implementation is to be maximized.

This task can be seen as an instance of set cover-
ing problem. For a G = (V,E) and a set of fusions
implementations F we define function ν : F → 2V rep-
resenting the nodes covered by given fusion implemen-
tation. Additionally we denote Iv the most efficient im-
plementation of the elementary function v: ν(Iv) = v.
A set S of candidate subsets is constructed as S =
F ∪{Iv, v ∈ V }. Then a performance of the fusions im-
plementations and the standalone elementary functions
is predicted and is referenced as a function of predicted
time per function instance τ : S → R. The cover is
then a set C ⊆ S such that

⋂
{ν(c), c ∈ C} = ∅ and⋃

{ν(c), c ∈ C} = V . The total time of the cover is
then

∑
c∈C τ(c).

In the linear programming notation each set U ∈ S
is associated with a binary variable xU representing the
participation of the set in the cover. The requirement
of empty intersection is enforced by the equations 1 and
the cost function is reformulated as equation 2.∑

U :v∈ν(U)

xU = 1,∀v ∈ V (1)

∑
s∈S

τ(s)xs (2)

45

The optimization variant of the set cover problem is
known to be NP-hard, however the linear programming
formulation has |V | equations and |V | + |F | variables
and is solved for the pruned fusions space, thus is fea-
sible.

As the performance prediction τ is not exact it is de-
sirable to generate several fusion covers with similar ex-
pected performance and empirically evaluate them. For
this purpose we iteratively restart the linear program-
ming solver on modified set S for given number of times
so that we obtain alternative solutions. The restarting
works as follows: when for a candidate set S a cover C
is computed a new candidate sets S1...Sn are created by
subtracting the particular members of the cover C from
the original candidate set S. These new candidate sets
are used if have not been generated previously. Using
this algorithm any cover can be reached as the differ-
ence between two successive candidate sets is only one
member of C.

4.4 Performance Prediction
The main idea of the performance prediction of the

fusion implementation is to sum running times of par-
ticular functions used in the fusion. As the elemen-
tary functions share same template-like design separat-
ing the load, store and computation routines, it is possi-
ble to benchmark this routines separately. However, the
parallelism in the fusion can be reduced (as in the fusion
larger amount of shared memory per function instance
can be allocated) as well as different block sizes can be
used (i. e. different number of function instances can
be processed within single block). Thus, the routines
are benchmarked for certain ranges of reduced paral-
lelism and block sizes. The performance is predicted
separately for memory transfers and computation.

The GPUs are able to overlap the computation and
memory transfers. In current implementation, we ex-
pect there are no limitation in overlapping and the func-
tion performance is determined by the performance of
slower one of memory transfers and computations.

The association of timing to the additional memory
allocation and number of function instances processed
within one thread block can be also seen as table func-
tion ψ : R×N×N→ R where R is the set of all routines
of all elementary functions.

First the amount of additionally allocated memory is
computed for each used routine r of the fused function
f in a fusion F during the performance evaluation as
∆Mr = MF −Mf . As some fused functions can require
different thread granularity per instance, the thread co-
ordinates have to be recomputed in such fusions, which
can require time expensive integer divide and modulo
operations. Thus, the tmd denotes the time spent on
thread recomputation needed to process single function
instance. Then the running time of single instance is
estimated by Equation 3, where sets RFc denotes com-
pute routines and RFm denotes load/store routines used
in the fusion F and i denotes number of function in-
stances processed by single thread block. As the amount
of shared memory used per instance is already known
at this point, the only i which does not cause total size
of shared memory exceeding can be assumed.

τ(F) = max

∑

rm∈RF
m

ψ(rm, i,∆Mrm),∑
rc∈RF

c

ψ(rc, i,∆Mrc) + tmd

 (3)

5. EXPERIMENTAL EVALUATION
In this chapter the experimental evaluation of our

compiler is presented.
The experiments were performed on single worksta-

tion equipped with Intel R© CoreTM i7 950, 6 GB RAM
and NVIDIA GeForce GTX 480 with CUDA Toolkit 3.1
and Linux Driver 256.40.

As a testing input the example code presented in
Listing 1 has been used as it provides a state space
of interesting size and also diversity in the size of pro-
cessed data elements and reasonably complicated com-
putation.

5.1 Prediction Accuracy
In this section, the predicted and real performance of

fusions implementation is compared. For this purpose
the compiler has been modified to generate all possi-
ble fusions and several implementations of each fusion.
The real performance was measured by running 31744
instances of mapped function repeatedly for 1000 times.
The resulting performance is expressed as a mean num-
ber of computed output elements per second.

The results are presented in the Figure 4. The par-
ticular fusions are on the x-axis ordered descending by
the real attained performance which is plotted on the
y-axis together with the corresponding predicted value.
As can be seen from the figure, the predicted perfor-
mance is in most cases lower than the real attained per-
formance, however it copies the general trend of the
real performance. The overall underestimation can be
explained by a systematical error in the benchmarked
performance of the library functions, e. g. an influence of
the kernel invocation is not negligible compared to the
execution time. Further the performance estimation er-
ror fluctuation observable through the whole spectrum
can be either product of varying ability of nvcc to opti-
mize sequences of compute routines or reduced ability
of overlapping memory transfers and computation.

0

200

400

600

800

1000

1200

1400

P
er

fo
rm

an
ce

[M
el

em
en

ts
/s

]

Fusions implementations (sorted by real time)

Estimated
Measured

Figure 4: Prediction accurancy for fusions im-
plementations.

46

5.2 Performance of the Generated Code
The final result of the whole optimization process is

the CUDA implementation of the mapped function. In
this section the predicted performance of the generated
implementations is confronted with the real attained
performance. The number of expected best solutions
generated by the compiler can be arbitrary set. For the
sake of this experiment the number was set to 300.

The Figure 5 shows the real performance of the first
300 selected mapped function implementations in the
order of selection. In the figure there is a fitted curve
plotted to better illustrate the overall trends. It is the
polynomial of fifth degree fitted to the data by the least
squares method.

It can be observed, that the best implementations are
selected among first and are even more or less sorted by
the performance. The overall best five implementation
are generated on positions 0, 48, 1, 6 and 28, so the
best solutions are found in very few iterations. We note
that this example is quite difficult for performance pre-
diction as the size of processed data as well as parallel
granularity varies significantly during computation. For
more regular example, the performance prediction is far
more exact.

0

50

100

150

200

250

0 50 100 150 200 250 300

P
er

fo
rm

a
n
ce

[M
el

em
en

ts
/
s]

Mapped Function Implementations

Measured performance
Fitted

Figure 5: Real performance of the generated im-
plementations in the order of predicted perfor-
mance.

The best generated implementation uses fusion of ||A·
B ·v||2 which is performed by 3 threads per instance (for
the norm computation, the parallelism is reduced to 1
thread per instance) and ·(C ·D+C) using 5 threads per
instance. It achieve 234.5 millions of resulting elements
per second which is 2.49× better that the best imple-
mentation without fusions (94.2 Melems/s) and 1.46×
better than the best implementation when all functions
are fused into single kernel (160.2 Melems/s).

5.3 Compiler Efficiency
The time taken by the generation of the state-space

(i. e. all fusion implementation candidates) is 0.21 s.
The cover determination and CUDA code generation of
the mapped function implementation is 0.15 s and it
take 2.08 s to compile single implementation.

The running times of the state-space generation and
cover determination leave space for processing of more
complex mapped functions. If the running time would
rise too quickly on large mapped functions it is possible

to explicitly divide the computation of these functions
and optimize the parts separately.

6. CONCLUSION AND FUTURE WORK
In this paper, we have introduced an optimizing source-

to-source compiler, which is able to automatically fuse
kernels of mapped functions and to generate implemen-
tations with good performance. The experimental eval-
uations shows feasible running times of the compiler as
well as its good ability to quickly find effective imple-
mentations.

We plan to develop more detailed performance predic-
tion model which enables to estimate the computation
and memory transfers overlap.

The code generation can be improved by allowing el-
ementary functions to exchange data via registers when
it is possible, which brings also quite challenging changes
in the performance prediction.

We also plan to employ the compiler on more complex
applications such as Finite Element Method equations
assembly, which was our initial motivation.

7. REFERENCES
[1] B. Catanzaro, N. Sundaram, and K. Keutzer. A

map reduce framework for programming graphics
processors. In Workshop on Software Tools for
MultiCore Systems. Citeseer, 2008.

[2] J. Filipovič and J. Fousek. Medium-grained
functions mapping using modern GPUs. In
Symposium on Application Accelerators in
High-Performance Computing, 2010.

[3] J. Filipovič, I. Peterĺık, and J. Fousek. GPU
Acceleration of Equations Assembly in Finite
Elements Method-Preliminary Results. In
Symposium on Application Accelerators in
High-Performance Computing, 2009.

[4] J. Hoberock and N. Bell. Thrust: C++ template
library for cuda.
http://code.google.com/p/thrust/, 2010.

[5] C.W. Kessler. Scheduling expression DAGs for
minimal register need. Computer Languages,
24(1):33–53, 1998.

[6] A. Klöckner, T. Warburton, J. Bridge, and J.S.
Hesthaven. Nodal discontinuous Galerkin methods
on graphics processors. Journal of Computational
Physics, 228(21):7863–7882, 2009.

[7] D. Komatitsch, D. Michea, and G. Erlebacher.
Porting a high-order finite-element earthquake
modeling application to nvidia graphics cards using
cuda. Journal of Parallel and Distributed
Computing, 69(5), 2009.

[8] G.R. Markall, D.A. Ham, and P.H.J. Kelly.
Towards generating optimised finite element solvers
for GPUs from high-level specifications. Procedia
Computer Science, 1(1):1809–1817, 2010.

[9] V. Volkov and J. W. Demmel. Benchmarking gpus
to tune dense linear algebra. In Conference on
Supercomputing (SC08). ACM/IEEE, 2008.

47

