
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

��� �
� � ���

	�
 ��������������������
 �! "
$

% & ')(+* ,.-0/�132 46587:9<;>= ?�@�ACB
D EF GH

Indexing Structures for
Searching in Metric Spaces

PH.D. THESIS

Vlastislav Dohnal

Brno, February 2004

Acknowledgement

I would like to thank my supervisor Pavel Zezula for guidance, in-
sight and patience during this research. I would also acknowledge
my colleagues Claudio Gennaro and Pasquale Savino for their con-
tributions and comments on this work. I also thank my parents, my
wife and my colleagues for their patience, emotional support and en-
couragement throughout the entire process. Above all else, I would
like to thank Queen for composing very inspiring music.

iii

Abstract

This Ph.D. thesis concerns the problem of indexing techniques for
searching in metric spaces. We propose two novel index struc-
tures for similarity queries, we have compared them with other ap-
proaches and executed numerous experiments to verify their prop-
erties.

In order to speedup retrieval in large data collections, index struc-
tures partition the data into subsets so that query requests can be
evaluated without examining the entire collection. As the complexity
of modern data types grows, metric spaces have become a popular
paradigm for similarity retrieval. We propose a new index structure,
called D-Index, that combines a novel clustering technique and the
pivot-based distance searching strategy to speed up execution of sim-
ilarity range and nearest neighbor queries for large files with objects
stored in disk memories. We have qualitatively analyzed D-Index
and verified its properties on actual implementation. We have also
compared D-Index with other index structures and demonstrated its
superiority on several real-life data sets. Contrary to tree organi-
zations, the D-Index structure is suitable for dynamic environments
with a high rate of delete/insert operations.

In the next part, we analyze the problem of similarity join which
are often applied in many areas, such as data cleaning or copy de-
tection. Though this approach is not able to eliminate the intrinsic
quadratic complexity of similarity joins, significant performance im-
provements are confirmed by experiments.

Supervisor: prof. Ing. Pavel Zezula, CSc.

v

Keywords

metric space

metric data

similarity search

index structures

range query

nearest neighbor query

similarity join

performance evaluation

D-Index

eD-Index

vii

Contents

1 Introduction 11

2 Background 15
2.1 Metric Spaces . 15
2.2 Distance Functions . 17

Minkowski Distances 17
Quadratic Form Distance 18
Edit Distance . 18
Tree Edit Distance 19
Hausdorff Distance 20
Jacard Coefficient 21
Time Complexity 21

2.3 Similarity Queries . 21
Range Query . 22
Nearest Neighbor Query 23
Reverse Nearest Neighbor Query 23
Similarity Join Query 24
Combinations . 25

2.4 Search Strategies . 25
2.5 Partitioning Algorithms 31
2.6 Filtering Algorithms . 33
2.7 Choosing Pivots . 35

3 Metric Index Structures 37
3.1 Ball Partitioning Methods 37

3.1.1 Burkhard-Keller Tree 37
3.1.2 Fixed Queries Tree 39
3.1.3 Fixed Queries Array 41
3.1.4 Vantage Point Tree 42
3.1.5 Multi Vantage Point Tree 46

1

3.1.6 Excluded Middle Vantage Point Forest 47
3.2 Generalized Hyperplane Partitioning Methods 50

3.2.1 Bisector Tree . 50
3.2.2 Generalized Hyperplane Tree 51
3.2.3 GNAT . 52

3.3 M-Tree . 55
3.3.1 Slim Trees . 59

3.4 Spatial Approximation Tree 60
3.5 Distance Matrix Methods 63

3.5.1 AESA . 64
3.5.2 LAESA . 65
3.5.3 Other Methods 66

3.6 Mapping-Based Approaches 67

4 D-Index 69
4.1 Clustering Through Separable Partitioning 69
4.2 Pivot-Based Filtering . 72
4.3 Illustration of the idea 72
4.4 System Structure and Algorithms 76

4.4.1 Storage Architecture 76
4.4.2 Insertion and Search Strategies 78
4.4.3 Generic Search Algorithms 80
4.4.4 Range Query Algorithm 83
4.4.5 k-Nearest Neighbors Search 84
4.4.6 Choosing references 86
4.4.7 Implementation of D-Index 90
4.4.8 Properties of D-Index 91

5 D-Index Evaluation 93
5.1 Data Sets . 93
5.2 D-Index Performance Evaluation 95
5.3 D-Index Structure Design 97
5.4 D-Index Performance Comparison 100

5.4.1 Search efficiency for different data sets 101
5.4.2 Search, space, and insertion scalability 107

2

6 eD-Index 111
6.1 Algorithm Categories . 112

6.1.1 Complexity . 112
6.1.2 Filter Based Algorithms 113
6.1.3 Partition Based Algorithms 114
6.1.4 Range Query Algorithms 115

6.2 Implementation and Performance Evaluation 116
6.2.1 Sliding Window Algorithm 116
6.2.2 Pivot Based Filtering 117

Dynamic Pivots 118
6.2.3 Comparison . 119

6.3 Range Query Join Algorithm 121
6.4 eD-Index Access Structure 123

6.4.1 Range Query Algorithm 125
6.4.2 Nearest Neighbors Search 126
6.4.3 Similarity Self Join Algorithm 126

7 eD-Index Evaluation 131
7.1 Performance Evaluation 131

7.1.1 Join-cost ratio . 132
7.1.2 Scalability . 135

8 Conclusion 139
8.1 Summary . 139
8.2 Contribution . 141
8.3 Research Directions . 143

Bibliography 145

3

List of Figures

2.1 The sets of points at the same distance from the center
point for different Lp distance measures. 18

2.2 (a) Range query R(q, r) and (b) nearest neighbor query
3−NN(q) where the objects o1, o3 are at the same dis-
tance equal to 3.3 and o1 has been chosen as the 3rd

neighbor at random. Qualifying objects are filled. . . . 22
2.3 (a) Reverse nearest neighbor query 2−RNN(q) and (b)

similarity self join query SJ(2.5). Qualifying objects
are filled. 24

2.4 Illustration of Lemma 2.4.1: (a) the general case, (b)
the lower bound, and (c) the upper bound. 26

2.5 Illustration of Lemma 2.4.2 with three different posi-
tions of the query object; above, below, and within
the range [rl, rh]. We can bound d(q, o), providing that
rl ≤ d(p, o) ≤ rh and d(q, p). The dotted and dashed
lines denote lower and upper bounds, respectively. . . 28

2.6 Illustration of Lemma 2.4.3, d(p, o) is within the range
[rl, rh], and d(q, p) is within [r′l, r

′
h]. The lower bound on

d(q, o) is expressed in (a), the upper bound on d(q, o)
is presented in (b). The lower and upper bounds are
emphasized with dotted and dashed lines, respectively. 29

2.7 Illustration of Lemma 2.4.4. As the query object moves
along the dashed equidistant line (i.e. to q′) the lower
bound shrinks. The lower bound d(q,p1)−d(q,p2)

2
is de-

noted by dotted arrow line. 30
2.8 Examples of ball partitioning. The basic bp function

(a), more spherical cuts (b), and combination of two
functions (c). 32

5

2.9 Illustration of hyperplane partitioning. The basic hp
function (a) and general partitioning (b). The cluster-
ing principle is depicted in (c). 33

2.10 Illustration of filtering algorithm. The lower bound
principle (a), both the upper bound (dotted circle) and
the lower bound are applied (b), and filtering using
two distinct pivots. 34

3.1 An example of a metric space and a range query (a).
BKT tree (b) is built on the space. 39

3.2 Examples of FQT tree (a) and FHFQT tree (b) that are
built on the given space in Figure 3.1(a). 40

3.3 Example of the FHFQT tree (a). FQA is built from FH-
FQT in (b). 41

3.4 An example of range queries, in (a), S0 need not to be
accessed during the search and both the set must be
visited in (b). 44

3.5 An example of VPT with two pivots p1 and p2 in (a).
The corresponding representation of the tree in (b). . . 45

3.6 The difference between VPT and MVPT structures,
VPT uses three pivots for partitioning to four sets (a),
MVPT collapses two levels of VPT into one node and
uses two pivots only (b). 48

3.7 An example of bpρ function in figure (a), all filled
points form the exclusion set S2, which is then elimi-
nated from the process of partitioning. VPF consisting
of two trees is presented in (b), the second tree is built
from all exclusion sets of the first tree. 49

3.8 Generalized Hyperplane Tree (GHT): (a) hyperplane
partitioning and both the partitions must be accessed
to answer the given range query, (b) the corresponding
structure of the tree. 52

3.9 An example of partitioning used in the Geometric
Near-neighbor Access Tree in (a) and the correspond-
ing tree in (b). 53

6

3.10 Example of the pruning effect of ranges. The query
R(q1, r1) needs only the range [rij

l , rij
h] to eliminate the

subtree of pj. As for the query R(q2, r2), the range
[rij

l , rij
h] is not sufficient for skipping the subtree of pj

and the range [rjj
l , rjj

h] is also used and pj is then elim-
inated. 54

3.11 Example of M-Tree (MT) that consists of 3 levels.
Above, the 2-D representation of partitioning where
pivots are denoted with crosses and the circles around
pivots correspond to values of covering radii. Observe
that balls around pivots can intersect. The dotted cir-
cles represent the minimum values of covering radii.
If they are used no overlap is achieved. Below, the cor-
responding tree structure is shown. 57

3.12 SAT tree is built over a dataset in (a). In (b), SAT tree
is depicted where o1 is selected as root. 62

3.13 A sample of SAT with the root t and the query object q
are provided. At the current node p, the range search
algorithm selects the object p as the closest object to q
while s2 is closer to q than p. An improved variant of
search algorithm selects the closest object from all an-
cestors and their neighbors, i.e. s2 is selected instead
of p. The dashed lines represent the boundaries be-
tween Voronoi cell of the first level of SAT tree. The
dotted lines depict the same for the second level. 64

4.1 The ball partitioning based on the excluded middle
partitioning . 74

4.2 Combination of two first-order ρ split functions ap-
plied on the two-dimensional space. 75

4.3 Example of pivots behavior. 76
4.4 Example of D-Index structure. 79
4.5 Example of use of the function G. 81
4.6 Different choices for pivot p to divide the unit square. . 87
4.7 Distance distribution for two pivots, one is the center

while the other is a corner object, in the unit cube of
the 20-dimensional Euclidean space. 88

5.1 Distance densities for VEC, URL, and STR. 94

7

5.2 D-Index organization parameters 95
5.3 Search efficiency for VEC in the number of distance

computations and in the number of read blocks. 96
5.4 Search efficiency for URL in the number of distance

computations and in the number of read blocks. 96
5.5 Search efficiency for TEXT in the number of distance

computations and in the number of read blocks. 97
5.6 Nearest neighbors search on sentences using different

D-Index structures. 98
5.7 Range search on sentences using different D-Index

structures . 99
5.8 Search efficiency versus the block size 100
5.9 Comparison of the range search efficiency in the num-

ber of distance computations for VEC, URL, and STR. . 102
5.10 Comparison of the range search efficiency in the num-

ber of block reads for VEC, URL, and STR. 103
5.11 Comparison of the nearest neighbor search efficiency

in the number of distance computations for VEC, URL,
and STR. 104

5.12 Comparison of the nearest neighbor search efficiency
in the number of block reads for VEC, URL, and STR. . 105

5.13 Range search scalability. 107
5.14 Nearest neighbor search scalability. 108
6.1 Illustration of the Sliding Algorithm. 116
6.2 Example of pivots behavior. 118
6.3 Performance of the Pivot Based Filtering algorithm on

the 10 and 20 dimensional data sets. 120
6.4 Performance of the Sliding Window algorithm on the

10 and 20 dimensional data sets. 120
6.5 The modified bps split function: (a) original ρ-split

function; (b) modified ρ-split function. 123
6.6 The Sliding Window algorithm. 127
6.7 Coloring technique applied in the eD-Index. 129
7.1 Join queries on the text data set. 132
7.2 Join queries on vectors. 133
7.3 RJ algorithm scalability. 136
7.4 OJ algorithm scalability. 137

8

List of Tables

7.1 Join Speedup for text . 134
7.2 Join Speedup for vectors 134
7.3 Join Speedup for text with building costs included . . . 135
7.4 Join Speedup for vectors with building costs included . 136

9

Chapter 1

Introduction

Searching has always been one of the most prominent data process-
ing operations because of its useful purpose of delivering required
information efficiently. However, exact match retrieval, typical for
traditional databases, is not sufficient or feasible for data types of
present digital age, that is image databases, text documents, audio
and video collections, DNA or protein sequences, to name a few.
What seems to be more useful, if not necessary, is to base the search
paradigm on a form of proximity, similarity, or dissimilarity of a query
and data objects. Roughly speaking, objects that are close to a given
query object form the query response set. The similarity is often
measured by a certain distance function. In this place, the notion of
mathematical metric space [56] provides a useful abstraction for the
nearness.

For illustration, consider the text data as the most common data
type used in information retrieval. Since text is typically represented
as a character string, pairs of strings can be compared and the exact
match decided. However, the longer the strings are the less signifi-
cant the exact match is: the text strings can contain errors of any kind
and even the correct strings may have small differences. According
to [60], text typically contains about 2% of typing and spelling er-
rors. This gives a motivation for a search allowing errors, or similarity
search.

Consider a database of sentences for which translations to other
languages are known. When a sentence is to be translated, such a
database can suggest a possible translation provided the sentence
or its close approximation already exists in the database. For two
strings of length n and m available in main memory, there are several
dynamic programming algorithms to compute the edit distance of

11

1. INTRODUCTION

the strings in O(nm) time. Refer to [68] for an excellent overview of
the work and additional references.

In some applications, the metric space turns out to be of a partic-
ular type called vector space, where the elements consist of k coor-
dinates (often termed feature vectors). For example, images are often
represented by color and shape histograms [38, 48], typically con-
sisting of 64 or 256 values. A lot of work[29, 6, 7, 47, 76, 10] have
been done on vector spaces by exploiting their geometric proper-
ties. However, index and search techniques for vector spaces usually
work well only for low-dimensional spaces. Even indexing methods
specifically designed for higher dimensions (the X-tree [10], LSDh-
tree [50], and hybrid-tree [18]) typically stop being efficient, i.e. ac-
cessing nearly all objects, when the dimensionality exceeds twenty.
Moreover, approaches to vector spaces cannot be extended to gen-
eral metric spaces where the only available information is the dis-
tance among objects. In this general case, furthermore, the distance
function is normally quite expensive to evaluate (e.g. the edit dis-
tance), thus, the general objective is to reduce the number of distance
computations. On the contrary, the operations performed in vector
spaces tend to be simple and hence the goal is to diminish I/O. Un-
fortunately, some applications have difficulties in transforming their
problems to vector spaces. For this reason, several authors resort to
general metric spaces.

Several storage structures, such as [87, 14, 25, 13], have been de-
signed to support efficient similarity search execution over large col-
lections of metric data where only a distance measure for pairs of
objects is possible to quantify. However, the performance is still not
satisfactory and further investigation is needed. Though all of the
indexes are trees, many tree branches have to be traversed to solve
a query, because similarity queries are basically range queries that
typically cover data from several tree nodes or some other content-
specific partitions. In principle, if many data partitions need to be
accessed for a query region, they are not contrasted enough and such
partitioning is not useful from the search point of view.

In general, there are two common principles to index a data set.
The former is based on trees, where a tree structure is built and ob-
jects of the data set are accommodated either in leaves only or both in
internal nodes and leaves. At the query time, the tree is traversed and

12

1. INTRODUCTION

the result set is constructed. The latter concerns direct access struc-
tures – hashing. This Ph.D. thesis concentrates on applying hashing
principles in metric spaces. As the result, a novel access structure the
D-Index has been developed.

The development of Internet services often requires an integra-
tion of heterogeneous sources of data. Such sources are typically
unstructured whereas the intended services often require structured
data. The main challenge is to provide consistent and error-free data,
which implies the data cleaning, typically implemented by a sort of
similarity join. In order to perform such tasks, similarity rules are
specified to decide whether specific pieces of data may actually be
the same things or not. However, when the database is large, the
data cleaning can take a long time, so the processing time (or the
performance) is the most critical factor that can only be reduced by
means of convenient similarity search indexes. Since the similarity
join queries are not efficiently implemented by existing metric index
structures we have focused on this type of queries and extended the
D-Index to support such queries, which is the second major contri-
bution of this work.

This thesis is organized as follows. Chapter 2 embraces back-
ground and definitions of similarity searching in metric spaces. In
Chapter 3, we provide a survey of existing index structures for met-
ric spaces. We categorize methods into four categories: ball partition-
ing based, hyperplane partitioning based methods, distance matrix
methods, and mapping-based approaches. In the next stage, we pro-
pose a novel access structure called D-Index that synergistically com-
bines the clustering technique and the pivot-based distance search-
ing methods into one system. It supports disk memories, thus, it
is able to handle large archives. It also provides easy insertion and
bounded search costs for range queries with radius up to ρ. Next, we
experimentally evaluate properties of the D-Index and compare with
other techniques which also supports a disk storage. In chapter 6, we
focus on the problem of similarity joins and propose an extension of
the D-Index, called eD-Index. Then, we provide a deep evaluation
of the eD-Index. We conclude in Chapter 8 and outline the future
research directions.

13

Chapter 2

Background

In this chapter, we provide the reader with necessities for under-
standing of similarity searching in metric spaces. We also present
possible types of similarity queries used in information retrieval and
give examples of such queries. Finally, we define selected metric dis-
tance functions.

2.1 Metric Spaces

A metric space M is defined as a pair M = (D, d). The set D denotes
the domain (universe) of valid objects (elements, points) of the metric
space. A finite subset X of the domain D, X ⊆ D, is the set of objects
where we search. X is usually called the database. The function

d : D ×D 7→ �

denotes a measure of distance between objects. The smaller the dis-
tance is the closer or more similar the objects are. The distance func-
tion is metric [56, 45] and satisfies following properties:

• ∀x, y ∈ D, d(x, y) ≥ 0

• ∀x, y ∈ D, d(x, y) = d(y, x)

• ∀x, y ∈ D, x = y ⇔ d(x, y) = 0

• ∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z)

Some authors may call metric as metric function. There are
some variations of the metric, which satisfy weaker or stronger

15

2. BACKGROUND

conditions. Before we introduce them we decompose some prop-
erties of metric to simplify characterizations of metric variations:

(p1) ∀x, y ∈ D, d(x, y) ≥ 0 non-negativity,

(p2) ∀x, y ∈ D, d(x, y) = d(y, x) symmetry,

(p3) ∀x ∈ D, d(x, x) = 0 reflexivity,

(p4) ∀x, y ∈ D, x 6= y ⇒ d(x, y) > 0 positiveness,

(p5) ∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

If the distance function does not satisfy the positiveness property
(p4) then the function is called pseudo-metric. We do not consider
pseudo-metric functions in this work since we can adapt them by
identifying all the objects at distance zero as a single object. Such the
transformation is correct: if the triangle inequality (p5) holds we can
prove that d(x, y) = 0 ⇒ ∀z ∈ D, d(x, z) = d(y, z). Specifically, by
combining the following triangle inequalities

d(x, z) ≤ d(x, y) + d(y, z),

d(y, z) ≤ d(x, y) + d(x, z)

and assuming d(x, y) = 0, we get the desired formula. If the sym-
metry property (p2) does not hold we talk about a quasi-metric. For
instance, the objects are places in a city and the distance corresponds
to distance traveled by car from one place to another. The exis-
tence of one-way streets implies the asymmetric behavior of such
the distance function. There are techniques to make these distances
symmetric from the asymmetric ones, for example, dsym(x, y) =
dasym(x, y) + dasym(y, x). Some metrics satisfy a stronger version of
the triangle inequality:

∀x, y, z ∈ D, d(x, z) ≤ max{d(x, y), d(y, z)}.

These metrics are called super-metrics or ultra-metrics and are indeed
metrics. An equivalent condition is that every triangle has at least
two equal sides.

16

2. BACKGROUND

In the rest of this thesis, we refer to a metric function as the dis-
tance function or, shortly, the distance. We also assume that the max-
imum distance never exceeds d+, thus we consider a bounded metric
space.

2.2 Distance Functions

In this stage, we provide some examples of distance functions, which
can be applied on various types of data. Distance functions are often
tailored to a specific application or to a domain of possible appli-
cations. Thus, the distance is specified by an expert, however, the
definition of distance function is not restricted to any type of queries
that can be asked.

In general, distance functions can be divided into two groups
with regards to the returned value:

• discrete – a distance function returns only a small set of values,

• continuous – the cardinality of set of values returned by a dis-
tance function is infinite or very large.

An example of the continuous case is the Euclidean distance and an
illustration of the discrete function can be the edit distance applied
on words. We will refer to this categorization in Chapter 3.

Minkowski Distances

Minkowski distances form the whole family of metric functions, so-
called Lp metrics. These distances are defined on vectors of real num-
bers as follows:

Lp[(x1, . . . , xn), (y1, . . . , yn)] = p

√

√

√

√

n
∑

i=1

|xi − yi|p.

L1 metric is called Manhattan distance or city distance, L2 denotes
well-known Euclidean distance, and L∞ = maxn

i=1|xi − yi| is called
maximum distance or chessboard distance. Figure 2.1 presents some
members of Lp family, where the curves denote points of 2-D space at
the same distance from the central point. A convenient application of

17

2. BACKGROUND

L1 L2 L6 ooL

Figure 2.1: The sets of points at the same distance from the center
point for different Lp distance measures.

Lp metrics is the computation of distance between color histograms
or between vectors of features extracted from images.

Quadratic Form Distance

The Euclidean distance measure L2 does not provide any correla-
tion of features of color histograms. A distance model that has been
successfully applied to image databases [38] and that has the power
to model dependencies between different components of features or
histogram vectors is provided by the class of quadratic form dis-
tance functions [48, 78]. Thereby, the distance measure of two n-
dimensional vectors is based on an n × n matrix M = [mij] where
the weights mij denote the similarity between the components i and
j of the vectors ~x and ~y, respectively:

dM(~x, ~y) =
√

(~x − ~y) · M · (~x − ~y)T

This definition also includes the Euclidean distance when the ma-
trix M is equal to the identity matrix. The quadratic form distance
measure is computationally expensive because the color image his-
tograms are typically high-dimensional vectors, consisting of 64 or
256 distinct colors.

Edit Distance

Textual documents or strings are usually compared by the edit dis-
tance function, so-called Levenshtein distance [62]. The distance be-
tween two strings x = x1 · · ·xn and y = y1 · · · ym is the minimum

18

2. BACKGROUND

number of atomic operations needed to transform the string x into y.
The atomic operations are:

• insert the character c into the string x at position i
ins(x, i, c) = x1x2 · · ·xicxi+1 · · ·xn

• delete the character at position i from the string x
del(x, i) = x1x2 · · ·xi−1xi+1 · · ·xn

• replace the character at position i in the string x with the new
character c
replace(x, i, c) = x1x2 · · ·xi−1cxi+1 · · ·xn

The generalized edit distance function is extended by weights (pos-
itive real numbers) assigned to individual atomic operation. Hence,
the distance between strings x, y is the minimum value of the sum
of weights of atomic operations needed to transform x into y. If the
weight of insert and delete operations differ, the edit distance is not
symmetric (see property (p2)) and therefore it is not a metric. For
convenience, see the following example of such the edit distance:

wins = 2 weight of insert
wdel = 1 weight of delete
wreplace = 1 weight of replace

ded(”combine”, ”combination”) = 9
– replacement e → a, insertion of t, i, o, n

ded(”combination”, ”combine”) = 5
– replacement a → e, deletion of t, i, o, n

In this work, we deal only with metrics, thus, the weights of insert
and delete operations have to be the same, the weight of replace may
differ. Usually, the edit distance with weights equal to one is used.
The excellent survey about string matching is in [68].

Tree Edit Distance

The most well-known distance metrics for trees is the tree edit dis-
tance, which has been extensively studied in [46, 28]. The tree edit

19

2. BACKGROUND

distance function defines the distance between two trees as the min-
imal summation of costs needed to convert the source tree to the tar-
get tree using the predefined set of edit operations such as insert or
delete. In fact, the problem of computing the distance between two
trees is a generalization of the problem of computing the distance
between two strings to labeled trees. Individual costs of edit opera-
tions (atomic operations) can be the same or they can vary with the
level in the tree at which the operation is applied. This is supported
by the hypothesis that inserting one node near the root may be more
significant that inserting a node near the leaf nodes. This, of course,
depends on the application domain. Several strategies of setting the
costs and computing the tree edit distance are described in the doc-
toral thesis by Lee [61]. Since XML documents can be easily modeled
as trees we can apply the tree edit distance to measure distance be-
tween XML documents.

Hausdorff Distance

Another example of distance that can be applied on histograms is the
Hausdorff metric [52]. This metric measures the distance between
two sets A,B and it is defined as follows:

dp(x, B) = inf
y∈B

d(x, y)

dp(A, y) = inf
x∈A

d(x, y)

ds(A, B) = sup
x∈A

dp(x, B)

ds(B, A) = sup
y∈B

dp(A, y).

Then the Hausdorff distance is:

d(A, B) = max{ds(A, B), ds(B, A)}.

The distance d(x, y) between two elements of sets can be arbitrary,
e.g. L2 metric. In other words, the Hausdorff distance measures the
extent to which each point of a ”model” set A lies near some point of
an ”image” set B and vice versa. Apparently, the Hausdorff distance
is a very time-consuming operation since its time complexity is O(n×
m) for sets of size n and m, this can be improved to O((n+m)log(n+
m)) [1].

20

2. BACKGROUND

Jacard Coefficient

The distance function applicable to comparing two sets is the Jacard
coefficient and is defined as follows:

d(A, B) = 1 −
|A ∩ B|

|A ∪ B|
.

For example, an application may be interested in resemblances be-
tween users of an information system. The behavior of each user is
expressed by the set of visited addresses (URLs). Thus, the similarity
between users can then be measured with the Jacard coefficient.

Time Complexity

In this part, we sum up the time requirements of metric distances.
The Lp norms (metrics) are computed linearly in time. However, the
quadratic form distance is much more expensive because it uses mul-
tiplications by a matrix. Thus, it is evaluated in O(n3) time. The dy-
namic programming algorithms which computes the edit distance
on strings have the time complexity O(n2). Moreover, the tree edit
distance is computed in O(n4), more details can be found in [61]. As
for metrics for similarity between sets, they are considered as time-
consuming operations, as well. In summary, we assume without any
particular knowledge about the distance used in a certain applica-
tion that metric distance functions are generally time-consuming op-
erations. Consequently, almost all indexing techniques for searching
in metric spaces minimizes the number of distance evaluations, see
Chapter 3.

2.3 Similarity Queries

In general, the problem of indexing metric spaces can be defined as
follows.

Problem 2.3.1 Let D be a set, d a distance function defined on D, and
M = (D, d) a metric space. Given a set X ⊆ D, preprocess or structure
the elements of X so that similarity queries can be answered efficiently.

21

2. BACKGROUND

o
3

o
2

o
1o

4

o
6

o
5

q

r

o
3

o
2

o
1

o
6

o
5

o
4

q

2.0

2.5 3.3

3.3

(a) (b)

Figure 2.2: (a) Range query R(q, r) and (b) nearest neighbor query
3−NN(q) where the objects o1, o3 are at the same distance
equal to 3.3 and o1 has been chosen as the 3rd neighbor at
random. Qualifying objects are filled.

A similarity query is usually defined by query object (point) and
some selectivity. The answer to the query contains all objects which
are close to the given query object and satisfy the selective condi-
tion. In the remaining, we provide the reader with definitions of the
best-known similarity queries.

Range Query

This is probably the most common type of query that is meaningful
almost in every application. The query R(q, r) is specified by the
query object q and the query radius r and retrieves all objects which
are within the distance of r from q, formally:

R(q, r) = {o ∈ X, d(o, q) ≤ r}.

Notice that a query object q does not necessarily have to belong to the
database of objects, i.e. q 6∈ X . However, the query object must be
included in the domain of metric space D, i.e. q ∈ D, this statement
applies to all possible types of queries. For convenience, Figure 2.2a
shows an example of the range query. Another example of the range
query asked to a map system can be: Give me all museums within the
distance of 2km from my hotel.

22

2. BACKGROUND

Nearest Neighbor Query

The elementary version of this query finds one nearest neighbor, that
is, the object closest to the given query object. We give here only the
definition of the general case where we look for k nearest neighbors.
Precisely, k−NN(q) query retrieves k nearest neighbors to the object
q, if a database consists of less than k objects the query returns the
whole database.

k−NN(q) = {R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈ X − R : d(q, x) ≤ d(q, y)}.

In the case of ties, if there are more objects than one at the same dis-
tance as the kth nearest neighbor and which do not fit the answer we
choose the kth nearest neighbor at random. Figure 2.2b depicts the
situation with two objects at the same distance. This type of query
is more user-friendly in comparison to the range query because a
user does not have to know any details about the underlying dis-
tance function users only specify the number of objects they want to
get. A following request can arise: Tell me which two museums are the
closest to my hotel.

Reverse Nearest Neighbor Query

In many situations, it is important to know how you are perceived
or ranked by others or who consider you as their nearest neighbor.
In fact, this is an inverted nearest neighbor search. The basic vari-
ant is 1−RNN , it returns all objects which have a given query object
as their nearest neighbor. An illustration is provided in Figure 2.3a,
the dotted circles denote the distance to the second nearest neighbor
of an object oi. All object satisfying the given 2−RNN(q) query are
filled, these objects have q among their two nearest neighbors. Re-
cent works [58, 82, 86, 81, 57] have highlighted the importance of re-
verse nearest neighbor (1−RNN) queries in decision support systems,
profile-based marketing, document repositories, and management of
mobile devices. General k−RNN query is defined as follows:

k−RNN(q) = {R ⊆ X, ∀x ∈ R : q ∈ k−NN(x) ∧

∀x ∈ X − R : q 6∈ k−NN(x)}.

23

2. BACKGROUND

o
4

o
6

o
5

o
3

o
1

o
2

(b)

1 2 30

o
3

o
2

o
1o

4

o
6

o
5

(a)

q

Figure 2.3: (a) Reverse nearest neighbor query 2−RNN(q) and (b)
similarity self join query SJ(2.5). Qualifying objects are
filled.

The reader can observe that although an object is far away from the
query object q it could still belong to the k−RNN(q) response set.
Contrary, an object that is near q does not necessarily be in the k−
RNN(q). This property of reverse nearest neighbors search is called
as the non-locality property.

Similarity Join Query

The development of Internet services often requires an integration
of heterogeneous sources of data. Such sources are typically un-
structured whereas the intended services often require structured
data. The main challenge is to provide consistent and error-free data,
which implies the data cleaning, typically implemented by a sort of
similarity join. The similarity join query between two sets X ⊆ D
and Y ⊆ D retrieves all pairs of objects (x, y) which are at the dis-
tance of the given threshold at maximum. Specifically, the similarity
join query J(X, Y, µ) is defined as follows:

J(X, Y, µ) = {(x, y) ∈ X × Y : d(x, y) ≤ µ}, (2.1)

24

2. BACKGROUND

where 0 ≤ µ < d+. If the sets X, Y coincide, i.e. X = Y , we talk about
similarity self join and we denote it as SJ(µ) = J(X, X, µ), where X
is the database where we search. Figure 2.3b presents an example
of similarity self join query SJ(2.5). For example, consider a docu-
ment collection of books and a collection of compact disk documents.
A possible search request can require to find all pairs of books and
compact disks which have similar titles.

Combinations

Besides the presented queries, we can define other types of queries as
combinations of previous ones. We can compound the range query
and the nearest neighbor query to get k−NN(q, r):

{R ⊆ X, |R| = k ∧ ∀x ∈ R, y ∈ X −R : d(q, x) ≤ d(q, y)∧ d(q, x) ≤ r}.

In fact, we perform the nearest neighbor search but limit the distance
to the kth nearest neighbor. Similarly, we can combine the similarity
self join and the nearest neighbor search – we limit the number of
returned pairs by the similarity self join operation to the value of k.
The k closest pairs query is the composition of ideas incorporated in
the nearest neighbor query and the similarity join query.

2.4 Search Strategies

The problem of searching metric spaces, formulated in Section 2.3,
requires that similarity queries are processed in an efficient manner.
To meet the requirement, we often have to structure objects of a met-
ric space to allow the dispose of some objects from the search. The
triangle inequality is the key property of metric function postulates
for pruning searched objects when processing queries. However, in
order to apply the triangle inequality, we often need to use the sym-
metry property. Furthermore, the non-negativity allows discarding
negative values of distance in formulae. In this section, we provide
some lemmata to lower-bound and upper-bound the distances be-
tween a query object and objects in the database, assuming that we
have some knowledge about distances between the query object and
some other objects. These assertions can be derived only from the

25

2. BACKGROUND

(a)

q p

o

q

(b)

po q

(c)

p o

Figure 2.4: Illustration of Lemma 2.4.1: (a) the general case, (b) the
lower bound, and (c) the upper bound.

metric postulates. For further details, see an excellent survey by Hjal-
tason and Samet in [51].

In the first lemma, we describe the situation where we know the
distance between the query object q and an object p and the distance
between p and an object o, recall that, generally, q, p, o ∈ D and (D, d)
is the metric space.

Lemma 2.4.1 Given a metric space M = (D, d) and any three objects
q, p, o ∈ D, we get:

|d(q, p) − d(p, o)| ≤ d(q, o) ≤ d(q, p) + d(p, o).

Consequently, we can bound the distance d(q, o) from below and above by
knowing the distances d(q, p) and d(p, o).

Proof: As for the lower bound, we have the following triangle in-
equalities: d(p, q) ≤ d(p, o) + d(o, q) and d(o, p) ≤ d(o, q) + d(q, p).
They imply d(p, q) − d(p, o) ≤ d(o, q) and d(o, p) − d(q, p) ≤ d(o, q),
respectively. Applying the symmetry property and combining them
together, we get |d(p, q) − d(p, o)| ≤ d(q, o). The upper bound is the
direct implication of the triangle inequality d(q, o) ≤ d(q, p) + d(p, o).

The situation of Lemma 2.4.1 is depicted in Figure 2.4. The gen-
eral case is in the (a) figure. The lower bound is present in the (b)
figure, specifically, the lower bound is equal to d(q, p) − d(p, o). The
second case of the lower bound can be obtained by exchanging the

26

2. BACKGROUND

objects q and o. On contrary, the upper bound is depicted in the (c)
figure, where the distance d(q, p) + d(p, o) is attained.

In the next lemma, we assume that we know the distance between
a query q and an object p. The distance between an object o and p is
not known, we only have the interval within the distances d(p, o) are.

Lemma 2.4.2 Given a metric space M = (D, d) and objects o, p ∈ D such
that rl ≤ d(o, p) ≤ rh. Given q ∈ D and d(q, p), the distance d(q, o) can be
restricted to the range:

max{d(q, p) − rh, rl − d(q, p), 0} ≤ d(q, o) ≤ d(q, p) + rh.

Proof: To prove this lemma, we make use of triangle inequalities.
First, we consider the inequality d(q, o) ≤ d(q, p) + d(p, o). Using as-
sumption d(p, o) ≤ rh we can substitute rh for the distance d(p, o)
and we get the desired formula of upper bound d(q, o) ≤ d(q, p) + rh.
Second, we focus on the lower bound that we decompose to three
cases. The first case, see Figure 2.5(a), considers the position of the
query q1 above the range [rl, rh]. We have d(q, p) ≤ d(q, o)+d(o, p) and
transform it to d(q, p) − d(o, p) ≤ d(q, o). Again using the inequality
d(o, p) ≤ rh we replace d(o, p) by rh and we get d(q, p) − rh ≤ d(q, o).
As for the second case, the query object q2 in Figure 2.5(b) is placed
below the interval [rl, rh]. We start with d(o, p) ≤ d(o, q) + d(q, p) and
we transcribe it to d(p, o) − d(q, p) ≤ d(q, o), we have also applied
the symmetry property twice. We combine it with the assumption
rl ≤ d(p, o) and we get rl−d(q, p) ≤ d(q, o). In Figure 2.5(c), the query
object q3 is within the range [rl, rh] which implies that the query ob-
ject and the object o can be identical, thus, the distance is d(q, o) ≥ 0.
The lower bounds of the first two cases are negative in other posi-
tions of query (i.e. in positions that was not specified in the proof).
Thus, the overall lower bound is maximum of all three lower bounds,
max{d(q, p) − rh, rl − d(q, p), 0} ≤ d(q, o).

Figure 2.5 illustrates three different positions of the query objects
and emphasizes lower and upper bounds, denoted by dotted and
dashed lines, respectively. The distance d(q3, o) is lower-bounded by
zero because q3 lies in the range [rl, rh] of objects o.

27

2. BACKGROUND

rhr l

q1

o

p

(a)

rhr l

q2

o

p

(b)

rhr l

q3

o

p

(c)

Figure 2.5: Illustration of Lemma 2.4.2 with three different positions
of the query object; above, below, and within the range
[rl, rh]. We can bound d(q, o), providing that rl ≤ d(p, o) ≤
rh and d(q, p). The dotted and dashed lines denote lower
and upper bounds, respectively.

In the following lemma, we do not know d(q, p) neither d(p, o)
exactly. We only have ranges in which the distances are, that is,
d(p, o) ∈ [rl, rh] and d(q, p) ∈ [r′l, r

′
h].

Lemma 2.4.3 Given a metric space M = (D, d) and objects o, p, q ∈ D
such that rl ≤ d(p, o) ≤ rh and r′l ≤ d(q, p) ≤ r′h. The distance d(q, o) can
be bounded to the range:

max{r′l − rh, rl − r′h, 0} ≤ d(q, o) ≤ rh + r′h.

Proof: The upper bound is a direct consequence of the upper
bound of Lemma 2.4.2 and the assumption d(q, p) ≤ r′h, thus, we
get the desired by substitution r′h for d(q, p) in the upper bound in
Lemma 2.4.2 because we want to maximize the distance. As for the
lower bound, we use the lower bound from Lemma 2.4.2. We want
to decrease as much as possible all expression is the max function,
i.e. max{d(q, p) − rh, rl − d(q, p), 0}. Thus, we replace d(q, p) by r′l in
the first expression and by r′h in the second and get the desired.

Figure 2.6 demonstrates the principle of Lemma 2.4.3. The lower
bound can be seen as two shells centered in p, one shell is with radius

28

2. BACKGROUND

p

q
o

r l
rh

rh
’

r l
’

h− rr l
’

(a)

po q
r l

rh

r l
’ rh

’

r +h rh
’

(b)

Figure 2.6: Illustration of Lemma 2.4.3, d(p, o) is within the range
[rl, rh], and d(q, p) is within [r′l, r

′
h]. The lower bound on

d(q, o) is expressed in (a), the upper bound on d(q, o) is
presented in (b). The lower and upper bounds are em-
phasized with dotted and dashed lines, respectively.

range [rl, rh], where o is situated, and the second with [r′l, r
′
h], where

q lies. Figure 2.6(a) presents the lower bound r′l − rh. The second
part of lower bound is the symmetric situation where both the shells
are swapped. The third part 0 expresses the position when the shells
collide. Figure 2.4.3(b) provides the illustration of the upper bound.

In some distance-based indices, objects are partitioned on relative
closeness to two or more objects. The following lemma provides a
result that can be used to prune some objects in such situations.

Lemma 2.4.4 Assume a metric space M = (D, d) and objects o, p1, p2 ∈
D such that d(o, p1) ≤ d(o, p2). Given a query object q ∈ D and the
distances d(q, p1) and d(q, p2), the distance d(q, o) can be lower-bounded as
follows:

max

{

d(q, p1) − d(q, p2)

2
, 0

}

≤ d(q, o).

Proof: We have the triangle inequality d(q, p1) ≤ d(q, o) + d(o, p1)
which yields d(q, p1) − d(q, o) ≤ d(o, p1) and we will use it later on.
We combine the triangle inequality d(p2, o) ≤ d(p2, q) + d(q, o) and
the assumption d(o, p1) ≤ d(o, p2) and we obtain d(o, p1) ≤ d(p2, q) +

29

2. BACKGROUND

p1 p2

o

q

(a)

p1 p2

o

q

(b)

p1 p2

o

q

q’

(c)

Figure 2.7: Illustration of Lemma 2.4.4. As the query object moves
along the dashed equidistant line (i.e. to q′) the lower
bound shrinks. The lower bound d(q,p1)−d(q,p2)

2
is denoted

by dotted arrow line.

d(q, o). This inequality is combined with the first one and we acquire
d(q, p1) − d(q, o) ≤ d(p2, q) + d(q, o). By rearranging, we get d(q, p1) −
d(q, p2) ≤ 2d(q, o). We assumed that o is closer to p1. If q is closer to
p2 the derived expression is positive. On contrary, if q is closer to p1,
that is q is on the same side as o, the expression becomes negative.
The non-negativity property forbids it, thus the overall assertion is
max

{

d(q,p1)−d(q,p2)
2

, 0
}

≤ d(q, o).

Figure 2.7(a) shows the situation and the lower bound is empha-
sized by the dotted line. If q and o are both on the same side (on the
left side in the figure) the lower bound is zero, which is the second
parameter of max function. Figures 2.7(b) presents the hyperbolic
curve of which points have the same value of d(q,p1)−d(q,p2)

2
. If we

move the query point up, see Figure 2.7(c), apparently, we preserve
the distance from q to the equidistant dashed line, which consists
of points at the same distances from both p1 and p2. Nonetheless, the
value of d(q,p1)−d(q,p2)

2
decreases. This corresponds to the movement of

the hyperbola in a way that the query object q becomes an element of
the curve, i.e. the hyperbola moves closer to the equidistant line. In
consequence, the expression d(q,p1)−d(q,p2)

2
is indeed the lower bound

on the distance from q to o. The upper bound cannot be established
because o can be arbitrarily far away from p1 and p2.

30

2. BACKGROUND

In the next sections, we present two basic algorithms used by
nearly all available indexing techniques. The former is based on par-
titioning paradigm and the latter concerns filtering based on knowl-
edge of distances between objects.

2.5 Partitioning Algorithms

Search structures for vector spaces are called Spatial Access Meth-
ods (SAM). These methods use the idea of partitioning an indexed
space into subsets. In general, we call this principle as dividing into
equivalence classes. Specifically, we group objects into one set if they
have some property in common, e.g. the first coordinate of a vector is
lower than three. For example, kd-trees [6, 7] or quad-trees [76] use
a threshold (value of a coordinate) to divide the given space into sub-
sets. On contrary, R-Trees [47] cluster near objects and bound them
using the minimum bounding rectangle. This approach systematically
clusters objects from leaves to the root.

Similar techniques are utilized in the area of metric spaces. The
problem of partitioning metric spaces is more difficult because we
have no coordinate system that can be used in geometric splits. In
metric spaces, we pick one object from given dataset (generally, from
the domain of metric space) and promote it to the pivot. Using pivot,
we can order all remaining objects by the distance. Consequently, we
choose a certain value of distance, which plays the role of threshold
and we partition objects into two subsets.

In the following, we present concepts based on this idea. The
simplest variant that uses one pivot and one radius to split object
into two subsets can be formalized as:

bp(o, p, r) =

{

0 if d(o, p) ≤ r
1 if d(o, p) > r

This type of partitioning is called the ball partitioning and was defined
by Uhlmann in [83]. In fact, this function returns the identification
of the set to which object o belongs. This approach can be extended
to use more than one radius. Thus, we define bp3 function that splits

31

2. BACKGROUND

p

r
0

1

(a)

p

r
r

r3

2

1

0
1

2
3

(b)

p2

p101

02

11
21

22

20
10

00

11

12

(c)

Figure 2.8: Examples of ball partitioning. The basic bp function (a),
more spherical cuts (b), and combination of two functions
(c).

metric space into four spherical cuts:

bp3(o, p, r1, r2, r3) =

0 if d(o, p) ≤ r1

1 if d(o, p) > r1 ∧ d(o, p) ≤ r2

2 if d(o, p) > r2 ∧ d(o, p) ≤ r3

3 if d(o, p) > r3

The illustration of bp functions is given in Figure 2.8. For example,
these functions are used in the Vantage Point Tree (VPT) and the
multi-way Vantage Point Tree (mw-VPT) [13]. In the same paper,
Bozkaya and Özsoyoglu defined the combination of bp functions,
which uses more pivots. An example is presented in Figure 2.8(c)
where two bp2 functions are combined to get partitioning into 32 = 9
subsets.

More pivots can be also used in a different way. Uhlmann [83] has
defined the hyperplane partitioning. This partitioning uses two pivots
to divide objects into two subsets on their relative distances to the
pivots. Formally, hyperplane partitioning is defined as follows:

hp(o, p1, p2) =

{

0 if d(o, p1) ≤ d(o, p2)
1 if d(o, p1) > d(o, p2)

Figure 2.9(a) depicts the situation. Principle of hp function is applied
in the Generalized Hyperplane Tree (GHT) [83]. Apparently, this

32

2. BACKGROUND

p1

p2

p3

(c)

p1 p2

10

(a)

p1

p4

p2

p3

0

1

2

3

(b)

Figure 2.9: Illustration of hyperplane partitioning. The basic hp func-
tion (a) and general partitioning (b). The clustering prin-
ciple is depicted in (c).

idea is related to the Voronoi-like partitioning [2]. Thus, we can gen-
eralize hp functions to use more pivots. The following definition uses
three pivots:

hp3(o, p1, p2, p3) =

0 if d(o, p1) ≤ d(o, p2) ∧ d(o, p1) ≤ d(o, p3)
1 if d(o, p2) < d(o, p1) ∧ d(o, p2) ≤ d(o, p3)
2 if d(o, p3) < d(o, p1) ∧ d(o, p3) < d(o, p2)

The generalized case is used in the Geometric Near-Access Tree
(GNAT) [14]. An example of hp4 function is depicted in Figure 2.9(b).

To complete partitioning methods, we have to remark the cluster-
ing approach used in R-trees. In metric spaces, this principle is ap-
plied in M-trees [25] where objects in leaves are clustered into small
groups and these groups are recursively joined into bigger clusters
that cover them. For convenience, see Figure 2.9(c).

2.6 Filtering Algorithms

In this section, we introduce second category of algorithms used in
indexing metric spaces. Filtering algorithms very often go hand in
hand with partitioning algorithm and are used together in a single

33

2. BACKGROUND

q
r

p

(a)

pq

r

(b)

p1
p2

(c)

q
r

Figure 2.10: Illustration of filtering algorithm. The lower bound prin-
ciple (a), both the upper bound (dotted circle) and the
lower bound are applied (b), and filtering using two dis-
tinct pivots.

system. The gist of filtering algorithms is to eliminate some objects
without the need to compute their relative distances to a query ob-
ject, i.e. without accessing them. Such the elimination is feasible if we
have some information about the distances from a pivot to other ob-
jects and from the query object to the pivot. For this reason, we can
apply Lemma 2.4.1 and state lower and upper bounds on distance
d(q, o). Considering the range query R(q, r), we can eliminate all ob-
jects such that their lower bound |d(q, p) − d(p, o)| of Lemma 2.4.1 is
greater than r, that is, when the distance (q, o) > r. On the other
hand, objects that satisfy d(q, p) + d(p, o) ≤ r are included in the re-
sult set of the range query actually without computing the distance
d(q, o). In fact, this applies when the upper bound of Lemma 2.4.1
is less than or equal to the radius of the range query, thus, it is sure
that object satisfies the query. Figure 2.10(a) depicts extremes of the
lower bound. The utilization of the upper bound is illustrated by
the dotted circle in Figure 2.10(b), objects within the dotted circle are
not examined by the metric function (distance d(q, o) is not evalu-
ated) and they are directly included in the response set of the range
query. Specifically, objects in the filled area are excluded from search-
ing without computing d(q, o) (the lower bound is greater than the
query radii).

By combination of more pivots, we can improve the probability
of excluding objects without computing distances to a query object.

34

2. BACKGROUND

We formalize this concept in the following lemma.

Lemma 2.6.1 Assume a metric space M = (D, d), a set of pivots P =
{p1, . . . , pn}, and a mapping Ψ: (D, d) → (� n, L∞), such that, Ψ(o) =
(d(o, p1), d(o, p2), . . . , d(o, pn)). We can bound the distance d(q, o) from
below:

L∞(Ψ(q), Ψ(o)) ≤ d(q, o).

Proof: Considering the definition of L∞ metric function, see
page 17, we get L∞(Ψ(q), Ψ(o)) = maxn

i=1|d(q, pi) − d(o, pi)|. Ap-
parently, we have that all values of |d(q, pi) − d(o, pi)| are less than
or equal to d(q, o). By multiple usage of Lemma 2.4.1, we get the
desired lower bound.

The mapping function Ψ used in Lemma 2.6.1 stands in for the
precomputed distances between pivots and objects, those distances
are known in advance. The mapping function is also applied on the
query object q and the characteristic vector of distances Ψ(q) is deter-
mined. Once we have Ψ(q) and Ψ(o), we can directly apply the lower
bound criterion. For convenience, Figure 2.10(c) shows the filtering
with two pivots. The light area represents the objects that cannot be
eliminated from searching using the distances to pivots. These ob-
jects have to be tested directly against the query object q with the
original metric function d.

The mapping Ψ is contractive. It means that on no account the
distance L∞(Ψ(o1), Ψ(o2)) is greater than the distance d(o1, o2) in the
original metric space. The outcome of a range query in the projected
space (� n, L∞) is a candidate list, which can contain some spurious
objects that do not qualify the query and have to be tested by the
original distance function d.

2.7 Choosing Pivots

The problem of choosing reference objects (pivots) is important for
any search technique in general metric spaces, because all such struc-
tures need, directly or indirectly, some ”anchors” for partitioning and
search pruning, see Sections 2.5 and 2.6. It is well known that the way

35

2. BACKGROUND

in which pivots are selected can affect the performance of search al-
gorithms. This has been recognized and demonstrated by several re-
searchers, e.g. [87], [13], or [79], but specific suggestions for choosing
good reference objects are rather vague.

Due to the problem complexity, pivots are often chosen at ran-
dom, or as space outliers, i.e. having large distances to other objects
in the metric space. Obviously, independent outliers are good pivots,
but any set of outliers does not ensure that the set is good. Qualita-
tively, the current experience can be summarized as:

• good pivots are far away from the rest of objects of the metric
space,

• good pivots are far away from each other.

Recently, the problem was systematically studied in [17], and several
strategies for selecting pivots have been proposed and tested. We
will focus on selecting pivots later in Section 4.4.6.

36

Chapter 3

Metric Index Structures

In this chapter, we provide an overview of existing indexes for met-
ric spaces. The more complete and more detailed survey is available
in [22]. This chapter is organized into three parts. The first stage
presents index structures based on the ball partitioning principle de-
scribed in Section 2.5. Next, methods that use the hyperplane par-
titioning are concerned. Finally, we focus on techniques that map a
metric space into a vector space. All the presented time and space
complexities are adopted from [22] and source papers.

3.1 Ball Partitioning Methods

In this section, we start with methods based on the ball partition-
ing. First, we introduce Burkhard-Keller Tree, which is probably the
very first solution for indexing metric spaces. Next, we present Fixed
Queries Tree and its further evolution called Fixed Queries Array. We
conclude this section with Vantage Point Trees and Multi Vantage
Point Trees we also include Excluded Middle Vantage Point Forests,
which introduce the concept of excluding the middle area from par-
titioning.

3.1.1 Burkhard-Keller Tree

Apparently, the first solution to support searching in metric spaces is
presented in [16]. A Burkhard-Keller Tree (BKT) is suitable for dis-
crete distance functions. The tree is built recursively in the following
manner: an arbitrary object p ∈ X is selected as the root node of the
tree, where X is the indexed data set. For each distance i ≥ 0, a set Xi

is defined as a group of all objects at the distance of i from the root p,

37

3. METRIC INDEX STRUCTURES

Xi = {o ∈ X, d(o, p) = i}. A child node of the root p is built for every
non-empty set Xi. All child nodes can be recursively repartitioned
until no new child node can be created. If a child node is reparti-
tioned the child node contains an object oi, which is picked from the
set Xi as a representative of it. The leaf node is created for every set
Xi if Xi is not repartitioned again. In general, objects assigned as
roots of subtrees (saved in internal nodes) are called pivots.

The algorithm for range queries is very simple. The range search
R(q, r) starts at the root node p of the tree and compares the object p
with the query object q. If p satisfies the query, that is if d(p, q) ≤ r,
the object p is reported. Subsequently, the algorithm enters all child
nodes oi such that

max{d(q, p) − r, 0} ≤ i ≤ d(q, p) + r (3.1)

and proceed down recursively. Notice that the inequality 3.1 cuts out
some branches of the tree. The inequality is a direct consequence of
lower bounds provided by Lemma 2.4.2. In particular, by applying
the lemma with rl = i and rh = i, we find that the distance from q to
an object o in the inspected tree branch is at least max{d(q, p) − i, i −
d(q, p), 0}. Thus, we visit the branch i if and only if max{d(q, p)−i, i−
d(q, p), 0} ≤ r.

Figure 3.1(b) shows an example where the BKT tree is constructed
from objects of the space that is illustrated in the figure (a). Objects p,
o1, and o4 are selected as roots of subtrees, so-called pivots. The range
query is also given and specified by the object q and radius r = 2. The
search algorithm evaluating the range query R(q, 2) discards some
branches and the accessed branches are emphasized. Obviously, if
the radius of range query grows the number of accessed subtrees
(branches) increases. This leads to higher search costs, which are
usually measured in terms of the number of distance computations
needed to answer a query. During the range query elaboration the
algorithm traverses the tree and evaluates distances to pivots, which
are accommodated in internal nodes. Thus, the increasing number
of accessed subtrees leads to the growing number of distance com-
putations due to the different pivots in individual branches. The fol-
lowing structure, fixed-queries trees (FQT), reduces such the costs.

The BKT trees are linear in space O(n). The construction com-
plexity is O(n log n) and is measured in terms of the number of dis-

38

3. METRIC INDEX STRUCTURES

p

o1 o3 o4 o7

43
2 5

o2

3

o5 o6

3 6

BKT

(b)

p

o2

o3

o5

o7

o6

o1

o4

q

(a)

Figure 3.1: An example of a metric space and a range query (a). BKT
tree (b) is built on the space.

tance computations needed to construct the tree. The search time
complexity is O(nα) where α is a real number satisfying 0 < α < 1
and depends on the search radius and the structure of the tree [22].
The search complexity is also measured in terms of distance compu-
tations.

3.1.2 Fixed Queries Tree

The FQT (Fixed Queries Tree), originally presented in [4], is an exten-
sion of BKT tree. Fixed Queries Trees use the same pivot in all nodes
at the same level, that is in contrast to BKT trees where several pivots
per level are used, see Figures 3.1(b) and 3.2(a). All objects of a given
dataset X are stored in leaves only and internal nodes are used only
for navigation during the search. The range search algorithm is the
same as for the BKT. The advantage of this structure is following, if
more than one subtree has to be accessed only one distance compu-
tation between the query object and the pivot per level is evaluated
because all nodes at the same level share the same pivot. The ex-
periments, presented in [4], reveal that FQTs perform less distance
computations than BKTs.

39

3. METRIC INDEX STRUCTURES

FQT

0 2 3 4 5

o3p o7

3 30 66

o2 o4 o5 o6o1

p

o4

(a)

0 2 3 4 5

3 30 66

o2 o5 o6o1 o7o3 o4p

FHFQT

54 4

p

o4

(b)

Figure 3.2: Examples of FQT tree (a) and FHFQT tree (b) that are built
on the given space in Figure 3.1(a).

An example of FQT tree is demonstrated in Figure 3.2(a). The
tree is built from objects depicted in Figure 3.1(a), where objects p
and o4 are pivots of corresponding levels. Notice that all objects
are stored in leaves, including objects selected as pivots. The range
query R(q, 2) is defined and accessed branches of the tree are high-
lighted.

The space complexity is superlinear because the objects selected
as pivots are duplicated. The complexity varies from O(n) to
O(n log n). The number of distance computations required to build
the tree is O(n log n). The search complexity is O(nα) where 0 < α <
1 depending on the query radius and an indexed space.

In [4, 3], the authors propose a variant of FQT trees, called FH-
FQT (Fixed-Height Fixed Queries Tree). This structure has all leaf
nodes at the same level, i.e. leaves are at the same depth h. In
other words, leaves are replaced with paths. The enlargement of the
tree can actually improve the search performance. If we increase the
height of the tree by thirty we add only thirty more distance compu-
tations for the entire similarity search. We may introduce many new
node traversals but they cost much less. However, thirty more piv-
ots will filter out many more objects, so the final candidate set will be
smaller – this idea is explained in Section 2.6. For convenience, see
Figure 3.2(b) where an example of the fixed-height FQT is provided.

The space complexity of FHFQT is superlinear and is somewhere
between O(n) and O(nh), where h is the height of the tree, this is the
same as for FQT trees. The FHFQT tree is constructed in O(nh) dis-

40

3. METRIC INDEX STRUCTURES

o2 o5 o6o1 o7o3 o4p

0 2 3 4 5

3 30 76

p

o4

FHFQT

(a)

p

o4

p o2 o1 o3 o4 o5 o6 o7

4

2

3

2

6

3

4

4

0

4

3

4

7

5

5

0

(b)

FQA

Figure 3.3: Example of the FHFQT tree (a). FQA is built from FHFQT
in (b).

tance computations. The claimed search complexity is constant O(h),
which is the number of distances evaluations computed to pivots.
However, the extra CPU time, i.e. the number of traversed nodes,
remains O(nα), where 0 < α < 1 depending on the query radius
and an indexed space. The extra CPU time is spent by comparing
values (integers) of distances and by traversing the tree. In practice,
the optimal height h = log n cannot be achieved because of space
limitations.

3.1.3 Fixed Queries Array

The Fixed Queries Array (FQA) is presented in [21, 20]. The structure
of FQA is strongly related to FHFQT but it is not a tree structure.
First, the FHFQT tree with fixed height h is built on a given dataset
X . If the leaves of the FHFQT are traversed in order from left to
right and put in an array the outcome is exactly the FQA array. Each
element of the array consists of h numbers representing distances to
every pivot utilized in the FHFQT, in fact, the sequence of h numbers
is the path from the root of FHFQT to the leaf. The FQA structure
simply stores the database objects lexicographically sorted by this
sequence of distances. Thus, the objects are first sorted to the first
pivot and those at the same distance to the first pivot are sorted to
the second pivot and so forth. For illustration, Figure 3.3 shows the
FQA array constructed from the FHFQT tree.

The range search algorithm is inherited from the FHFQT tree.

41

3. METRIC INDEX STRUCTURES

Each internal node of FHFQT corresponds to a range of elements
in the FQA. If a node is a child of a parent node its range of elements
is a subrange of the parent’s range in the array. There is a similar-
ity between FQA approach and suffix trees and suffix arrays [40].
The movement in the algorithm of FHFQT is simulated by the bi-
nary searching the new range inside the current one.

The FQA array is able to use more pivots than FHFQT, this im-
proves the efficiency and search pruning. The authors of [21] show
that the FQA outperform the FHFQT. The space requirements are
nhb bits, where b is the number of bits used to store one distance.
The number of distance computations evaluated during the search is
O(h). Authors in [5] proved that FHFQT has O(nα) extra CPU com-
plexity. FQA has O(nα log n) extra complexity, where 0 < α < 1. The
extra CPU time is expended in the binary search of the array.

All previously presented structures (BKT, FQT, FHFQT) are de-
signed for discrete metric functions (see Section 2.2 for details). FQA
also do not work well if the distance is continuous. The matter is that
we cannot have a separate child for any value of the continuous dis-
tance function. If we do the tree degenerates to a flat tree of height
two. Thus, the search algorithm in such the tree would perform al-
most like a sequential scan.

For the continuous case, we have to segment the range of possi-
ble values of the distance into a small set of subranges. Authors of
[20, 21] introduce two discretizing schemata for the FQA. The former
divides the range of possible values into identical slices, in terms of
the width of slice. The result is the Fixed Slices Fixed Queries Array.
Such the partitioning would lead to empty slices where no database
object is accommodated. This motivates the latter approach that par-
titions the entire range into slices with the same number of database
objects. In other words, we divide that range into fixed quantiles.
The resulting FQA is called the Fixed Quantiles Fixed Queries Ar-
ray.

3.1.4 Vantage Point Tree

The Vantage Point Tree (VPT) is a metric tree suitable to use with
continuous distance functions. Discrete distance functions are also
supported with virtually no modifications. VPT trees [87] are based

42

3. METRIC INDEX STRUCTURES

on the same idea as a previous work – Metric Tree [83].
In VPT tree, we pick an object p ∈ X and promote it to a pivot,

in [87] termed the vantage point, and the median dm of the distances
between objects o ∈ X and p. The pivot and the median are used to
divide the remaining objects into two groups as follows:

S1 = {o ∈ X|d(o, p) ≤ dm},

S2 = {o ∈ X|d(o, p) > dm}.

Both the sets are roughly equal sized. The objects in S1 are inside
the ball of radius dm around p and the objects in S2 are outside the
ball. The sets S1 and S2 form the left and the right branch of the node
with pivot p, respectively. Applying this principle recursively we
build a binary tree. In the leaf nodes, there can be stored one or more
objects depending on the capacity. The example of the partitioning is
presented in Section 2.5 and referred as the ball partitioning. Using
this procedure, we produce a balanced binary tree. The application
of median to divide a dataset into two subsets can be replaced with a
different strategy which uses the mean of the distances between the
objects in X \ {p}. This method, so-called the middle point, can yield
better results for high dimensional datasets [22]. The disadvantage
is that the middle point produces unbalanced tree and consequently
deteriorates the search algorithm efficiency.

The search algorithm for a range query R(q, r) traverses the VPT
tree from the root to leaves. In each internal node, it evaluates the
distance between the pivot p of the node and the query object q,
that is d(q, p). If d(q, p) ≤ r holds the pivot p is reported to out-
put. In internal nodes, the algorithm also must decide which sub-
trees are accessed. To do so, we must establish lower bounds on
the distances from q to objects in the left and right branches. If the
query radius r is less than the lower bound the algorithm does not
visit the corresponding subtree. Figure 3.4(a) provides an example
of situation where the inner ball need not to be accessed whereas
Figure 3.4(b) shows the example where both the subtrees must be
examined. The lower bounds are established using Lemma 2.4.2.
Precisely, by applying the equation with rl = 0 and rh = dm we
expose that the distance from q to any object in the left branch is at
least max{d(q, p) − dm, 0}. Likewise, by applying the equation with

43

3. METRIC INDEX STRUCTURES

S1

S0

d m

p
q

r

(a)

S1

S0

d m

p

q
r

(b)

Figure 3.4: An example of range queries, in (a), S0 need not to be ac-
cessed during the search and both the set must be visited
in (b).

rl = dm and rh = ∞ we get that the distance from q to an object
in the right subtree is at least max{dm − d(q, p), 0}. Thus, we enter
the left branch if max{d(q, p) − dm, 0} ≤ r and the right branch if
max{dm − d(q, p), 0} ≤ r. Notice that both subtrees can be visited.

The ball partitioning principle applied in VPTs does not guaran-
tee that the ball around the pivot p2 is completely inside the ball
around the pivot p1, which is the parent of p2. For convenience,
see Figure 3.5 where the situation is depicted and a query object q
is given. In general, it is possible that the lower bound from q to
a child node is smaller than the lower bound from q to the child’s
parent node, that is

max{d(q, p2) − d2
m, 0} < max{d(q, p1) − d1

m, 0}.

Nonetheless, this does not affect the behavior and correctness of the
search algorithm since objects rooted in the subtree of p2 are not
closer than max{d(q, p1) − d1

m, 0}, even though the lower bounds
claim the opposite. In other words, the objects in the left subtree
of p2 (the set S1) are somewhere in the white area inside the ball of
p2 and not in the shaded region (see Figure 3.5). On the other hand,
the objects of the right branch (the set S2) must be in the dashed area
and not outside the ball around p1.

During the building of VPT many distance computations be-
tween pivots and objects are evaluated. These distances are com-

44

3. METRIC INDEX STRUCTURES

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

p1

p2

S0 S1

(b)

q
p1

S0

S1

dm

2
dm

1

(a)

p2

Figure 3.5: An example of VPT with two pivots p1 and p2 in (a). The
corresponding representation of the tree in (b).

puted for every object o in a leaf to each pivot p on the path from the
leaf to the root. We can take advantage of this information during
the search algorithm to prune some objects. This strategy is used in
VPs trees, the variant of VPTs, proposed in [87]. These distances are
remembered and stored in the structure of VPs tree. They are then
used in the range search algorithm in the following way:

• if |d(q, p) − d(p, o)| > r holds we discard the object o without
actually computing the distance d(q, o),

• if d(q, p) + d(p, o) ≤ r holds we directly include the object o to
the answer to the range query R(q, r), again without computing
the distance d(q, o).

Given the distances d(q, p) and d(p, o), Lemma 2.4.1 forms the lower
and upper bounds on the distance between q and o:

|d(q, p) − d(p, o)| ≤ d(q, o) ≤ d(q, p) + d(p, o).

The previous two pruning conditions are direct consequences of
Lemma 2.4.1. Another variant of VPT tree is VPsb tree [87]. This
tree comes out from the VPs tree where a leaf node can store more
that one object and forms the whole bucket.

Figure 3.4(b) show the situation when the search algorithm must
enter both subtrees. Thus, no object can be excluded from examining.

45

3. METRIC INDEX STRUCTURES

In this case, the performance of searching deteriorates. In [12], this
issue is handled by extending the VPT tree to an k-ary tree. This
variant uses k − 1 thresholds (percentiles) d1

m, · · · , dk−1
m instead of

one median dm to partition the dataset into k spherical cuts, where
k > 2. These modified trees are called Multi-Way Vantage Point
Trees (mw-VPTs) and presented in [12, 13]. Unfortunately, the ex-
periments reveal that the performance of mw-VPT trees is not very
satisfactory because the spherical cuts become too thin for high-
dimensional domains [12]. Consequently, it leads to access more
branches of the tree during the search elaboration. If a search path
descents down to i of k children of a node then i distance compu-
tations are evaluated at the next level because the distance between
the query object q and each pivot of the accessed children has to be
measured. This is caused by the fact that the VPT keeps a different
pivot for each internal node at the same level.

Another extension of VPT trees called Optimistic Vantage Point
Tree is presented in [23]. Authors formulate algorithms for nearest
neighbor queries and exhaustively test the performance on an image
database.

The VPT trees take O(n) space. The construction time for bal-
anced tree is O(n log n). The search time complexity is O(log n). The
authors of [87] claim that this is true only for very small query radii
– too small to become interesting. The construction time of mw-VPT
trees is O(n logk n) distance computations. The space complexity is
the same, i.e. O(n). Similarly, the search time complexity is O(logk n).

3.1.5 Multi Vantage Point Tree

The MVPT (Multi Vantage Point Tree) [12, 13] is the extension of
the VPT tree. The motivation behind the MVPT is to decrease the
number of pivots used to construct a tree because distances between
a query object and pivots form significant search costs. FQT trees
also introduces a similar technique for reducing these costs, see Sec-
tion 3.1.2. Another interesting idea, which contributes to the shrink-
age of the number of distance evaluated during the search is based
on storing distances between pivots and objects in leaf nodes, notice
that these distances are computed during the tree construction time.
This extra information kept in leaves is then exploited by a sort of

46

3. METRIC INDEX STRUCTURES

filtering algorithm, explained in detail in Section 2.6. The filtering
algorithm dramatically decreases the number of distance computa-
tions needed to answer similarity queries.

The MVPT uses two pivots in each internal node, instead of one
in VPT. Thus, each internal node can be viewed as two levels of VPT
collapsed into one node. However, there is one crucial difference:
VPT trees use different pivots at the lower level, on contrary, MVPT
applies only one, that is, all children at the lower level use the same
pivot. This allows to have less pivots whereas the number of parti-
tions is preserved. Figure 3.6 depicts a situation where a VPT tree
is collapsed into a MVPT tree. We can easily observe that some sets
are partitioned using pivots that are not members of the sets, this
does not occur in VPTs. In this case, each pivot has two partitions
(fanouts) that implies that the number of fanouts of MVPT’s node is
22. A pivot can generally partition into m subsets and MVPT tree
can employ k pivots in each internal node. As a result, each non-leaf
node has mk partitions. Moreover, each object in the leaf node has
associated a list of distances to the first p pivots, which are used for
additional pruning in the query time.

The space complexity is O(n) since no objects are duplicated, ob-
jects chosen as pivots are stored in internal nodes and are not du-
plicated into leaves. However, MVPT needs some extra space since
we keep p precomputed distances for each object in leaves. The
construction time complexity is O(nk logmk n), where logmk n is the
height of the balanced tree. The search complexity is O(k logmk n)
but it is true for very small query radii. In the worst case, the search
complexity is O(n). The authors of [13] show experimentally that
MVPT trees outperform VPT trees, while a larger improvement is
obtained by using more pivots in internal nodes than increasing m,
the number of fanouts. The largest performance boost is achieved by
storing more precomputed distances in leaves.

3.1.6 Excluded Middle Vantage Point Forest

The VPF (Excluded Middle Vantage Point Forest), presented in [88],
is another member of the family of VPT trees. The motivation for
VPF is that VPT [87] and k-d trees [7, 8, 9] have sublinear search time
for nearest neighbor queries but the performance depends not only

47

3. METRIC INDEX STRUCTURES

p 1

p 2

p 3

d m
2

d m
1

d m
3

p 1

p 2p 3

(a)

p 2 d m
2

d m
1

p 1

d m
3

p 1

p 2

d m
1

d m
2d m

3

(b)

Figure 3.6: The difference between VPT and MVPT structures, VPT
uses three pivots for partitioning to four sets (a), MVPT
collapses two levels of VPT into one node and uses two
pivots only (b).

on the dataset but also on the distribution of queries. The VPF struc-
ture supports the worst-case sublinear search time for queries with
a fixed radius up to ρ – the performance does not depend on the
query distribution. The VPF introduces a new concept of excluding
the middle distances. The structure uses a modified ball partition-
ing technique that eliminates the middle distances from partitioning.
The new principle is defined as follows:

bpρ(o, p, dm, ρ) =

0 if d(o, p) ≤ dm − ρ
1 if d(o, p) > dm + ρ
2 otherwise

(3.2)

For convenience, Figure 3.7(a) depicts an example of bpρ function.
The function divides a dataset into two sets S0, S1 and an exclusion
set S2 which is expelled from the partitioning process. A binary tree
is built by recursive repartitioning of the set S0 and S1. All resulting

48

3. METRIC INDEX STRUCTURES

p

d m

S0

S1

S2

(a)

S2
’’’

S2
’

S2
’’

X

S2
’ S2

’’ S2
’’’

(b)

2ρ

Figure 3.7: An example of bpρ function in figure (a), all filled points
form the exclusion set S2, which is then eliminated from
the process of partitioning. VPF consisting of two trees is
presented in (b), the second tree is built from all exclusion
sets of the first tree.

exclusion sets S2 are used to create another binary tree. This proce-
dure is repeated and a forest of VPT trees is produced. Figure 3.7(b)
provides an example of VPF. The first tree is built on the dataset X .
All exclusion sets of the first tree, i.e. {S2,1, S2,2, S2,3}, are organized
in the second tree. This process continues until the exclusion sets are
not empty.

The idea of excluding the middle distances eliminates the exam-
ination of more than one branch if the query radius is less than or
equal to ρ. The next tree is searched if and only if the excluded area
must be visited. The search algorithm which enters only one branch
(left or right) is correct since every pair (x, y) of objects, such that x
belongs to the left branch and y lies in the right one, is distant at least
2ρ, that is, d(x, y) > 2ρ.

Proof: We have to prove that ∀x, y ∈ X , bpρ(x, p, dm, ρ) = 0,
bpρ(y, p, dm, ρ) = 1 : d(x, y) > 2ρ. If we consider the definition of
bpρ function in Equation 3.2, we can write d(x, p) ≤ dm − ρ and
d(y, p) > dm + ρ. Since the triangle inequality among x, y, p holds, we
get d(x, y) + d(x, p) ≥ d(y, p). If we combine these inequalities and

49

3. METRIC INDEX STRUCTURES

simplify the expression, we get d(x, y) > 2ρ.

The VPF is linear in space O(n) and the construction time is
O(n2−α) where O(n1−α) is the number of trees in the VPF forest. Sim-
ilarity queries are answered in O(n1−α log n) distance computations.
Having a parallel environment with O(n1−α) processors the search
complexity is logarithmic O(log n). The parameter 0 < α < 1 de-
pends on ρ, the dataset, and the distance function. Unfortunately, to
achieve greater value of α the parameter ρ has to be quite small.

3.2 Generalized Hyperplane Partitioning Methods

In this stage, methods based on an orthogonal approach to the ball
partitioning are concerned. Specifically, we focus on Bisector trees
and their variants Monotonous Bisector Trees and Voronoi Trees.
Next, we discuss properties of Generalized Hyperplane Trees and
Geometric Near-neighbor Access Trees. All these techniques share
the same idea, that is, they apply the hyperplane partitioning.

3.2.1 Bisector Tree

Probably the first solution which uses hyperplane partitioning, see
Section 2.5, was BST (Bisector Tree), proposed in [54]. BST is a binary
tree recursively build over the dataset X as follows. Two pivots p1, p2

are selected at each node and hyperplane partitioning is applied, that
is, objects near the pivot p1 form the left subtree while objects closer
to the pivot p2 go to the right subtree. For each of the pivots the
covering radius is established and stored in the node. The covering
radius is the maximum distance between the pivot and any object in
its subtree. The search algorithm enters a tree-branch if d(q, pi) − r is
not greater than the covering radius rc

i of pi. Thus, we can prune a
branch if the query does not intersect the ball centered in pi with the
covering radius rc

i . The pruning condition d(q, pi) − r ≤ rc
i is correct

since its modification d(q, pi)−rc
i ≤ r is a direct consequence of lower

bound of Lemma 2.4.2 with substitutions rl = 0 and rh = rc
i , besides

d(q, o) is upper-bounded by the query radius r (from the definition
of the range query).

50

3. METRIC INDEX STRUCTURES

A variant of BST is proposed in [73, 72] and called Monotonous
Bisector Tree (MBT). The idea behind this structure is that one of
pivots of each internal node, except the root node, of course, is inher-
ited from its parent node. In other words, pivots representing the left
and right subtree are copied to the corresponding child nodes. This
technique leads to usage of less pivots which inherently brings less
distance computations during the search algorithm elaboration1.

The BST trees are linear in space O(n) and they need O(n log n)
distance computations to construct the tree. Search complexity was
not analyzed by authors.

An improvement of BST trees called VT (Voronoi Tree) is pro-
posed in [31]. VT uses 2 or 3 pivots in each internal node and has
the property that the covering radii are reduced as we move down-
wards in the tree. This provides better packing of objects in subtrees.
Authors of [71] show that balanced VT trees can be obtained by as-
similating similar insertion algorithm used in B-Trees [29]. This tech-
nique is exploited in M-Trees [25], see Section 3.3.

3.2.2 Generalized Hyperplane Tree

The Generalized Hyperplane Tree (GHT) proposed in [83] is nearly
the same as BST trees in construction. GHT recursively partitions
the given dataset by applying the generalized hyperplane partition-
ing principle. The difference is that it does not use covering radii as
a pruning criterion during the search operation, instead of it, GHT
uses the hyperplane between two pivots p1, p2 to decide which sub-
trees must be visited. Figure 3.8 depicts an example of GHT tree, in
(a) the partitioning is presented and a range query is specified. The
corresponding tree structure is shown in (b). At the search time, we
traverse the left subtree if d(q, p1) − r ≤ d(q, p2) + r. The right sub-
tree is visited if d(q, p1) + r ≥ d(q, p2) − r holds. Again, note that
it is possible to enter both the subtrees. The first inequality is from
Lemma 2.4.4 and from the fact that d(q, o) ≤ r, i.e. the constraint of
range query. The second inequality is based on the same prerequi-
sites, however, Lemma 2.4.4 is used the other way around, that is,

1Assuming that the distance to the pivot in the parent node is not computed again
in the child node.

51

3. METRIC INDEX STRUCTURES

o1

p2

p1

o4

o6

o5

o8 o7

q

o3

o2

(a)

GHT

p1 p2

o2 o5 o6 o7o1 o3 o4 o8

(b)

Figure 3.8: Generalized Hyperplane Tree (GHT): (a) hyperplane par-
titioning and both the partitions must be accessed to an-
swer the given range query, (b) the corresponding struc-
ture of the tree.

the assumption on position of o is d(o, p1) ≥ d(o, p2).
A modification of GHT, which adopts the idea of reusing one

pivot from the parent node, applied in MBT trees, is presented in [15].
The space complexity of GHT trees is O(n) and they need

O(n log n) distance computations to construct the tree, it is the same
as BST trees. Unfortunately, the search complexity was not analyzed
by authors. Uhlmann in [83] argues the GHT trees could work better
than VPT trees in high dimensions.

3.2.3 GNAT

The essential idea of GHT is extended in the next work [14] that
presents GNAT (Geometric Near-neighbor Access Tree). GNAT is
a generalization of GHT that uses m pivots in each internal node.
In particular, we pick a set of pivots P = {p1, . . . , pm} and split the
dataset X into S1, . . . , Sm subsets depending on the shortest distance
to a pivot in P . In other words, for any object o ∈ X−P , o is a member
of the set Si iff d(pi, o) ≤ d(pj, o) for all j = 1, . . . , m. Thus, applying

52

3. METRIC INDEX STRUCTURES

GNAT

o1 o6

p1 p2 p3 p4

o4 o8o5 o7 o2 o3 o9

(b)(a)

o5

p1
o7

p4
o1

o3

o6
o9

p3
o2

o4

p2

o8

Figure 3.9: An example of partitioning used in the Geometric Near-
neighbor Access Tree in (a) and the corresponding tree in
(b).

this procedure recursively we build an m-ary tree. Figure 3.9 shows
a simple example of the first level of GNAT. Remark the relationship
between this idea and a Voronoi-like partitioning of vector spaces [2].
Each subset Si corresponds to a cell in the Voronoi diagram, Brin [14]
calls this cell as the Dirichlet domain. Brin also suggests that the pa-
rameter m can vary with the level in the tree and describes that the
number of children (m) depends proportionally on the number of
data objects allocated in the node.

Besides the m-ary partitioning principle, GNAT also stores infor-
mation about distances between pivots and objects in subtrees. This
enables further pruning during the search and implies that the range
search algorithm is quite different from GHT trees. In each internal
node, a table m × m consisting of ranges of distances is stored. In
particular, ranges store the minimum and maximum of distances be-
tween each pivot pi and each subset Sj . Formally, the range [rij

l , rij
h],

where i, j = 1, . . . , m, is defined as follows:

rij
l = min

o∈Sj∪{pj}
d(pi, o),

53

3. METRIC INDEX STRUCTURES

p j

p i r l

jj

r h

jj

r h

ij

r l

ij

q1

r 1

q2

r 2

Figure 3.10: Example of the pruning effect of ranges. The query
R(q1, r1) needs only the range [rij

l , rij
h] to eliminate the

subtree of pj . As for the query R(q2, r2), the range [rij
l , rij

h]
is not sufficient for skipping the subtree of pj and the
range [rjj

l , rjj
h] is also used and pj is then eliminated.

rij
h = max

o∈Sj∪{pj}
d(pi, o).

Figure 3.10 illustrates two ranges, the first [rij
l , rij

h] is defined for piv-
ots pi and pj while the second [rjj

l , rjj
h] for pivot pj itself.

The range search algorithm for a range query R(q, r) specified
in [14] proceeds in a depth-first manner. In each internal node n,
the distances between q and pivots of n are computed gradually and
some subtrees can be eliminated in each step. After all distances from
q to pivots have been computed, the algorithm visits all subtrees that
were not eliminated. In detail, the procedure applied in each internal
node can be described in the following steps. We start with the set
P consisting of all pivots of the examined node. Next, we pick one
pivot pi from P repeatedly (but we do not pick the same pivot twice)
and compute the distance d(pi, q). If d(pi, q) ≤ r holds the pivot pi is
reported to the query result. Afterwards, for all pj ∈ P we remove
pj from P if d(q, pi) − r > rij

h or d(q, pi) + r < rij
l . Those inequalities

54

3. METRIC INDEX STRUCTURES

are direct consequences of the lower bound max{d(q, pi) − rij
h , rij

l −
d(q, pi)} ≤ r of Lemma 2.4.2 with d(q, o) ≤ r. When all pivots in
P have been examined, the subtrees of the node n that correspond
to remaining pivots in P are visited. Note that a pivot pj can be
discarded from P before its distance to q is evaluated. Figure 3.10
depicts the situation where two range queries R(q1, r1), R(q2, r2) are
given. Only the range [rij

l , rij
h] is sufficient for the query R(q1, r1) to

discard pj. However, the other query needs additional range, that is
[rjj

l , rjj
h], to prune the subtree around pj.

The space complexity of GNAT index structure is O(nm2) since
tables consisting of m2 elements are stored in each internal node.
GNAT is built in O(nm logm n). The search complexity was not an-
alyzed by authors but experiments [14] reveal the fact that GNAT
outperforms GHT and VPT.

3.3 M-Tree

All indexing methods described earlier are either static, unbalanced,
or both. Thus, they are not suitable in dynamic environments, where
data are subject of permanent changes, or in the area of large data
warehouses, where disk-based techniques are necessary. Authors
of [25] present MT (M-Tree) that is designed as a dynamic and bal-
anced index structure with the capability of disk storages. The idea
of R-Trees [47], obviously inherited from B-Trees, i.e. tree grows from
its leaves to the root, is also utilized in M-Trees. This conception pro-
vides the balanced tree structure regardless how many insertions or
deletions were made and has impacts on the search performance.

In general, MT behaves like the R-Tree, that is, all objects are
stored or referenced in leaf nodes while internal nodes keep pointers
to nodes at the next lower level along with additional information
about their subtrees. Recall that R-Trees store minimum bounding
rectangles in non-leaf nodes that cover subtrees. In general metric
spaces, we cannot define bounding rectangles, hence, MT trees use
a pivot and a covering radii to form a covering ball. In MT, pivots
play similar roles as in GNAT, however, unlike GNAT, all objects are
stored in leaves. An object can be referenced multiple times in the
tree, that is, once in a leaf node and once or more in internal nodes

55

3. METRIC INDEX STRUCTURES

as a pivot.
In details, each node in MT consists of m entries. An entry of a

non-leaf node is a tuple (p, rc, d(p, pp), ptr), where p is a pivot, rc is
the corresponding covering radius, pp is the parent pivot of p (super-
script p denotes parent), d(p, pp) is the distance from p to the parent
pivot pp, and finally, ptr is the pointer to the child node of pivot p.
All objects o in the subtree rooted in ptr are within the distance rc

from p, i.e. d(o, p) ≤ rc. In the next, we will show that distances to
parent objects enhance the pruning effect. Similarly, an entry of a
leaf node consists of a tuple (o, d(o, op)), where o is a database object,
d(o, op) is the distance between o and its parent object (pivot). Fig-
ure 3.11 depicts MT consisting of three levels. Observe that the cov-
ering radius of a non-leaf entry (e.g. root entries in the figure) is not
necessarily the minimum radius for the objects in the corresponding
subtree. The minimum radius is emphasized with a dotted circle. If
minimum values of covering radii are used the overlap of entries is
minimized, furthermore, this results in a more efficient search. If a
bulk-load algorithm [24] is used for building MT the covering radii
are set to their minimum values.

MT is a dynamic structure, thus, we can build the tree gradually
as new data come. The insertion algorithm looks for the best leaf
node to insert a new object on and inserts it. The heuristic that finds
the suitable leaf works as follows. The algorithm descends along a
subtree for which no enlargement of covering radius rc is needed,
i.e. d(on, p) ≤ rc. If multiple subtrees with this property exist, the one
for which object on is closest to its pivot is chosen. Figure 3.11 shows
the situation where the object o11 can be inserted into two subtrees
around pivots o7, o2, finally, o11 is inserted into the subtree of o7. If
there is no pivot for which no enlargement is need the algorithm’s
choice is to minimize the increase of the covering radius. At last,
the new object on is inserted into selected leaf node. The insertion
into the leaf may cause overflow, the leaf splits and a new pivot is
selected. Note that the overflow may propagate to the root node
and the tree grows one level in the bottom-up fashion. A number of
heuristics for choosing the most suitable leaf node and for splitting
nodes is considered in [25].

The range search algorithm for R(q, r) traverses the tree in a
depth-first manner, initiated in the root. During the search we make

56

3. METRIC INDEX STRUCTURES

o 11o 1 o 6 o 10 o 3

o 1

o 1

o 10

o 7 o 5 o 2

o 2

o 2

o 8 o 4

o 4

o 9

o 7

o 1

o 3

o 10

o 6

o 7

o 4

o 2

o 8

o 11

o 5

o 9

Figure 3.11: Example of M-Tree (MT) that consists of 3 levels. Above,
the 2-D representation of partitioning where pivots are
denoted with crosses and the circles around pivots cor-
respond to values of covering radii. Observe that balls
around pivots can intersect. The dotted circles represent
the minimum values of covering radii. If they are used
no overlap is achieved. Below, the corresponding tree
structure is shown.

57

3. METRIC INDEX STRUCTURES

use of all stored distances to parent objects. Assume that the current
node n is an internal node, we consider all entries (p, rc, d(p, pp), ptr)
of n.

• If |d(q, pp) − d(p, pp)| − rc > r the subtree pointed ptr does not
need to be visited and the entry is pruned. This pruning crite-
rion is based on the fact that the expression |d(q, pp)−d(p, pp)|−
rc is a lower bound on distance d(q, o), where o is any object
in the subtree ptr. Thus, if the lower bound is greater than the
query radius r the subtree need not to be visited because no
object in the subtree can qualify the range query.
Proof: We have to prove that the lower bound
|d(q, pp) − d(p, pp)| − rc ≤ d(q, o) is correct. The lower bound is
a consequence of Lemma 2.4.1 and Lemma 2.4.3. Lemma 2.4.1
provides us with the lower and upper bound on the distance
d(q, p). If we use p and pp as o and p in the lemma, respec-
tively, we get the lower bound |d(q, pp) − d(p, pp)| ≤ d(q, p)
and the upper bound d(q, p) ≤ d(q, pp) + d(p, pp). The
distances d(p, o) are in the range [0, rc] because all objects
o in the subtree ptr are within the covering ball estab-
lished by pivot p with the covering radius rc. Now, using
Lemma 2.4.3 we obtain the lower on the distance d(q, o). If
we substitute rl = 0, rh = rc and r′l = |d(q, pp) − d(p, pp)|,
r′h = d(q, pp) + d(p, pp) we get the lower bound
max{|d(q, pp)−d(p, pp)|− rc, 0− (d(q, pp)+d(p, pp)), 0} ≤ d(q, o).
The expression 0− (d(q, pp) + d(p, pp)) is always negative, thus,
the lower bound is |d(q, pp) − d(p, pp)| − rc ≤ d(q, o).

• If |d(q, pp) − d(p, pp)| − rc ≤ r holds we cannot avoid com-
puting the distance d(q, p). Having the value of d(q, p) we
can still prune some branches using the following criterion:
d(q, p) − rc > r. This pruning criterion is a direct result of the
lower bound in Lemma 2.4.2 with the substitution rl = 0 and
rh = rc (the lower and upper bounds on the distance d(p, o)).

• All non-pruned entries are recursively searched.
Leaf nodes are processed similarly. Each entry (o, d(o, op)) is

tested on the pruning condition |d(q, op) − d(o, op)| > r. If it holds

58

3. METRIC INDEX STRUCTURES

the entry can be safely pruned. This pruning criterion is the lower
bound in Lemma 2.4.1. If the entry cannot be discarded the distance
d(q, o) is evaluated and the object o is reported if d(q, o) ≤ r. Note that
in all three steps where pruning criteria are defined we discard some
entries without computing distances of the corresponding objects.

The algorithm for k-nearest neighbor queries is based on the
range search algorithm and instead of the query radius r the distance
to the kth nearest neighbor is used, for details see [25]. In [27], authors
extend MT to support complex similarity queries which are defined
through a generic language. In other words, complex queries con-
sist of more than one similarity predicate. An application of complex
similarity queries is relevance feedback techniques.

The space complexity is O(n + m ∗ N) distances, n is the number
of distances stored in leaves, N is the number of internal nodes, each
node has capacity of m entries. The claimed construction complexity
is O(n(m . . .m2) logm n) distances. The search complexity was not an-
alyzed by authors of [25] but in [26] a cost model of MT is presented.
However, the experiments in [25] show that MT is resistant to the
dimensionality of the space and is competitive against R∗-trees.

3.3.1 Slim Trees

In [53], ST (Slim Tree) is proposed. ST is an extension of M-Tree that
speeds up insertion and node splitting algorithms while also improv-
ing the storage utilization.

The proposed splitting algorithm is based on the minimum span-
ning tree (MST) [59], which has been successfully used in clustering.
Assume a set of n objects of a node which has to be split we consider
a fully connected graph consisting of n objects (acting as vertices)
and n ∗ (n − 1) edges. The weight of an edge is the distance between
the edge’s vertices. The algorithm proceeds the next steps:

1. build the minimum spanning tree on the full graph,

2. delete the longest edge,

3. resulting two components of the graph form the new nodes,

4. choose a pivot of each group – the object whose maximum dis-
tance to all other objects in the group is the shortest.

59

3. METRIC INDEX STRUCTURES

Unfortunately, the algorithm does not guarantee the minimal occu-
pation of each node, which is often dm/2e where m is the node’s ca-
pacity (maximum number of entries). However, the algorithm tries
to minimize the overlap of nodes.

As the post-processing step, authors [53] presents Slim-down al-
gorithm that even reduces the overlap between nodes and increases
the storage utilization. The most promising split strategy claimed
by authors of M-Tree [25] is minMax splitting algorithms. This al-
gorithm has complexity O(n3), where n is the number of objects in
a node to be split. On contrary, the proposed MST-splitting method
has O(n2 log n) requirements.

Very recently, another extension of building algorithms for M-
Trees was proposed [80]. The authors propose two techniques, a
multi-way insertion algorithm and a generalized slim-down algo-
rithm. The multi-way method increases node utilization thus it leads
to smaller index files. The slim-down algorithm of ST (Slim Tree) is
generalized and causes better query performance for both the range
and nearest neighbor queries. A combination of these approaches is
also considered.

3.4 Spatial Approximation Tree

Previously presented indexes use some partitioning principle to re-
cursively divide the data space into partitions. GHT and GNAT are
inspired by the Voronoi-like partitioning. In this section, we intro-
duce SAT (sa-tree – Spatial Approximation Tree) [67, 69]. SAT is
based on Voronoi diagrams, however, it does not create a hierar-
chical structure which recursively partitions data into two or more
Voronoi cell-like regions. In contrast, SAT trees try to approximate
the structure of the Delaunay graph. Given a Voronoi diagram, a De-
launay graph defined in [69] is a graph where each node represents
one cell of the Voronoi diagram and nodes are connected with an
edge if the corresponding Voronoi cells are directly neighboring. In
other words, the Delaunay graph is a representation of relations be-
tween cells in the Voronoi diagram. Next, we will use the term object
for a node of Delaunay graph and vice versa. The search algorithm
for the nearest neighbor of a query object q starts with an arbitrary

60

3. METRIC INDEX STRUCTURES

object (node in the Delaunay graph) and proceeds to a neighboring
object closer to q as long as it is possible. If we reach an object o
where all neighbors of o are further from q than o we have found the
nearest neighbor of q – the object o. The correctness of this simple
algorithm is guaranteed because of the property of Delaunay graphs
that if q is closer to an object o than to any of the neighbors of o then
o is the closest object to q. Unfortunately, it is possible to show that
without more information about given metric space M = (D, d), the
knowledge of distances among objects in a finite set X ⊆ D does not
uniquely determine the Delaunay graph for X , for further details
see [69, 51]. Thus, the only way to ensure that the search procedure
is correct is to use a complete graph, that is, the graph containing all
edges between all pairs of objects in X . However, such a graph is not
suitable for searching because the decision of which edge should be
traversed from the starting object requires computing distances from
the query to all remaining objects in X . In fact, this is the same as
linear scan of all objects in the database and from the search point of
view it is useless.

SAT is defined for a dataset X as follows. An arbitrary object p
is selected as a root of the tree and the smallest possible set N(p) of
all its neighbors is determined. For every neighbor, a child node is
defined and the closest objects to the child are structured in the same
way in this subtree. The distance to the furthest object o from p is
also stored in each node, i.e. for the root node, maxo∈X d(p, o). In
established terminology, it is the covering radius rc. The set N(p) of
neighbors of p is defined as:

o ∈ N(p) ⇔ ∀o′ ∈ N(p) \ {o} : d(o, p) < d(o, o′).

The intuition behind this definition is that, for a valid set N(p) (not
necessarily the smallest), each object of N(p) is closer to p than to any
other object in N(p) and all objects in X \N(p) are closer to an object
in N(p) than to p. Figure 3.12(b) shows an example of SAT built on
a dataset depicted in Figure 3.12(a). As the root node the object o1 is
selected, the set of neighbors for o1 is N(o1) = {o2, o3, o4, o5}. Note
that object o7 cannot be included in N(o1) since o7 is closer to o3 than
to o1.

Unfortunately, the construction of minimum set N(p) is very ex-
pensive. Navarro in [69] argues that it is an NP-complete problem

61

3. METRIC INDEX STRUCTURES

o
1

o
2

o
10

o
9

o
12

o
3

o
6

o
14

o
13

o
8

o
5

o
11

o
7

o
4

o
1

o
2

o
10

o
9

o
12

o
3

o
6

o
14

o
13

o
8

o
5

o
11

o
7

o
4

(b)(a)

Figure 3.12: SAT tree is built over a dataset in (a). In (b), SAT tree is
depicted where o1 is selected as root.

and proposes a heuristic that constructs the possible set of neighbors,
nonetheless, not minimal. The heuristic starts with an object p and a
set S = X \ {p}, N(p) is initially empty. First, we sort the members of
S by their distance to p. Then, we gradually pick an object o from S
and add it to N(p) if is is closer to p than to any other object in N(p).
As a result, we have a suitable set of neighbors.

The range search algorithm for the query R(q, r) starts at the
root node and traverses the tree visiting all non-discardable subtrees.
Specifically, at the node p, we have the set of all neighbors N(p). First,
we locate the closest object oc ∈ N(p)∪{p} to q. Next, we can discard
all subtrees od ∈ N(p) such that

d(q, od) > 2r + d(q, oc). (3.3)

Proof: The pruning criterion is a consequence of
Lemma 2.4.4 with p1 = od and p2 = oc. In particular, we get
max{d(q,od)−d(q,oc)

2
, 0} ≤ d(q, o) from Lemma 2.4.4. Providing that

d(q, o) ≤ r (range query constraint) and q is closer to oc than od we
have d(q,od)−d(q,oc)

2
≤ r from the lower bound of Lemma 2.4.4. We can

prune the branch od if d(q,od)−d(q,oc)
2

> r, that is, d(q, od) > 2r+d(q, oc).

62

3. METRIC INDEX STRUCTURES

The closest object oc to q is selected because we want to maximize
the lower bound of Lemma 2.4.4. When the current node is not the
root of tree we can even improve the pruning effect. Figure 3.13 de-
picts a sample of SAT tree with the root t, the current node is p and
all its neighbors are p1, p2, p3, the query object q is specified. Above
presented algorithm selects p as the closest object to q, even though,
the object s2 is closer. If we choose s2 as the closest object we fur-
ther maximize the effect of pruning condition. However, it requires
to modify the procedure of picking the closest object as follows: we
select oc from all ancestors of p and their neighbors to get the closest
object, i.e. oc ∈

⋃

o∈A(p)(N(o) ∪ {o}), where A(p) consists of all ances-
tors of p and their neighbors (in the figure, A(p) consists of the root
node t and all its neighbors including p). Finally, the covering radius
rc of each node is used to further reduce the search costs. We do not
visit a node p if d(q, p) > rc + r. This expression is derived from the
lower bound in Lemma 2.4.2 with rl = 0, rh = rc and from the fact
that d(q, o) ≤ r. We must remark that the search algorithm is correct
and returns all qualifying objects regardless the strategy of selecting
the closest object oc. In other words, the strategy only influences the
efficiency of pruning, see Equation 3.3.

The tree is built in O(n log n/ log log n), takes O(n) space and the
search complexity is Θ(n1−Θ(1/ log log n)). For further details, see [69, 67,
51]. SAT is designed as a static structure a dynamic version of SAT is
presented in [70].

3.5 Distance Matrix Methods

Finally, we discuss other techniques than presented in previous sec-
tions. These methods are based on usage of matrices of distance be-
tween objects in metric space. Matrices are then used in search al-
gorithm to prune not qualifying objects. Specifically, we present Ap-
proximating and Eliminating Search Algorithm and its linear vari-
ant. We also mention other modifications or improvements such as
TLAESA, ROAESA, and Spaghettis. At last, we focus on mapping-
based approaches that transform a metric space into a vector space
and discuss related issues.

63

3. METRIC INDEX STRUCTURES

p2

p3

p1

s 2

s 1

t

p

s

q

Figure 3.13: A sample of SAT with the root t and the query object q
are provided. At the current node p, the range search
algorithm selects the object p as the closest object to q
while s2 is closer to q than p. An improved variant of
search algorithm selects the closest object from all an-
cestors and their neighbors, i.e. s2 is selected instead of
p. The dashed lines represent the boundaries between
Voronoi cell of the first level of SAT tree. The dotted lines
depict the same for the second level.

3.5.1 AESA

AESA (Approximating and Eliminating Search Algorithm) pre-
sented in [75, 84] uses a matrix of distances between database ob-
jects which were computed during the creation of the AESA struc-
ture. The structure is simply a matrix n × n consisting of distances
between all pairs of n database objects. Particularly, due to symme-
try property of metric function only a half of the matrix below the
diagonal is stored, that is, n(n − 1)/2 distances. In comparison with
previous methods, every object in AESA plays the role of pivot.

The search operation for range query R(q, r) (for the nearest
neighbors queries works similarly) picks an object p at random and
uses it as a pivot. The distance from q to p is evaluated and is used for
pruning some objects. We can prune object o if |d(p, o) − d(q, p)| > r,
that is, the lower bound in Lemma 2.4.1 is greater than the query

64

3. METRIC INDEX STRUCTURES

radius r. Next, the algorithm chooses next pivot among all non-
discarded objects up to now. The choice of pivot is influenced by the
lower bound |d(p, o)−d(q, p)| since we want to maximize the pruning
effect we have to maximize the lower bound that results in the choice
of the closest object p to q [75]. The new pivot is used in the pruning
condition for further elimination of some non-discarded objects. This
process is repeated until the set of non-discarded objects is not small
enough. Finally, the remaining objects are checked directly with q,
i.e. distances d(q, o) are evaluated and objects satisfying d(q, o) ≤ r
are reported.

According to experiments presented in [84], AESA performs an
order of magnitude better than other competing methods and is ar-
gued that it has a constant query time with respect to the size of
database (O(1)). This superior performance is obtained at the ex-
pense of quadratic space complexity O(n2) and quadratic construc-
tion complexity. The extra CPU time is spent in scanning the matrix,
the extra time is from O(n) up to O(n2), however, we should note that
one distance computation is much more expensive than one scan in
matrix. Although the performance is promising, AESA is applicable
only for small data sets of at most a few thousand objects. On con-
trary, if range queries with large radii or nearest neighbors queries
with high k are specified AESA tends to to require O(n) distance
computations, the same as a trivial linear scan.

3.5.2 LAESA

The main drawback of AESA approach being quadratic in space is
solved in LAESA structure (Linear AESA) [64, 65]. This method al-
leviates this disadvantage by choosing a fixed number k of pivots
whose distances to other objects are kept. Thus, the distance ma-
trix is n × k rather than n(n − 1)/2 entries in AESA. Usage of only
a relatively small number of pivots needs an algorithm for selecting
appropriate pivots, which can advance pruning during the search.
In [65], the pivot selection algorithm attempts to choose pivots far
away from each other as possible.

The search procedure is nearly the same as in AESA except that
some objects are not pivots. Thus, we cannot choose next pivot
from non-discarded object up now because we might have elimi-

65

3. METRIC INDEX STRUCTURES

nated some pivots. First, the search algorithm eliminates objects us-
ing all pivots. Next, all remaining objects are directly compared to
the query object q. More details can be found in [51] as well as other
search algorithms (nearest neighbor queries, ranking queries).

The space complexity of LAESA and construction time are O(kn).
The search requires k + O(1). The extra CPU time is reduced by a
modification called TLAESA and introduced in [63]. TLAESA builds
a GHT tree-like structure using the same k pivots and the extra CPU
time is between O(log n) and O(kn). AESA and LAESA approaches
are compared in [74].

3.5.3 Other Methods

A similar structure to LAESA is presented in [79] which also stores kn
distances in a matrix n×k. However, the search procedure is slightly
different. The objects in database (o1, . . . on) are sorted by distance
to the first pivot p1. The search starts with the object oi whose dis-
tance from p1 is nearly the same as d(p1, q), i.e. |d(p1, oi) − d(q, p1)|
is minimum where i = 1..n, note that this is the lower bound in
Lemma 2.4.1. The object oi is checked against all pivots whether the
pruning condition |d(pj, oi)− d(q, pj)| > r is valid for any pj , j = 1..k.
If oi cannot be eliminated the distance d(q, oi) is computed. The
search continues with objects oi+1, oi−1, oi+2, oi−2, . . . until the prun-
ing condition |d(p1, oi) − d(q, p1)| > r is valid.

Another improvement of LAESA method is Spaghettis, intro-
duced in [19]. This approach also stores kn distances between
all n objects and k pivots. Each array of distances to a pivot is
sorted according to the distance. Two objects oi, oj can have differ-
ent order in two arrays because their distances to the correspond-
ing pivots differ (e.g. d(p1, oi) < d(p1, oj) and d(p2, oi) > d(p2, oj)).
Thus, we have to store permutations of objects with respect to the
preceding array. During the range search, k intervals are defined
[d(q, p1)− r, d(q, p1)+ r], . . . , [d(q, pk)− r, d(q, pk)+ r]. All objects qual-
ifying the query belong to the intersection of all these intervals. Each
object in the first interval is checked whether it is a member of other
intervals, at this point, the stored permutations are used for travers-
ing through arrays of distances. Finally, non-discarded objects are
directly compared with the query object directly. The extra CPU time

66

3. METRIC INDEX STRUCTURES

is reduced to O(k log n).
Both AESA and LAESA have an overhead of O(n) in terms of

computations other than distance evaluations (i.e. searching the
matrix). In [85], a technique called ROAESA (Reduced Overhead
AESA) reduces such the cost by using some heuristics to eliminate
some unneeded traversals of matrix. However, this technique is ap-
plicable only to nearest neighbor searches the range search algorithm
is not accelerated.

LAESA can also be used as a k−NN classifier. The variant of
LAESA termed Ak-LAESA is presented in [66] and performs faster
than a standard k−NN classifier in metric spaces while it preserves
all features of LAESA.

3.6 Mapping-Based Approaches

In this section, we focus on mapping based approaches to complete
the list of techniques for indexing metric spaces. In particular, these
methods are based on transforming the original metric space into a
multidimensional vector space. In principle, any multidimensional
indexing method can be employed to speed up searching in vector
spaces. For further details, see surveys [11, 41] of multidimensional
access methods.

The transformation is based on a mapping function Ψ that trans-
forms a metric space into a vector space:

Ψ : (D, d) → (� n, δ).

Typically, δ is an Lp metric (Minkowski distance), the most common
are the Euclidean metric L2 or the Chessboard distance L∞, which
is also used in filtering algorithms, see Section 2.6. All database ob-
jects o of the metric space are transformed using Ψ(o) into the vector
space, the query object q is also transformed Ψ(q). The rationale for
doing so is that we replace usually expensive distance d by much less
expensive distance δ.

Numerous methods are used for mapping objects into vector
spaces, they can be categorized into the following groups: domain
specific methods use some special properties of objects, dimensional-
ity reduction methods [30, 39, 55] are applied on the data sets which

67

3. METRIC INDEX STRUCTURES

are already in vector space but the dimensionality is impractically
high for use of spatial indexes, and embedding methods are entirely
based on the original distance d and the transformation employ a
prepicted set of pivots. Of course, the dimensionality reduction tech-
niques can be applied on results of methods of the other categories
when the dimensionality is too high.

The search operation in the projected vector space needs
the mapping to be contractive, it means that δ(Ψ(o1), Ψ(o2)) ≤
d(o1, o2), ∀o1, o2 ∈ D. In particular, this property ensures that we
do not have false dismissals, i.e. the objects qualifying the query
that was falsely eliminated. However, the resulting set must be
checked with the original function d in the metric space to filter out
false positives. Besides, if the mapping function is proximity preserv-
ing the nearest neighbor queries can be directly performed in the
projected vector space without any additional refinement of the an-
swer. The mapping is proximity preserving if d(o1, o2) ≤ d(o1, o3)
⇒ δ(Ψ(o1), Ψ(o2)) ≤ δ(Ψ(o1), Ψ(o3)), ∀o1, o2, o3 ∈ D.

68

Chapter 4

D-Index

Though the number of existing search algorithms is impressive, see
[22], the search costs are still high, and there is no algorithm that is
able to outperform the others in all situations. Furthermore, most of
the algorithms are implemented as main memory structures, thus do
not scale up well to deal with large data files.

The access structure we propose, called D-Index [33], synergisti-
cally combines more principles into a single system in order to min-
imize the amount of accessed data, as well as the number of dis-
tance computations. In particular, we define a new technique to re-
cursively cluster data in separable partitions of data blocks and we
combine it with pivot-based strategies, so-called filtering techniques,
to decrease the I/O costs. In the following, we first formally specify
the underlying principles of our clustering and pivoting techniques
and then we present examples to illustrate the ideas behind the defi-
nitions.

4.1 Clustering Through Separable Partitioning

To achieve our objectives, we base our partitioning principles on a
mapping function, which we call a ρ-split function, where ρ is a real
number constrained as 0 ≤ ρ < d+. The concept of ρ-split func-
tions was originally published by Yianillos [88] and we modify this
approach to our needs. In order to gradually explain the concept of
ρ-split functions, we first define a first order ρ-split function and its
properties.
Definition: Given a metric space M = (D, d), a first order ρ-split
function s1,ρ is the mapping s1,ρ : D → {0, 1,−}, such that for arbi-
trary different objects x, y ∈ D, s1,ρ(x) = 0 ∧ s1,ρ(y) = 1 ⇒ d(x, y) >

69

4. D-INDEX

2ρ (separable property) and ρ2 ≥ ρ1 ∧ s1,ρ2(x) 6= − ∧ s1,ρ1(y) = − ⇒
d(x, y) > ρ2 − ρ1 (symmetry property).

In other words, the ρ-split function assigns to each object of the
space D one of the symbols 0, 1, or −. Moreover, the function must
hold the separable and symmetry properties. The meaning and the
importance of these properties will be clarified later.

We can generalize the ρ-split function by concatenating n first or-
der ρ-split functions with the purpose of obtaining a split function of
order n.
Definition: Given n first order ρ-split functions s1,ρ

1 , . . . , s1,ρ
n

in the metric space (D, d), a ρ-split function of order n sn,ρ =
(s1,ρ

1 , s1,ρ
2 , . . . , s1,ρ

n) : D → {0, 1,−}n is the mapping, such that for
arbitrary different objects x, y ∈ D, ∀i s1,ρ

i (x) 6= − ∧ ∀i s1,ρ
i (y) 6=

− ∧ sn,ρ(x) 6= sn,ρ(y) ⇒ d(x, y) > 2ρ (separable property) and
ρ2 ≥ ρ1 ∧ ∀i s1,ρ2

i (x) 6= − ∧ ∃j s1,ρ1

j (y) = − ⇒ d(x, y) > ρ2 − ρ1

(symmetry property).

An obvious consequence of the ρ-split function definitions, useful
for our purposes, is that by combining n ρ-split functions of the first
order s1,ρ

1 , . . . , s1,ρ
n , which have the separable and symmetric proper-

ties, we obtain a ρ-split function of nth order sn,ρ, which also demon-
strates the separable and symmetric properties. We often refer to the
number of symbols generated by sn,ρ, that is the parameter n, as the
order of the ρ-split function. In order to obtain an addressing scheme,
we need another function that transforms the ρ-split strings into in-
teger numbers, which we define as follows.
Definition: Given a string b =(b1, . . . , bn) of n elements 0, 1, or −, the
function 〈·〉 : {0, 1,−}n → [0..2n] is specified as:

〈b〉 =

{

[b1, b2, . . . , bn]2 =
∑n

j=1 2n−jbj , if ∀j bj 6= −
2n, otherwise

When all the elements are different from ‘−’, the function 〈b〉 sim-
ply translates the string b into an integer by interpreting it as a binary
number (which is always less than 2n), otherwise the function returns
2n.

70

4. D-INDEX

By means of the ρ-split function and the 〈·〉 operator, we can as-
sign an integer number i (0 ≤ i ≤ 2n) to each object x ∈ D, i.e., the
function can group objects from D in 2n + 1 disjoint subsets.

Assuming a ρ-split function sn,ρ, we use the capital letter Sn,ρ to
designate partitions (subsets) of objects from X ⊆ D, which the func-
tion can produce. More precisely, given a ρ-split function sn,ρ and a
set of objects X , we define Sn,ρ

[i] (X) = {x ∈ X | 〈sn,ρ(x)〉 = i}. We call
the first 2n sets the separable sets. The last set that is the set of objects
for which the function 〈sn,ρ(x)〉 evaluates to 2n is called the exclusion
set.

For illustration, given two split functions of order 1, s1,ρ
1 and s1,ρ

2 ,
a ρ-split function of order 2 produces strings as a concatenation of
strings returned by functions s1,ρ

1 and s1,ρ
2 .

The combination of the ρ-split functions can also be seen from
the perspective of the object data set. Considering again the illus-
trative example above, the resulting function of order 2 generates an
exclusion set as the union of the exclusion sets of the two first order
split functions, i.e. (S1,ρ

1[2](D) ∪ S1,ρ
2[2](D)). Moreover, the four separa-

ble sets, which are given by the combination of the separable sets
of the original split functions, are determined as follows: {S1,ρ

1[0](D) ∩

S1,ρ
2[0](D), S1,ρ

1[0](D) ∩ S1,ρ
2[1](D), S1,ρ

1[1](D) ∩ S1,ρ
2[0](D), S1,ρ

1[1](D) ∩ S1,ρ
2[1](D)}.

The separable property of the ρ-split function allows to partition
a set of objects X in subsets Sn,ρ

[i] (X), so that the distance from an ob-
ject in one subset to another object in a different subset is more than
2ρ, which is true for all i < 2n. We say that such disjoint separation
of subsets, or partitioning, is separable up to 2ρ. This property will
be used during the retrieval, since a range query with radius r ≤ ρ
requires to access only one of the separable sets and, possibly the ex-
clusion set. For convenience, we denote a set of separable partitions
{Sn,ρ

[0] (D), . . . , Sn,ρ
[2n−1](D)} as {Sn,ρ

[·] (D)}. The last partition Sn,ρ
[2n](D) is

the exclusion set.
When the ρ parameter changes, the separable partitions shrink or

widen correspondingly. The symmetric property guarantees a uni-
form reaction in all the partitions. This property is essential in the
similarity search phase as detailed in Sections 4.4.2 and 4.4.3.

71

4. D-INDEX

4.2 Pivot-Based Filtering

In general, the pivot-based algorithms can be viewed as a mapping
Ψ from the original metric space M = (D, d) to a n-dimensional vec-
tor space with the L∞ distance. The mapping assumes a set P =
{p1, p2, . . . pn} of objects from D, called pivots, and for each database
object o, the mapping determines its characteristic (feature) vector
as Ψ(o) = (d(o, p1), d(o, p2), . . . d(o, pn)). We designate the new metric
space as MP = (� n, L∞). At search time, we compute for a query
object q the query feature vector Ψ(q) = (d(q, p1), d(q, p2), . . . d(q, pt))
and discard for the search radius r an object o if

L∞(Ψ(o), Ψ(q)) > r (4.1)

In other words, the object o can be discarded if for some pivot pi,

| d(q, pi) − d(o, pi) |> r (4.2)

Due to the triangle inequality, the mapping Ψ is contractive, that is all
discarded objects do not belong to the result set. However, some not-
discarded objects may not be relevant and must be verified through
the original distance function d(·). For more details, see Section 2.6
or [21].

4.3 Illustration of the idea

Before we specify the structure and the insertion/search algorithms
of D-Index, we illustrate the ρ-split clustering and pivoting tech-
niques by simple examples.

It is intuitively clear that many ρ-split functions can be defined,
and that some of functions can be more convenient than the others,
which might also depend on the data. On the extreme basis, a ρ-
split function can allocate all objects in one of the subsets (partitions)
either in a separable set or in the exclusion set, keeping the others
empty. Of course, there is no meaning in such a split whatever subset
would contain the result. Considering the fact that we can combine
several first-order ρ split functions in order to obtain smaller separa-
ble partitions, we can say that a good ρ-split function should aim at
maximizing the following two objective measures:

72

4. D-INDEX

balancing – Separable sets should be of (approximately) equal size
to avoid a skew in object allocation for separable sets. In prin-
ciple, there are two reasons to achieve such the objective. First,
since one of the separable sets can always be neglected for any
kind of query, balanced partitions should guarantee good per-
formance on the average – large sets have high probability of
access, provided the distribution of query objects follows the
distribution of searched data, which is usually true. Second,
recursive partitioning of unbalanced sets can only increase the
data allocation skew.

minimization – The exclusion set should be small, because it is the
set that cannot typically be eliminated from the search point of
view.

Several different types of first order ρ-split functions are pro-
posed, analyzed, and evaluated in [32]. The ball partitioning split
(bps) originally proposed in [88] under the name excluded middle
partitioning, provided the smallest exclusion set. For this reason, we
also apply this approach that can be characterized as follows.

The ball partitioning ρ-split function bpsρ(x, xv) uses one object
xv ∈ D and the medium distance dm to partition the data file into
three subsets BPS1,ρ

[0] , BPS1,ρ
[1] and BPS1,ρ

[2] – the result of the function
〈bps1,ρ(x)〉 gives the index of the set to which the object x belongs, for
convenience see Figure 4.1.

bps1,ρ(x) =

0 if d(x, xv) ≤ dm − ρ
1 if d(x, xv) > dm + ρ
− otherwise

(4.3)

Note that the medium distance dm is relative to xv and it is defined
to satisfy the balancing requirement, the cardinality of the set BPS1,ρ

[0]

and the cardinality of BPS1,ρ
[1] are nearly the same. In other words,

the number of objects with distances smaller than or equal to dm is
practically the same as the number of objects with distances larger
than dm. For more details, see [87].

In order to see that the bpsρ-split function behaves in the desired
way, it is sufficient to prove that the separable and symmetric prop-
erties hold.

73

4. D-INDEX

2ρ

x�
x �

x�

d �

()Dρ�����	
���

()Dρ�����������

()Dρ�������� �!

Figure 4.1: The ball partitioning based on the excluded middle parti-
tioning

Separable property We have to prove that ∀x0 ∈ BPS1,ρ
[0] , x1 ∈

BPS1,ρ
[1] : d(x0, x1) > 2ρ.

Proof: If we consider the definition of the bps1,ρ split func-
tion in Equation 4.3, we can write d(x0, xv) ≤ dm − ρ and
d(x1, xv) > dm + ρ. Since the triangle inequality among
x0, x1, xv holds, we get d(x0, x1) + d(x0, xv) ≥ d(x1, xv). If we
combine these inequalities and simplify the expression, we get
d(x0, x1) > 2ρ.

Symmetric property We have to prove that ∀x0 ∈ BPS1,ρ2

[0] , x1 ∈

BPS1,ρ2

[1] , y ∈ BPS1,ρ1

[2] : d(x0, y) > ρ2 − ρ1 and d(x1, y) > ρ2 − ρ1

with ρ2 ≥ ρ1.
Proof: We prove the assertion only for the object x0 be-
cause the proof for x1 is analogous. Since y ∈ BPS1,ρ1

[2] then
d(y, xv) > dm − ρ1. Moreover, since x0 ∈ BPS1,ρ2

[0] then
dm − ρ2 ≥ d(x0, xv). By summing both the sides of the
above inequalities we obtain d(y, xv) − d(x0, xv) > ρ2 − ρ1.
Finally, from the triangle inequality we have that

74

4. D-INDEX

ρ��
���S

ρ��
��	S

ρ��
��	S

ρ�
�

�
	S

ρ��
���S

ρ��
���

�����������������
������� �!��"$#�%

&('�) � *�%��+"$#
%,�-�

ρ.

/d

Figure 4.2: Combination of two first-order ρ split functions applied
on the two-dimensional space.

d(x0, y) ≥ d(y, xv) − d(x0, xv) and then d(x0, y) > ρ2 − ρ1.

As explained in Section 4.1, once we have defined a set
of first order ρ-split functions, it is possible to combine them
in order to obtain a function that generates more partitions.
This idea is depicted in Figure 4.2 where two bps-split func-
tions, on the two-dimensional space, are used. The domain
D, represented by the gray square, is divided into four regions
{S2,ρ

[·] (D)}={S2,ρ
[0] (D), S2,ρ

[1] (D), S2,ρ
[2] (D), S2,ρ

[3] (D)}, corresponding to the
separable partitions. The partition S2,ρ

[4] (D), the exclusion set, is rep-
resented by the brighter region and it is formed by the union of the
exclusion sets resulting from the two splits.

In Figure 4.3, the basic principle of the pivoting technique is il-
lustrated, where q is the query object, r the query radius, and pi a
pivot. Provided the distance between any object and pi is known, the

75

4. D-INDEX

pi

r

q

r

q

Figure 4.3: Example of pivots behavior.

gray area represents the region of objects x, that do not belong to the
query result. This can easily be decided without actually comput-
ing the distance between q and x, by using the triangle inequalities
d(x, pi) + d(x, q) ≥ d(pi, q) and d(pi, q) + d(x, q) ≥ d(x, pi), and re-
specting the query radius r. Naturally, by using more pivots, we
can improve the probability of excluding an object without actually
computing its distance with respect to q. More details are provided
in Section 2.6.

4.4 System Structure and Algorithms

In this section we specify the structure of the Distance Searching In-
dex, D-Index, and discuss the problems related to the definition of
ρ-split functions and the choice of reference objects. Then we specify
the insertion algorithm and outline the principle of searching. Fi-
nally, we define the generic similarity range and nearest neighbor
algorithms.

4.4.1 Storage Architecture

The basic idea of the D-Index is to create a multilevel storage and
retrieval structure that uses several ρ-split functions, one per each

76

4. D-INDEX

level, to create an array of buckets for storing objects. On the first
level, we use a ρ-split function for separating objects of the whole
data set. For any other level, objects mapped to the exclusion bucket
of the previous level are the candidates for storage in separable buck-
ets of this level. Finally, the exclusion bucket of the last level forms
the exclusion bucket of the whole D-Index structure. It is worth not-
ing that the ρ-split functions of individual levels use the same value
of the parameter ρ. Moreover, split functions can have different or-
der, typically decreasing with the level, allowing the D-Index struc-
ture to have levels with the different number of buckets. More pre-
cisely, the D-Index structure can be defined as follows.
Definition: Given a set of objects X ⊂ D, the h-level distance
searching index DIρ(X, m1, m2, . . . , mh) with the buckets at each
level separable up to 2ρ, is determined by h independent ρ-split
functions smi,ρ

i , where i = 1, 2, . . . , h, which generate:

Exclusion bucket Ei =

Sm1,ρ
1[2m1](X) if i = 1

Smi,ρ
i[2mi](Ei−1) if i > 1

Separable buckets {Bi,0, . . . , Bi,2mi−1} =

{Sm1,ρ
1[.] (X)} if i = 1

{Smi,ρ
i[.] (Ei−1)} if i > 1

From the structure point of view, you can see the buckets or-
ganized as the following two-dimensional array consisting of 1 +
∑h

i=1 2mi elements.

B1,0, B1,1, . . . , B1,2m1−1

B2,0, B2,1, . . . , B2,2m2−1
...
Bh,0, Bh,1, . . . , Bh,2mh−1, Eh

All separable buckets are included, but only the Eh exclusion bucket
is present because exclusion buckets Ei<h are recursively reparti-
tioned on the level i + 1. Then, for each row (i.e. the D-Index level)

77

4. D-INDEX

i, 2mi buckets are separable up to 2ρ thus we are sure that do not ex-
ist two buckets at the same level i both containing relevant objects
for any similarity range query with radius r ≤ ρ. Naturally, there is a
tradeoff between the number of separable buckets and the amount of
objects in the exclusion bucket – the more separable buckets are, the
greater the number of objects in the exclusion bucket is. However,
the set of objects in the exclusion bucket can recursively be repar-
titioned, with possibly different number of bits (mi) and certainly
different ρ-split functions. In Figure 4.4, we present an example of
such a D-Index structure with varying number of separable buckets
per level. The structure consists of six levels. The exclusion buckets,
which are recursively repartitioned are shown as the dashed squares.
Obviously, the exclusion bucket of the sixth level forms the exclusion
bucket of the whole structure. Some illustrative objects are inserted
into the structure to show the behavior of ρ-split functions. Notice
that an object (e.g. the rectangle) can fall into the exclusion set sev-
eral times until it is accommodated in a separable bucket or in the
global exclusion bucket.

4.4.2 Insertion and Search Strategies

In order to complete our description of the D-Index, we present an
insertion algorithm and a sketch of a simplified search algorithm.
Advanced search techniques are described in the next subsection.

Insertion of object x ∈ X in DIρ(X, m1, m2, . . . , mh) proceeds ac-
cording to the following algorithm.

Algorithm 4.4.1 Insertion

for i = 1 to h
if 〈smi,ρ

i (x)〉 < 2mi

x 7→ Bi,〈s
mi,ρ

i
(x)〉;

exit;
end if

end for
x 7→ Eh;

Starting from the first level, Algorithm 4.4.1 tries to accommodate x
into a separable bucket. If a suitable bucket exists, the object is stored

78

4. D-INDEX

th4 level: 2 buckets

th5 level: 2 buckets

th6 level: 2 buckets

rd3 level: 2 buckets

st1 level: 4 buckets

nd2 level: 4 buckets

exclusion bucket

Figure 4.4: Example of D-Index structure.

79

4. D-INDEX

in the bucket. If it fails for all levels, the object x is placed in the
exclusion bucket Eh. In any case, the insertion algorithm determines
exactly one bucket to store the object. As for the number of distance
computations, the D-Index needs ∑j

i=1 mi distance computations to
store a new object, assuming that the new object is inserted into a
separable bucket of jth level.

Given a query region Q = R(q, r) with q ∈ D and r ≤ ρ, a simple
algorithm can execute the query as follows.

Algorithm 4.4.2 Search
for i = 1 to h

return all objects x such that x ∈ Q ∩ B
i,〈s

mi,0

i
(q)〉

;

end for
return all objects x such that x ∈ Q ∩ Eh;

The function 〈smi,0
i (q)〉 always gives a value smaller than 2mi , because

ρ = 0. Consequently, one separable bucket on each level i is deter-
mined. Objects of the query response set cannot be in any other sepa-
rable bucket on the level i, because r is not greater than ρ (r ≤ ρ) and
the buckets are separable up to 2ρ. However, some of them can be
in the exclusion zone, Algorithm 4.4.2 assumes that exclusion buck-
ets are always accessed. For that reason, all levels are considered,
and also the exclusion bucket Eh is accessed. These straightforward
search and insertion algorithms are also presented in [43], as well as,
a short preliminary version of the D-Index. The execution of Algo-
rithm 4.4.2 requires h + 1 bucket accesses, which forms the upper
bound of a more sophisticated algorithm described in the next sec-
tion.

4.4.3 Generic Search Algorithms

The search Algorithm 4.4.2 requires to access one bucket at each level
of the D-Index, plus the exclusion bucket. In the following situations,
however, the number of accesses can even be reduced:

• if the whole query region is contained in the exclusion partition
of the level i, the query cannot have objects in the separable
buckets of this level. Thus, only the next level, if it exists, must
be considered;

80

4. D-INDEX

(11)=3

(01)=1

(00)=0

(10)=2

ρ

r-ρ

Exclusion set
of

Exclusion set
of

ρ−rs ,2

ρ,2s

)1()(,2 −=− qs r ρ

)()(,2 −−=− qs r ρ

r

q

r

q

r

q
)11()(,2 =− qs r ρ

Figure 4.5: Example of use of the function G.

• if the query region is exclusively contained in a separable parti-
tion of the level i, the following levels, as well as the exclusion
bucket Eh of the whole structure, need not be accessed, thus,
the search terminates on the level i.

Another drawback of the simple algorithm is that it works only
for search radii up to ρ. However, with additional computational
effort, range queries with r > ρ can also be executed. Indeed, queries
with r > ρ can be executed by evaluating the split function sn,r−ρ

with the second parameter adjusted. In case sn,r−ρ returns a string
without any ‘−’, the result is contained in a single bucket (namely
B〈sn,r−ρ〉) plus, possibly, the exclusion bucket. Figure 4.5 provides the
example of this situation where the function s2,r−ρ returns the string
‘11’ for the range query R(q, r).

Let us now consider that the returned string contains at least one
‘−’. We indicate this string as (b1, . . . , bn) with bi = {0, 1,−}. In case
there is only one bi = ‘−’, we must access all buckets B which indexes
are obtained by replacing the ‘−’ by 0 and 1 in the result of sn,r−ρ. In

81

4. D-INDEX

the most general case we must substitute in (b1, . . . , bn) all symbols
‘−’ with zeros and ones to generate all possible combinations. A
simple example of this concept is illustrated in Figure 4.5 where the
query R(q′, r) enters the separable buckets denoted by ‘01’ and ‘11’
because s2,r−ρ(q′) returns ‘−1’. Similarly, the range query with the
query object q′′ visits all separable buckets because the function s
evaluates to ‘−−’.

In order to define an algorithm for this process, we need some
additional terms and notations.
Definition: We define an extended exclusive OR bit operator, ⊗,
which is based on the following truth-value table:

bit1 0 0 0 1 1 1 − − −
bit2 0 1 − 0 1 − 0 1 −

⊗ 0 1 0 1 0 0 0 0 0

Notice that the operator ⊗ can be used bit-wise on two strings of
the same length and that it always returns a standard binary number
(i.e., it does not contain any ‘−’). Consequently, 〈s1 ⊗ s2〉 < 2n is al-
ways true for strings s1 and s2 of the length n (refer to Definition 4.1).
Definition: Given a string s of the length n, G(s) denotes a subset
of Ωn = {0, 1, . . . , 2n − 1}, such that all elements ei ∈ Ωn for which
〈s⊗ ei〉 6= 0 are eliminated (interpreting ei as a binary string of length
n).

Observe that, G(− − . . .−) = Ωn, and that the cardinality of the
set is the second power of the number of ‘−’ elements (2n), that is
generating all partition identifications in which the symbol ‘−’ is al-
ternatively substituted by zeros and ones. In fact, we can use G(·) to
generate, from a string returned by a split function, the set of parti-
tions that need be accessed to execute the query. As an example let us
consider n = 2 as in Figure 4.5. If s2,r−ρ = (−1) then we must access
buckets B1 and B3. In such the case G(−1) = {1, 3}. If s2,r−ρ = (−−)
then we must access all buckets, as the function G(−−) = {0, 1, 2, 3}
indicates.

We only apply the function G when the search radius r is greater
than the parameter ρ. We first evaluate the split function using r − ρ,

82

4. D-INDEX

which is, of course, greater than 0. Next, the function G is applied
on the resulting string. In this way, G generates the partitions that
intersect the query region.

In the following, we specify how such ideas are applied in the D-
Index to implement generic range and nearest neighbor algorithms.

4.4.4 Range Query Algorithm

Given a query region Q = R(q, r) with q ∈ D and r ≤ d+. An ad-
vanced algorithm can execute the similarity range query as follows.
Algorithm 4.4.3 Range Search

01. for i=1 to h
02. if 〈smi,ρ+r

i (q)〉 < 2mi then
the query is exclusively contained in a separable

bucket
03. return all objects x such that x ∈ Q ∩ B

i,〈s
mi,ρ+r

i
(q)〉

;
exit;

04. end if
05. if r ≤ ρ then

search radius up to ρ
06. if 〈smi,ρ−r

i (q)〉 < 2mi then
the query is not exclusively contained in the ex-

clusion bucket of the level i
07. return all objects x such that x ∈ Q ∩

B
i,〈s

mi,ρ−r

i
(q)〉

;
08. end if
09. else

search radius greater than ρ
10. let{l1, l2, . . . , lk} = G(smi,r−ρ

i (q))
11. return all objects x such that x ∈ Q ∩ Bi,l1 or x ∈

Q ∩ Bi,l2 or . . . or x ∈ Q ∩ Bi,lk ;
12. end if
13. end for
14. return all objects x such that x ∈ Q ∩ Eh;

In general, Algorithm 4.4.3 considers all D-Index levels and eventu-
ally also accesses the global exclusion bucket. However, due to the

83

4. D-INDEX

symmetry property, the test on the line 02 can discover the exclusive
containment of the query region in a separable bucket and terminate
the search earlier. Otherwise, the algorithm proceeds according to
the size of the query radius. If it is not greater than ρ, line 05, there
are two possibilities. If the test on line 06 is satisfied, one separable
bucket is accessed. Otherwise no separable bucket is accessed on this
level, because the query region is, from this level point of view, ex-
clusively in the exclusion zone. Provided the search radius is greater
than ρ, more separable buckets are accessed on a specific level as de-
fined by lines 10 and 11. Unless terminated earlier, the algorithm
accesses the exclusion bucket at line 14.

4.4.5 k-Nearest Neighbors Search

The task of the nearest neighbors search is to retrieve k closest ele-
ments from X to q ∈ D, respecting the metric distance measure of
the metric space M. Specifically, it retrieves a set A ⊆ X such that
| A |= k and ∀x ∈ A, y ∈ X − A, d(q, x) ≤ d(q, y). In case of ties, we
are satisfied with any set of k elements complying with the condition.
For further details, see Section 2.3. For our purposes, we designate
the distance to the kth nearest neighbor as dk (dk ≤ d+).

The general strategy of Algorithm 4.4.4 works as follows. At the
beginning (line 01), we assume that the response set A is empty and
dk = d+. The algorithm then proceeds with an optimistic strategy
(lines 02 through 13) assuming that all k nearest neighbors are within
the distance of ρ. If it fails, see the test on line 14, additional steps
of the search are performed to find the correct result. Specifically,
the first phase of the algorithm determines the buckets (maximally
one separable at each level) by using the range query strategy with
radius r = min{dk, ρ}. In this way, the most promising buckets are
accessed and their identifications are remembered to avoid multiple
bucket accesses. If dk ≤ ρ the search terminates successfully and
A contains the result set. Otherwise, additional bucket accesses are
performed (lines 15 through 22) using the strategy for radii greater
than ρ of Algorithm 4.4.3, ignoring the buckets already accessed in
the first (optimistic) phase.

Algorithm 4.4.4 Nearest Neighbor Search

84

4. D-INDEX

01. A = ∅, dk = d+;
initialization

02. for i=1 to h
first, try the optimistic approach

03. r = min{dk, ρ};
04. if 〈smi,ρ+r

i (q)〉 < 2mi then
the query is exclusively contained in a separable

bucket
05. access bucket B

i,〈s
mi,ρ+r

i
(q)〉

;
update A and dk;

06. if dk ≤ ρ then
exit;
the response set is determined

end if
07. else
08. if 〈smi,ρ−r

i (q)〉 < 2mi then
the query is not exclusively contained in the ex-

clusion bucket of the level i
09. access bucket B

i,〈s
mi,0

i
(q)〉

;
update A and dk;

10. end if
11. end if
12. end for
13. access bucket Eh;

update A and dk;
14. if dk > ρ then

the second phase if needed
15. for i=1 to h
16. if 〈smi,ρ+dk

i (q)〉 < 2mi then
the query is exclusively contained in a separa-

ble bucket
17. access bucket B

i,〈s
mi,ρ+dk
i

(q)〉
if not already accessed;

update A and dk;
exit;

18. else

85

4. D-INDEX

19. let{b1, b2, . . . , bk} = G(smi,dk−ρ
i (q))

20. access buckets Bi,b1 , Bi,b2, . . . , Bi,bk
if not accessed;

update A and dk;
21. end if
22. end for
23. end if

The output of the algorithm is the result set A and the distance to
the last (kth) nearest neighbor, dk. Whenever a bucket is accessed,
the response set A and the distance to the kth nearest neighbor must
be updated. In particular, the new response set is determined as the
result of the nearest neighbor query over the union of objects from
the accessed bucket and the previous response set A. The value of
dk, which is the current search radius in the given bucket, is adjusted
according to the new response set. When the cardinality of the set A
is less than k the distance to the kth nearest neighbor dk is equal to d+

so that no qualifying data object is lost during the query evaluation.
Notice that, during the bucket accesses, the pivots used in ρ-split
functions are employed in filtering algorithms to further reduce the
number of potentially qualifying objects.

4.4.6 Choosing references

In order to apply D-Index, the ρ-split functions must be designed,
which obviously requires specification of reference objects (pivots).
An important feature of D-Index is that the same reference objects
used in the ρ-split functions for the partitioning into buckets are also
applied as pivots for the internal management of buckets.

We have already slightly discussed the problem of choosing ref-
erence objects in Section 2.7. We concluded that every search tech-
nique in metric spaces needs some pivots for search pruning and the
way of selecting pivots effects the performance of search algorithms.
However, some researches are not involved in this problem.

Many techniques such as Burkhard-Keller Tree, Fixed Queries
Tree and its variants Fixed-Height Fixed Queries Tree and Fixed
Queries Array selects pivots at random. Obviously, the random
choice is the most trivial technique, nonetheless, the fastest one.
Yianillos in [87] recognized and analyzed this issue. He suggests that

86

4. D-INDEX

pepm

pc

0 1

1

r=0.39

r=0.52

r=0.79

Figure 4.6: Different choices for pivot p to divide the unit square.

some elements of the space may be better pivots than the others. As
an example consider Figure 4.6 which presents the unit square with
uniform distribution. To partition the space using the ball partition-
ing we have to set the radius r. There are three natural choices for
pivots: the middle point pm, the middle point of an edge pe, and a cor-
ner point pc. To choose among the possibilities, notice that the prob-
ability of entering both the partitions is proportional to the length
of the boundary. Thus, we aim at the minimization of the boundary
length. In this respect, the most promising selection is the corner ob-
ject pc and the edge object pe is still better than the middle point pm.
It is interesting that from the clustering point of view pm is the center
of a cluster, however, we have shown that this is the worst possible
choice. This technique is applied in Vantage Point Trees.

The heuristic, which selects pivots from corners of the space, can
be used in applications where we have an idea about the geometry of
the space, which is not often true in metric spaces. The only informa-
tion we have in metric spaces is the pairwise distances between ob-
jects. Bozkaya and Özsoyoglu in [13] give a different reason why the
pivots from corners are better than the others, i.e. why they provide
better partitioning. Basically, the distance distribution for a corner
point is more flat than the distribution for a center point. Figure 4.7
illustrates it for the uniformly distributed points in 20-dimensional
Euclidean data space. As we can easily see, the distribution for the

87

4. D-INDEX

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance

Frequency

Corner point
Middle point

Figure 4.7: Distance distribution for two pivots, one is the center
while the other is a corner object, in the unit cube of the
20-dimensional Euclidean space.

central object is sharper and thinner. Setting the radius of ball parti-
tioning to the peak value leads to the higher concentration of objects
near the boundary, as a consequence, it leads to the higher likelihood
of visiting both the partitions. On contrary, it does not apply for the
corner point because the distance distribution is much flatter, thus,
the search would be more trimming. A simple heuristic tries to meet
these requirements:

1. choose a random object

2. compute all distance from this object to the others

3. choose the farthest object as the pivot

This heuristic is used in Multi Vantage Point Trees.
Zezula et al. [25] provide several alternatives to select pivots in

M-Trees. The most convenient option is the heuristic mM RAD.
Whenever a node splits this technique selects a pair of pivots that
has the smallest maximum of both covering radii among all possi-
ble pairs of objects in the split node. Nonetheless, such the heuristic
is suitable for structures that cluster data not for ones that partition
data.

88

4. D-INDEX

LAESA access structure also selects pivots far away from each
other. The procedure picks an arbitrary object and computes the dis-
tances to all remaining objects. The pivot is the most distant object.
Next pivot is selected as the furthest object from all previously cho-
sen pivots. This procedure is also used in [79].

Recently, the problem was systematically studied in [17], and sev-
eral strategies for selecting pivots have been proposed and tested.
The authors propose the efficiency criterion that compares two sets of
pivots and states which of them is better. It uses the mean of dis-
tances between every pair of objects in D, denoted by µD. Given two
sets of pivots T1 = {p1, p2, . . . pt} and T2 = {p′1, p

′
2, . . . p

′
t} we can say

that T1 is better than T2 if

µDT1
> µDT2

. (4.4)

However, the problem is how to find the mean for given pivot set T .
An estimate of such quantity is computed as:

• at random, choose l pairs of elements {(o1, o
′
1), (o2, o

′
2), . . .

(ol, o
′
l)} from X ⊂ D;

• for all pairs of elements, compute their distances in the
feature space determined by the pivot set T , that is
L∞(Ψ(o1), Ψ(o′1)), . . . , L∞(Ψ(ol), Ψ(o′l)), where the function Ψ
transforms the metric space into the feature space associated
by the set of pivot T ;

• compute µDT
as the mean of these distances.

In the D-Index, we apply the incremental selection strategy, which
was proposed in [17] as the most suitable for real world metric
spaces. The strategy works as follows. In the beginning, a set
T1 = {p1} of one element from a sample of m database objects is
chosen, such that the pivot p1 has the maximum µDp1

value. Then,
a second pivot p2 is chosen from another sample of m objects of the
database, creating a new set T2 = {p1, p2} for fixed p1, maximizing
µDT2

. The third pivot p3 is chosen in the same manner, creating an-
other set T3 = {p1, p2, p3} for fixed p1, p2, maximizing µDT3

. The pro-
cess is repeated until the desired number of pivots is determined. If
all distances needed to estimate µDT

are kept we must compute only

89

4. D-INDEX

2ml distances to estimate the new value of µD whenever a new pivot
is added. The total cost for selecting k pivots is 2lmk distance com-
putations.

In order to verify the capability of the incremental selection strat-
egy (INC), we have also tried to select pivots at random (RAN) and
with a modified incremental strategy, called the middle search strategy
(MID). The MID strategy combines the original INC approach with
the following idea. The set of pivots T1 = {p1, p2, . . . pt} is better than
the set T2 = {p′1, p

′
2, . . . p

′
t} if

| µT1
− dm |<| µT2

− dm |, (4.5)

where dm represents the global mean distance of the given data set,
that is the mean of distances between all pairs of objects in D not
in the feature space. In principle, this strategy supports choices of
pivots with high µDT

but also tries to keep distances between pairs
of pivots close to dm. The hypothesis is that too close or too distant
pairs of pivots are not suitable for good partitioning of an arbitrary
metric space. Consider a metric space with sets as objects and Jacard
coefficient (see Section 2.2), the INC heuristic would select a pivot
which is far away from other objects. In the worst case, the selected
pivot p that is completely different from the others, that is, the dis-
tance d(p, o) = 1 for all o ∈ D. Such the anchor is useless from the
search point of view because it is not able to filter any object. The
MID strategy aims at avoiding such the behavior.

4.4.7 Implementation of D-Index

Since a uniform bucket occupation is difficult to guarantee, each
bucket consists of a header plus a dynamic list of fixed size blocks of
capacity that is sufficient to accommodate any object from the pro-
cessed file. Notice that the size of data objects can be different. The
number of blocks of a bucket Bij is denoted by bij . We refer to in-
dividual blocks of the bucket Bij as members of an array, that is,
Bij[·]. In this respect, each bucket consists of the following blocks
Bij[1], Bij[2], . . . , Bij[bij]. The header is characterized by a set of piv-
ots p1, . . . , pn which was used in split functions to create the bucket.
The header also contains distances from these pivots to all objects
stored in the bucket. These distances are computed during object

90

4. D-INDEX

insertions and are applied in the pivot-filtering algorithm that is de-
scribed below. Furthermore, objects are sorted according to their dis-
tances to the first pivot p1 to form a non–decreasing sequence. In
order to cope with dynamic data, a block overflow is solved by splits.

Given a query object q with the search radius r a bucket evalua-
tion proceeds in the following steps:

• ignore all blocks of the bucket that contain objects with dis-
tances to p1 outside the interval [d(q, p1) − r, d(q, p1) + r];

• for each not ignored block Bij[k], if ∀o ∈ Bij[k],
L∞(Ψ(o), Ψ(q)) > r ignore the block;

• access remaining blocks {Bij[·]} and ∀o ∈ Bij[·] compute d(q, o)
if L∞(Ψ(o), Ψ(q)) ≤ r. If d(q, o) ≤ r the object o qualifies.

In this way, the number of accessed blocks and necessary distance
computations are minimized. The mapping function Ψ uses the set
of pivots p1, . . . , pn and transform the metric space M into a vector
space, for further detail see Section 2.6.

4.4.8 Properties of D-Index

On a qualitative level, the most important properties of D-Index can
be summarized as follows:

• An object is typically inserted at the cost of one block access be-
cause objects in buckets are sorted. Since blocks are of fixed
length a block can overflow and the split of the overloaded
block costs another block access. The number of distance com-
putations between the reference (pivot) and inserted objects
varies from m1 to ∑h

i=1 mi. For an object inserted on the level j,
∑j

i=1 mi distance computations are needed.

• For all response sets such that the distance to the most dissim-
ilar object does not exceed ρ, the number of bucket accesses is
maximally h+1, that is, one bucket per level and the global ex-
clusion bucket. The following rule is generally true: the smaller
the search radius is the more efficient the search can be.

91

4. D-INDEX

• For r = 0, i.e. the exact match, the successful search is typi-
cally solved with one block access, moreover, the unsuccessful
search usually does not require any access – very skewed dis-
tance distributions may result in slightly more accesses.

• For search radii greater than ρ, the number of bucket accesses
increases and is higher than h + 1, and furthermore for very
large search radii the query evaluation can eventually access
all buckets.

• The number of accessed blocks of a bucket depends on the
search radius and the distance distribution with respect to the
first pivot.

• The number of distance computations between the query object
and pivots is determined by the highest level where a bucket
was accessed. Provided that the level is j, the number of dis-
tance computations is ∑j

i=1 mi, with the upper bound for any
kind of query ∑h

i=1 mi.

• The number of distance computations between the query ob-
ject and data objects stored in accessed buckets depends on the
search radii and on the number of precomputed distances to
pivots and, of course, on the data distribution.

From the quantitative point of view, we investigate the performance
of D-Index in the next chapter.

92

Chapter 5

D-Index Evaluation

This chapter presents the experimental evaluation of the proposed
access structure D-Index. We have implemented a fully functional
prototype of the D-Index and conducted numerous experiments to
verify its properties on three data sets. We have also compared our
structure with other access methods for metric spaces, namely M-
Tree and VPF forest.

5.1 Data Sets

We have executed all experiments on realistic data sets with signifi-
cantly different data distributions to demonstrate the wide range of
applicability of the D-Index. We used the following three metric data
sets:

VEC 45-dimensional vectors of image color features compared by
the quadratic distance measure respecting correlations between
individual colors.

URL sets of URL addresses attended by users during work sessions
with the Masaryk University information system. The distance
measure used was based on the similarity of sets, defined as
the fraction of cardinalities of intersection and union (Jacard
coefficient).

STR sentences of a Czech language corpus compared by the edit dis-
tance measure that counts the minimum number of insertions,
deletions or substitutions to transform one string into the other.

93

5. D-INDEX EVALUATION

0

0.004

0.008

0 2000 4000 6000 8000

Distance

Frequency VEC

0

0.08

0.16

0 0.2 0.4 0.6 0.8 1

Distance

Frequency URL

0

0.004

0.008

0 200 600 1000 1600

Distance

Frequency STR

Figure 5.1: Distance densities for VEC, URL, and STR.

For illustration, see Figure 5.1 for distance densities of all our data
sets. Notice the practically normal distribution of VEC, very discrete
distribution of URL, and the skewed distribution of STR.

In all our experiments, the query objects are not chosen from the
indexed data sets, but they follow the same distance distribution.
The search costs are measured in terms of distance computations
and block reads. We deliberately ignore the L∞ distance measures
used by the D-Index for the pivot-based filtering, because according
to our tests, the costs to compute such distances are several orders
of magnitude smaller than the costs needed to compute any of the
distance functions of our experiments. All presented cost values are
mean values obtained by executing queries for 50 different query ob-
jects and a constant search selectivity, that is, queries using the same
search radius or the same number of the nearest neighbors.

94

5. D-INDEX EVALUATION

5.2 D-Index Performance Evaluation

In order to test the basic properties of the D-Index, we have consid-
ered about 11,000 objects for each of our data sets VEC, URL, and
STR. Notice that the number of objects used does not affect the sig-
nificance of the results, since the cost measures (i.e. the number of
block reads and the number of the distance computations) are not
influenced by the cache of the system. Moreover, as shown in the
following, performance scalability is linear with data set size. First,
we have tested the efficiency of the incremental (INC), the random
(RAN), and the middle (MID) strategies to select good reference ob-
jects, for details see Section 4.4.6. We have built D-Index organiza-
tions for each the data set and preselected reference objects. The
structures of D-Index, which are specified by the number of levels
and specific ρ-split functions were designed manually. In Table 5.2,
we summarize characteristics of the resulting D-Index organizations
for individual data sets separately.

set h # of buckets # of blocks block size ρ
VEC 9 21 2,600 1KB 1,200
URL 9 21 228 13KB 0.225
STR 9 21 289 6KB 14

Figure 5.2: D-Index organization parameters

We measured the search efficiency for range queries by changing
the search radius to retrieve maximally 20% of data, that is, about
2,000 objects. The results are presented in Figures 5.3, 5.4, 5.5 for all
three data sets and for both distance computations (on the left) and
block reads (on the right).

The general conclusion is that the incremental method proved to
be the most suitable for choosing reference objects for the D-Index.
Except for very few search cases, the method was systematically bet-
ter and can certainly be recommended – for the sentences, the middle
technique was nearly as good as the incremental, and for the vec-
tors, the differences in performance of all three tested methods were
the least evident. An interesting observation is that for vectors with
distribution close to uniform, even the randomly selected reference

95

5. D-INDEX EVALUATION

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10 12 14 16 18 20

Search radius (x100)

Distance Computations VEC

INC
MID
RAN

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

Search radius (x100)

Page Reads VEC

INC
MID
RAN

Figure 5.3: Search efficiency for VEC in the number of distance com-
putations and in the number of read blocks.

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Search radius

Distance Computations URL

INC
MID
RAN

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Search radius

Page Reads URL

INC
MID
RAN

Figure 5.4: Search efficiency for URL in the number of distance com-
putations and in the number of read blocks.

96

5. D-INDEX EVALUATION

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70

Search radius

Distance Computations STR

INC
MID
RAN

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70

Search radius

Page Reads STR

INC
MID
RAN

Figure 5.5: Search efficiency for TEXT in the number of distance com-
putations and in the number of read blocks.

points worked quite well. However, when the distance distribution
was significantly different from the uniform, the performance with
the randomly selected reference points was poor.

Notice also some differences in performance between the exe-
cution costs quantified in block reads and distance computations.
But the general trends are similar and the incremental method is the
best. However, different cost quantities are not equally important for
all the data sets. For example, the average time for quadratic form
distances for the vectors were computed in much less than 90 µsec,
while the average time spent computing a distance between two sen-
tences was about 4.5 msec. This implies that the reduction of block
reads for vectors was quite important in the total search time, while
for the sentences, it was not important at all.

5.3 D-Index Structure Design

The objective of the second group of tests was to investigate the rela-
tionship between the D-Index structure and the search efficiency. We
modified the value of the parameter ρ, which influences the structure
of D-Index and executed several queries to verify the search perfor-
mance. We have to remark that the value of the parameter ρ influ-
ences the size of the exclusion set of a ρ-split function, the greater ρ is

97

5. D-INDEX EVALUATION

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 20 50 100

Nearest neighbors

Distance Computations

rho=1
rho=14
rho=25
rho=60

0
20
40
60
80

100
120
140
160
180
200

1 5 10 20 50 100

Nearest neighbors

Page Reads

rho=1
rho=14
rho=25
rho=60

Figure 5.6: Nearest neighbors search on sentences using different D-
Index structures.

the larger the exclusion set is and the smaller the separable buckets
are. Assuming that we want to have separable buckets with a certain
capacity (in number of objects) we must modify the order of split
functions if we modify ρ. The general rule is that if we increase the
value of ρ we must decrease the amount of separable buckets, that is,
the order of split function. Obviously, we can build a structure with
few levels h and many buckets b per level, using a relatively small ρ.
But when a larger ρ is used, we are able to organize the same data in
the D-Index with more levels, but less buckets per level.

We have tested this hypothesis on the data set STR, using ρ =
1, 14, 25, 60. The parameters of structures created for each value of ρ
are summarized in the following table.

ρ 1 14 25 60
h 3 3 10 9
b 43 31 23 19

The results of experiments for the nearest neighbors search are re-
ported in Figure 5.6 while the performance for range queries is sum-
marized in Figure 5.7. It is quite obvious that very small values of ρ
can only be suitable when a range search with small radius is placed.
However, this was not typical for our data sets where the distance
to the nearest neighbor was rather high – see in Figure 5.6 the rela-
tively high costs to get the nearest neighbor. This implies that higher

98

5. D-INDEX EVALUATION

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 10 20 30 40 50 60 70

Search radius

Distance Computations

rho=1
rho=14
rho=25
rho=60

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Search radius

Page Reads

rho=1
rho=14
rho=25
rho=60

Figure 5.7: Range search on sentences using different D-Index struc-
tures

values of ρ, such as 14, are preferable. However, there are limits to
increase such value, since the structure with ρ = 25 was only excep-
tionally better than the one with ρ = 14, and the performance with
ρ = 60 was rather poor. The experiments demonstrate that the proper
choice of structure can significantly influence the performance. The
selection of optimized parameters is still an open research issue that
we plan to investigate in the near future.

In the last group of tests, we analyzed the influence of the block
size on system performance. By definition, the size of blocks must be
able to accommodate any object of the indexed data set. However,
we can have a bucket consisting from only one (large) block, which
can be compared with the same bucket consisting from many small
blocks. We have experimentally studied this issue on the VEC data
set for both the nearest neighbor and the range search. The results
are summarized in Figure 5.8.

In order to obtain an objective comparison, we express the cost as
relative block reads, i.e. the percentage of blocks that was necessary
to read for answering a query.

We can conclude from the experiments that the search with
smaller blocks requires to read a smaller fraction of the entire data
structure. Notice that the number of distance computations for dif-
ferent block sizes is practically constant and depends only on the

99

5. D-INDEX EVALUATION

0

10

20

30

40

50

60

70

0 5 10 15 20

Search radius (x100)

Page Reads (%)

block=400
block=1024

block=65536

0

10

20

30

40

50

60

70

80

1 5 10 20 50 100

Nearest neighbors

Page Reads (%)

block=400
block=1024

block=65536

Figure 5.8: Search efficiency versus the block size

query. However, the small block size implies the large amount of
blocks; this means that if the access cost to a block is significant
(eg. blocks are allocated randomly) then large block sizes may be-
come preferable. Nonetheless, when the blocks are stored continu-
ously small blocks can be preferable because an optimized strategy
for reading a set of disk pages such as one proposed in [77] can be
applied. For a static file, we can easily achieve such the storage allo-
cation of the D-Index through a simple reorganization.

5.4 D-Index Performance Comparison

We have also compared the performance of D-Index with other index
structures under the same workload. In particular, we considered the
M-tree1 [25], the sequential organization (SEQ), and the Excluded
Middle Vantage Point Forest (VPF) [88]. According to [22], M-Tree
and SEQ are the only types of index structures for metric data that
use a disk memory to store objects. We have also chosen VPF for the
reason that the split strategy utilized in the D-Index is the modified
approach of VPF. In order to maximize the objectivity of compari-
son, the actual performance is measured in terms of the number of
distance computations and I/O operations. All index structures ex-

1The software is available at http://www-db.deis.unibo.it/research/Mtree/

100

5. D-INDEX EVALUATION

cept VPF are implemented using the GIST package [49] and the I/O
costs are measured in terms of the number of accessed disk blocks
– the basic access unit of disk memory, which had the same size for
all index structures. Because VPF is the only method of compared
indexes that does not store data on disks the number of disk accesses
for VPF is not provided in the results.

The main objective of these experiments was to compare the sim-
ilarity search efficiency of the D-Index with the other organizations.
We have also considered the space efficiency, costs to build an index,
and the scalability to process growing data collections.

5.4.1 Search efficiency for different data sets

We have built the D-Index, M-tree, VPF, and SEQ for all the data
sets VEC, URL, and STR. The M-tree was built by using the bulk-
load package and the Min-Max splitting strategy. This approach was
found in [25] as the most efficient to construct the tree. The algorithm
presented by authors of [13] was used to select pivots for the Vantage
Point Forest (VPF) access structure. This algorithm prefers pivots
that are far away from each other, so-called outliers. We have mea-
sured average performance over fifty different query objects consid-
ering numerous similarity range and nearest neighbor queries. The
results for the range search are shown in Figures 5.9 and 5.10, while
the performance for the nearest neighbor search is presented in Fig-
ures 5.11 and 5.12.

For all tested queries, i.e. retrieving subsets up to 20% of the
database, the M-tree, the VPF, and the D-Index always needed less
distance computations than the sequential scan. However, this was
not true for the block accesses, where even the sequential scan was
typically more efficient than the M-tree. In general, the number of
block reads of the M-tree was significantly higher than for the D-
Index. Only for the URL sets when retrieving large subsets, the num-
ber of block reads of the D-Index exceeded the SEQ. In this situation,
the M-tree accessed nearly three times more blocks than the D-Index
or SEQ. On the other hand, the M-tree and the D-Index required for
this search case much less distance computations than the SEQ.

Figure 5.10 demonstrates another interesting observation: to run
the exact match query, i.e. range search with r = 0, the D-Index only

101

5. D-INDEX EVALUATION

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20

Search radius (x100)

Distance Computations VEC

dindex
mtree

seq
vpf

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Search radius

Distance Computations URL

dindex
mtree

seq
vpf

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70

Search radius

Distance Computations STR

dindex
mtree

seq
vpf

Figure 5.9: Comparison of the range search efficiency in the number
of distance computations for VEC, URL, and STR.

102

5. D-INDEX EVALUATION

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20

Search radius (x100)

Page Reads VEC

dindex
mtree

seq

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Search radius

Page Reads URL

dindex
mtree

seq

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

Search radius

Page Reads STR

dindex
mtree

seq

Figure 5.10: Comparison of the range search efficiency in the number
of block reads for VEC, URL, and STR.

103

5. D-INDEX EVALUATION

0

2000

4000

6000

8000

10000

12000

1 5 10 20 50 100

Nearest neighbors

Distance Computations VEC

dindex
mtree

seq

0

2000

4000

6000

8000

10000

12000

1 5 10 20 50 100

Nearest neighbors

Distance Computations URL

dindex
mtree

seq

0

2000

4000

6000

8000

10000

12000

1 5 10 20 50 100

Nearest neighbors

Distance Computations STR

dindex
mtree

seq

Figure 5.11: Comparison of the nearest neighbor search efficiency in
the number of distance computations for VEC, URL, and
STR.

104

5. D-INDEX EVALUATION

0

200

400

600

800

1000

1200

1 5 10 20 50 100

Nearest neighbors

Page Reads VEC

dindex
mtree

seq

0

20

40

60

80

100

120

1 5 10 20 50 100

Nearest neighbors

Page Reads URL

dindex
mtree

seq

0

20

40

60

80

100

120

140

1 5 10 20 50 100

Nearest neighbors

Page Reads STR

dindex
mtree

seq

Figure 5.12: Comparison of the nearest neighbor search efficiency in
the number of block reads for VEC, URL, and STR.

105

5. D-INDEX EVALUATION

needs to access one block. As a comparison, see (in the same figure)
the number of block reads for the M-tree: they are one half of the SEQ
for vectors, equal to the SEQ for the URL sets, and even three times
more than the SEQ for the sentences. Notice that the exact match
search is important when a specific object is to be eliminated – the
location of the deleted object forms the main cost. In this respect, the
D-Index is able to manage deletions more efficiently than the M-tree.
We did not verify this fact by explicit experiments because the avail-
able version of the M-tree does not support deletions. The outcome
of the same test with r = 0 in terms of distance computations is sum-
marized in the following table. The conclusion is that the D-Index
is very efficient in insertions or deletions of objects in comparison to
other techniques.

of distance computations
rq = 0 STR URL VEC

D-Index 12 254 5
M-tree 375 349 270

VPF 829 512 1176
SEQ 11,169 11,169 11,169

Concerning the block reads, the D-Index looks to be significantly
better than the M-tree, while comparison on the level of distance
computations is not so clear. The D-Index certainly performed much
better for the sentences and also for the range search over vectors.
However, the nearest neighbor search on vectors needed practically
the same number of distance computations. For the URL sets, the M-
tree was on average only slightly better than the D-Index. On VEC
data set, the VPF performed slowly than the M-tree, and the D-Index
as well. Nonetheless, the VPF was faster than the M-tree for smaller
radii on sentences. The most obscure situation is again for URL data
set where the VPF performed even better that the D-Index in sev-
eral isolated cases. In general, we conducted the experiments with
the VPF only for the range queries because the results in Figure 5.9
revealed that the M-tree outperforms the VPF.

106

5. D-INDEX EVALUATION

0

100000

200000

300000

400000

500000

600000

100 200 300 400 500 600

Data Set Size (x1000)

 Distance Computations

1000 D
2000 D
1000 M
2000 M

SEQ

0

5000

10000

15000

20000

25000

30000

100 200 300 400 500 600

Data Set Size (x1000)

 Page Reads

1000 D
2000 D
1000 M
2000 M

SEQ

Figure 5.13: Range search scalability.

5.4.2 Search, space, and insertion scalability

To measure the scalability of the D-Index, M-tree, and SEQ, we
have used the 45-dimensional color feature histograms. Particularly,
we have considered collections of vectors ranging from 100,000 to
600,000 elements. For these experiments, the structure of D-Index
was defined using thirty-seven reference objects and seventy-four
buckets, where only the number of blocks in buckets was increas-
ing to deal with growing files. The results for several typical nearest
neighbor queries are reported in Figure 5.14. The execution costs for
range queries are reported in Figure 5.13. Except for the SEQ organi-
zation, the individual curves are labeled with a number, representing
either the number of nearest neighbors or the search radius, and a let-
ter, where D stands for the D-Index and M for the M-tree. The size of
query is not provided for the results of SEQ because the sequential
organization has the same costs regardless whether the query is the
range or the nearest neighbor.

We can observe that on the level of distance computations the D-
Index is usually slightly better than the M-tree, but the differences
are not significant – the D-Index and M-tree can save considerable
number of distance computations compared to the SEQ. To solve a
query, the M-tree needs significantly more block reads than the D-
Index and for some queries, see 2000M in Figure 5.13, this number

107

5. D-INDEX EVALUATION

0

100000

200000

300000

400000

500000

600000

100 200 300 400 500 600

Data Set Size (x1000)

 Distance Computations

1 D
100 D

1 M
100 M

SEQ

0

5000

10000

15000

20000

25000

30000

100 200 300 400 500 600

Data Set Size (x1000)

 Page Reads

1 D
100 D

1 M
100 M

SEQ

Figure 5.14: Nearest neighbor search scalability.

is even higher than for the SEQ. We have also investigated the per-
formance of range queries with zero radius, i.e. the exact match. In-
dependently of the data set size, the D-Index required one block ac-
cess and eighteen distance comparisons. This was in a sharp contrast
with the M-tree, which needed about 6,000 block reads and 20,000
distance computations to find the exact match in the set of 600,000
vectors. Moreover, the D-Index have constant costs to insert one ob-
ject regardless the data size, which is in a sharp contrast with linear
behavior of the M-tree. The details are summarized in the follow-
ing table. The number of accessed disk pages for the D-Index varies
from zero to one depending on whether the exact match search was
successful or unsuccessful, i.e. whether the object was found or not.

Exact Match Search Costs
Distance Computations Accessed Blocks

Data Size D-Index M-tree D-Index M-tree
100k 18 5890 0-1 1324
200k 18 10792 0-1 2326
300k 18 15290 0-1 3255
400k 18 19451 0-1 4138
500k 18 23236 0-1 4910
600k 18 27054 0-1 5699

The search scale up of the D-Index was strictly linear. In this re-

108

5. D-INDEX EVALUATION

spect, the M-tree was even slightly better, because the execution costs
for processing a two times larger file were not two times higher. This
sublinear behavior should be attributed to the fact that the M-tree
is incrementally reorganizing its structure by splitting blocks and, in
this way, improving the clustering of data. On the other hand, the D-
Index was using a constant bucket structure, where only the number
of blocks was changing. Such observation is posing another research
challenge, specifically, to build a D-Index structure with a dynamic
number of buckets.

The disk space to store data was also increasing in all our or-
ganizations linearly. The D-Index needed about 20% more space
than the SEQ. In contrast, the M-tree occupied two times more space
than the SEQ. In order to insert one object, the D-Index evaluated
on average the distance function eighteen times. That means that
distances to (practically) one half of the thirty-seven reference ob-
jects were computed. For this operation, the D-Index performed one
block read and, due to the dynamic bucket implementation using
splits, a bit more than one block writes. The insertion into the M-tree
was more expensive and required on average sixty distance compu-
tations, twelve block reads, and two block writes.

In summary, the D-Index is better index structure than the M-tree
and SEQ because it saves many block accesses and distance compu-
tations when executing queries. An interesting property is the very
fast response time to execute the exact match queries. D-Index is eco-
nomical in space with only 20% overhead compared to the sequential
approach and the two times less space requirements than necessary
for the M-tree.

109

Chapter 6

eD-Index

The development of Internet services often requires an integration of
heterogeneous sources of data. Such sources are typically unstruc-
tured whereas the intended services often require structured data.
Once again, the main challenge is to provide consistent and error-
free data, which implies the data cleaning, typically implemented
by a sort of similarity join. In order to perform such tasks, similar-
ity rules are specified to decide whether specific pieces of data may
actually be the same things or not. A similar approach can also be
applied to the copy detection. However, when the database is large,
the data cleaning can take a long time, so the processing time (or the
performance) is the most critical factor that can only be reduced by
means of convenient similarity search indexes.

For example, consider a document collection of books and a col-
lection of compact disk documents. A possible search request can
require to find all pairs of books and compact disks which have sim-
ilar titles. But the similarity joins are not only useful for text. Given
a collection of time series of stocks, a relevant query can be report all
pairs of stocks that are within distance µ from each other. Though
the similarity join has always been considered as the basic similar-
ity search operation, there are only few indexing techniques, most
of them concentrating on vector spaces. In this paper, we consider
the problem from much broader perspective and assume distance
measures as metric functions. Such the view extends the range of
possible data types to the multimedia dimension, which is typical
for modern information retrieval systems.

The problem of approximate string processing has recently been
studied in [42] in the context of data cleaning, that is, removing in-
consistencies and errors from large data sets such as those occurring

111

6. ED-INDEX

in data warehouses. A technique for building approximate string
join capabilities on top of commercial databases has been proposed
in [44]. The core idea of these approaches is to transform the difficult
problem of approximate string matching into other search problems
for which some more efficient solutions exist.

In this chapter, we systematically study the difficult problem of
similarity join implementation. We define three categories of imple-
mentation strategies and propose two algorithms based on the D-
Index.

6.1 Algorithm Categories

The problem of similarity joins is precisely defined in Section 2.3. In
this section, we categorize solutions for similarity joins [34]. First,
we define a measure s that is used for comparison of different algo-
rithms. Next, we introduce filter-based, partition-based, and range
query based algorithms.

6.1.1 Complexity

To compare algorithms for similarity joins, we measure the compu-
tational complexity through the number of distance evaluations. The
similarity join can be evaluated by a simple algorithm, which com-
putes |X| · |Y | distances between all pairs of objects. We call this
approach the Nested Loops (NL). For simplicity and without loss of
generality, we assume N = |X| = |Y |. Therefore, the complexity of
the NL algorithm is N 2. For the similarity self join (X ≡ Y), we have
to ignore the evaluation of an object with itself so that the number
of computed distances is reduced by N . Moreover, due to the sym-
metric property of metric functions, it is not necessary to evaluate the
pair (xj, xi) if we have already examined the pair (xi, xj). That means
the number of distance evaluations is N(N − 1)/2 for the similarity
self join.

As a preliminary analysis of the expected performance, we spec-
ify three general approaches for solving the problem of the similar-
ity join in the next section. The performance index used to compare
these approaches is the speedup (s) with respect to the trivial NL al-

112

6. ED-INDEX

gorithm. Generally, if an algorithm requires n distance evaluations
to compute the similarity join, the speedup is defined as follows:

s =
N2

n
.

In case of similarity self join, the speedup is given by

s =
N(N − 1)/2

n
=

N(N − 1)

2n
.

In the following, we present three categories of algorithms that
are able to reduce the computational complexity:

1. The Filter Based algorithms (FB), which try to reduce the num-
ber of expensive distance computations by applying simplified
distance functions,

2. the Partition Based algorithms (PB), which partition the data set
into smaller subsets where the similarity join can be computed
with a smaller cost,

3. and the Range Query algorithms (RQ), which for each object of
one data set execute a range query in the other data set, of
course, an algorithm for range queries can apply some filter-
ing or partitioning techniques to speedup retrieval.

6.1.2 Filter Based Algorithms

The Filter Based algorithms eliminate all pairs (x, y) that do not sat-
isfy the similarity join condition of Equation 2.1 by using the lower
bound and the upper bound distances, dl(x, y) and du(x, y), having
the following property:

dl(x, y) ≤ d(x, y) ≤ du(x, y).

The assumption is that the computation of dl and du is much less
expensive than the computation of d. Given a generic pair of ob-
jects (xi, yj), the algorithm first evaluates the distance dl(xi, yj). If
dl(xi, yj) > µ then d(xi, yj) > µ and the pair can be discarded. On the
contrary, if du(xi, yj) ≤ µ then the pair qualifies. If dl(xi, yj) ≤ µ and
du(xi, yj) > µ, it is necessary to compute d(xi, yj). In the following,
we present a sketch of the algorithm.

113

6. ED-INDEX

Algorithm 6.1.1 Generic Filter Based Algorithm

for i = 1 to N
for j = 1 to M

if dl(xi, yj) ≤ µ then
if du(xi, yj) ≤ µ then

add (xi, yj) to the result
else if d(xi, yj) ≤ µ then

add (xi, yj) to the result
end if

end if
end for

end for

Let us suppose that pu is the probability that du(xi, yi) ≤ µ and pl

is the probability that dl(xi, yi) ≤ µ. Moreover, let Tu, Tl, and T be
the average computation times of du, dl and d, respectively. The total
computation time Ttot of the FB algorithm is

Ttot = TlN
2 + pl(TuN

2 + (1 − pu)TN2),

and therefore

s =
TN2

Ttot

=
1

αl + pl(αu + (1 − pu))
, (6.1)

where αu = Tu

T
and αl = Tl

T
. Notice that we have implicitly assumed

that the events associated with pu and pl are independent, which is
not too far from the reality. From this equation, it is possible to see
that changing the order of evaluation of du and dl, we can get differ-
ent performance.

6.1.3 Partition Based Algorithms

This technique divides each of the data sets X and Y into h subsets
with non-null intersections. Usually, the subsets are generated by us-
ing a set of regions of the whole domain D. Let D1,D2, . . . ,Dh be the
regions of partitioning, we define the subsets as Xi = {x ∈ X|x ∈ Di}
and Yi = {y ∈ Y |y ∈ Di}, where X =

⋃h
i=1 Xi and Y =

⋃h
i=1 Yi. The

idea is that neighboring regions overlap, so that by computing the

114

6. ED-INDEX

similarity join in each local region no pair of objects is lost. Therefore,
the algorithm proceeds by evaluating the similarity join for each pair
of subsets Xi, Yi for 1 ≤ i ≤ h. The algorithm can be designed in a
manner that it is able to recognize whether a pair has already been
evaluated in another partition or not, therefore, the number of dis-
tance evaluations in a local region can be smaller than |Xi| · |Yi|. Let
ni = |Xi| and mi = |Yi|; in the worst case the speedup is given by

s =
N2

∑h
i=1 nimi

.

In case of similarity self join, the speedup is

s =
N2

∑h
i=1 n2

i

.

The ideal case where objects are uniformly distributed among parti-
tions is expressed by

s =
N2

∑h
i=1(N/h)2

=
N2

h(N/h)2
= h. (6.2)

6.1.4 Range Query Algorithms

Algorithms based on RQ strategy use an access structure supporting
the similarity range search in order to retrieve qualified pairs of ob-
jects. The idea is to perform N range queries for all objects in the
database with the radius r = µ. Given the average performance of a
range query, for a specific access structure, it is easy to estimate the
performance of the RQ algorithm. Therefore, if we have on average
nr distance computations for a range query, the speedup is given by

s =
N2

Nnr
=

N

nr
, (6.3)

and
s =

N(N − 1)/2

(Nnr/2)
=

N − 1

nr
, (6.4)

for the similarity self join.

115

6. ED-INDEX

Window�1
Window�2 ... Window�6

ε),(�xxdε ε

Figure 6.1: Illustration of the Sliding Algorithm.

6.2 Implementation and Performance Evaluation

In this section, we provide examples of implementations of the tech-
niques described in the previous section, specifically, the Sliding
Window algorithm for the partition based approach (PB) and the
Pivot Based Filtering for the filtering based approach (FB). The im-
plementation of the range query approach (RQ) is provided in Sec-
tion 6.3. We also present a simplified performance evaluation.

6.2.1 Sliding Window Algorithm

The Sliding Window algorithm belongs to the Partition Based cate-
gory. In the following, we describe the variant of this algorithm spe-
cialized to execute the similarity self join. The idea is straightforward
(see Figure 6.1). We order the objects of the data set X with respect to
an arbitrary reference object xr ∈ D, and we partition the objects in
nw overlapping “windows” each one having the width of 2µ. Notice
that µ is the threshold of a similarity join query. The algorithm starts
from the first window (partition) with extremes [0, 2µ] and centered
in µ collecting all the pairs of objects (xi, xj) such that d(xi, xj) ≤ µ.
The NL algorithm is used for each window. The algorithm proceeds
with the next window, with extremes [µ, 3µ] and centered in 2µ, how-
ever, the distance evaluation of a pair of objects which are both in the
overlap with the previous window is avoided. The algorithm con-
tinues until the last window is reached. The detailed description of
the algorithm requires the following definitions:

• Reference object (pivot): an object xr from D

• Maximum distance with respect to xr: d+
r = maxi∈X [d(xr, xi)]

116

6. ED-INDEX

• The number of windows used: nw =
⌊

d+
r

µ

⌋

• The set of objects contained in the window m:

Wm = {xi ∈ X | (m − 1)µ < d(xr, xi) ≤ (m + 1)µ}

• The number of objects in Wm: wm = |Wm|

Without loss of generality we study the algorithm for the case of
similarity self join only.
Algorithm 6.2.1 Sliding Window

for i = 1 to nw

for j = 1 to wi

for k = j + 1 to wi

if i > 1
if d(xj, xr) > iµ or d(xk, xr) > iµ

if d(xj, xk) ≤ µ
add (xj, xk) to the result set

end if
end if

else
if d(xj, xk) ≤ µ

add (xj, xk) to the result set
end if

end if
end for

end for
end for

Notice that the computation of distances d(xj, xr) and d(xk, xr)
is done during the phase of ordering of objects with respect to xr;
they do not need to be computed again during the execution of the
algorithm.

6.2.2 Pivot Based Filtering

Pivoting algorithms can be seen as a particular case of the FB cate-
gory. In Figure 6.2, the basic principle of the pivoting technique is il-
lustrated, where x is one object of a pair and pi is a preselected object,

117

6. ED-INDEX

pi

µ
x

Figure 6.2: Example of pivots behavior.

called a pivot. Provided that the distance between any object and pi

is known, the gray area represents the region of objects y, that do not
form a qualifying pair with x. This can easily be decided without ac-
tually computing the distance between x and y, by using the triangle
inequalities d(pi, y) + d(x, y) ≥ d(pi, x) and d(pi, x) + d(pi, y) ≥ d(x, y)
we have that d(pi, x) − d(pi, y) ≤ d(x, y) ≤ d(pi, y) + d(pi, x), where
d(pi, x) and d(pi, y) are precomputed. It is obvious that, by using
more pivots we can improve the probability of excluding an object y
without actually computing its distance to x. For further details, we
refer to Section 2.6.

Dynamic Pivots

Since the evaluation of distances between pivots and all objects of the
sets X and Y is very expensive, it is possible to generate the precom-
puted distances during the join elaboration. The idea is that each
object of the data set X is promoted to a pivot during the elabora-
tion of the join algorithm. For instance, when for all pairs (x1, yj)
(1 ≤ j ≤ M) distances d(x1, yj) are computed, the object x1 ∈ X
becomes a pivot.

Given K pivots {p1, p2, . . . , pK}, we can define a new lower bound
distance dl as dl(x, y) = maxk=1..K(dk

l (x, y)) = maxk=1..K(|d(pk, y) −

118

6. ED-INDEX

d(pk, x)|), which is always less than or equal to d(x, y). Naturally,
this particular lower bound distance can be defined for every type
of metric space; what we need is just a set of pivots with associated
precomputed distances to objects of the sets X and Y . If we define
pl as the probability that ∀k = 1..K, dk

l (x, y) ≤ µ, and we neglect the
evaluation of dk

l (which involves only a subtraction operation), we
have

s =
1

pl
.

6.2.3 Comparison

In order to compare the proposed approaches, we evaluate their
speedups by using two simple data sets composed of vectors; the
distances are measured using the Euclidean distance. The first set
contains uniformly distributed vectors in a 10-dimensional hyper-
cube with coordinates limited to [0, 1], while the vectors in the second
data set are clustered and the dimension of each vector is twenty.

The experiments were conducted for different values of µ ranging
from 0.20 up to 1.00. Figures 6.3 and 6.4 show the results of exper-
iments. The former presents values of speedup for the Pivot Based
Filtering while the latter shows results for the Sliding Window algo-
rithm.

The problem with all the algorithms for the similarity join is that
their complexity is O(N 2) or, in other words, that their speedups
are constant with respect to N . Unfortunately, even if the speedup
is high, when the number of objects grows the number of distance
computations grows quadratically. For the FB algorithm (see Equa-
tion 6.1), the speedup depends on the costs of distances dl and du, i.e.
αl and αu, which do not depend on N . Moreover, the probabilities
pl and pu depend on adopted distance functions and on the distri-
bution of objects in a metric space. We can conclude that FB has the
constant speedup. As for the PB algorithm, from Equation 6.2 it is
clear that the speedup cannot be greater than h. The only promising
algorithm could be the RQ. In fact, as Equation 6.3 shows, in prin-
ciple the speedup grows linearly if nr is constant. Unfortunately, in
the access structures in the literature, nr increases linearly with N
and therefore the speedup is constant also in the RQ case.

119

6. ED-INDEX

1

10

100

1000

10000

100000

0.20 0.40 0.60 0.80 1.00
εεεε

sp
eed

up
dim-10
dim-20

Figure 6.3: Performance of the Pivot Based Filtering algorithm on the
10 and 20 dimensional data sets.

0

1

2

3

4

0.20 0.40 0.60 0.80 1.00
εεεε

sp
eed

up

dim-10
dim-20

Figure 6.4: Performance of the Sliding Window algorithm on the 10
and 20 dimensional data sets.

120

6. ED-INDEX

In the next two sections, we propose and describe two special-
ized algorithms for similarity self join queries, the range query join
algorithm and the overloading join algorithm. The former one is im-
plemented using the D-Index structure [33] while the latter employs
an extended version of the D-Index, called eD-Index [37, 36].

6.3 Range Query Join Algorithm

The D-Index access structure provides every efficient algorithm for
executing similarity range queries, especially, when applied on small
query radii that are often used for example in the data cleaning area.
Thus, we define a new algorithm for similarity self joins based on
range queries [35]. The algorithm is every straightforward it executes
a series of range queries with the fixed radius equal to µ, that is, the
threshold of a join query. Only the query object in range queries
differs, i.e. every object stored in the D-Index structure is picked and
the range query is processed with. In the following, we provide the
code of the algorithm in a pseudo language.

Algorithm 6.3.1 Range Query Join Algorithm

for every level
for i = 1 to h

for every bucket Bi,j on the level i
for j = 1 to 2mi − 1

for every block of the bucket Bi,j

for k = 1 to bi,j

for every object q in the block Bi,j[k]
forall q in Bi,j[k]

execute S = R(q, µ)
∀o ∈ S : add the pair (q, o) to the response set

end forall
end for

end for
end for
access the exclusion bucket
for every block of the exclusion bucket Eh

for k = 1 to eh

121

6. ED-INDEX

for every object q in the block Eh[k]
forall q in Eh[k]

execute S = R(q, µ)
∀o ∈ S : add the pair (q, o) to the response set

end forall
end for

This algorithm proceeds from the first level to the last level h. On
each level i, it accesses all buckets Bi,1 . . . Bi,2mi−1. The bucket Bi,j

consists of bi,j blocks where objects are stored. The algorithm con-
tinues by reading all blocks Bi,j[1] . . . Bi,j[bi,j] of the bucket Bi,j and
every object q stored in the block Bi,j[k] is used in the range query
R(q, µ), which is then executed on the same D-Index structure. The
result set S of the range query contains all objects o ∈ X such that
d(q, o) ≤ µ. We pair up all objects of S with the query object q and add
the pairs to the response set of the similarity self join query SJ(µ). Fi-
nally, we process objects stored in the global exclusion bucket. This
way the algorithm processes a join query.

However, the range query join algorithm has the drawback that
the reported response set contains duplicate pairs of objects. For ex-
ample, assume that we execute a range query for the object q that
resides in the bucket B1,1. The query returns the set o1, . . . , oi, . . . , on.
Providing that the object oi is stored in the bucket B3,2, i.e. on the
third level, when we process objects in the bucket B3,2 we execute
a range query for oii, which indeed returns the object q in its re-
sponse set. As a result, we first report the pair (q, oi) and then re-
turn the pair (oi, q). In general, each pair (oi, oj) satisfying the join
query SJ(µ) is present twice in the response set returned by this al-
gorithm once in the form (oi, oj) and next as (oj, oi). Thus, the re-
sponse set needs additional cleaning. Assuming that each object has
an unique identification, which is a linear ordering (objects can be
sorted) we can insert a pair (oi, oj) into the response in the ordered
form, i.e. ID(oi) <= ID(oj). In this respect, the post-processing
cleaning phase would only need sorting pairs by a kind of sort algo-
rithm that requires O(n log n). As a result, the duplicated pairs are at
even positions in the sorted list.

122

6. ED-INDEX

2ρ

dm dm

2ρ

εε

Separable
partitions

Exclusion
Set

(a) (b)

Figure 6.5: The modified bps split function: (a) original ρ-split func-
tion; (b) modified ρ-split function.

6.4 eD-Index Access Structure

In this section, we propose a new access structure, which supports
not only range and k-nearest neighbor queries but even similarity
joins, specifically, similarity self joins. The access structure extends
the D-Index and is called eD-Index [37].

The idea behind the eD-Index is to modify the ρ-split function
so that the exclusion set and separable sets overlap of distance ε,
0 ≤ ε ≤ 2ρ. Figure 6.5 depicts the modified ρ-split function. The
objects that belong to both the separable and the exclusion sets are
replicated. This principle, called the exclusion set overloading, en-
sures that there always exists a bucket for every qualifying pair
(x, y)|d(x, y) ≤ µ ≤ ε where both the objects x, y occur. As explained
later, a special algorithm is used to efficiently find these buckets and
avoid access to duplicates. In this way, the eD-Index speeds up the
evaluation of similarity self joins.

Formally, the eD-Index access structure uses the same ρ-split
functions and the overloading principle is implemented by manip-
ulations with the parameter ρ of split functions. To fulfill all the re-
quirements of replication, we modify the insertion algorithm. The
procedure of storing a new object x ∈ X in the eD-Index structure
eDIρ,ε(X, m1, m2, . . . , mh) proceeds according to the following algo-

123

6. ED-INDEX

rithm.
Algorithm 6.4.1 Insertion

for i = 1 to h
if 〈smi,ρ

i (x)〉 < 2mi

x 7→ Bi,〈s
mi,ρ

i
(x)〉;

if 〈smi,ρ+ε
i (x)〉 < 2mi

exit;
end if
set copy flag(x);

end if
end for
x 7→ Eh;

Algorithm 6.4.1 starts at the first level and tries to find a separable
bucket to accommodate x. If a suitable bucket exists, the object is
stored in the bucket. If the object is outside the overloading area,
i.e. 〈smi,ρ+ε

i (x)〉 < 2mi , the algorithm stops. When the expression
〈smi,ρ+ε

i (x)〉 returns 2mi the object x must be replicated. The copy flag
of x is set on and object is reinserted on a next level. Finally, if x1

is not inserted on any level it is placed in the exclusion bucket Eh.
Notice that the object x can be duplicated more than once depending
on the occurrences in overloading areas. In the worst case, the object
is placed in a bucket on the first level and is replicated in all succes-
sive level and the exclusion bucket as well. To insert one object, the
algorithm needs to access at least one bucket, however, due to the
overloading principle the cost can be higher. Nonetheless, the upper
bound on the number of accessed buckets is h+1, that is, one bucket
per level plus the exclusion bucket. As for the number of distance
computations, the eD-Index needs ∑j

i=1 mi distance computations to
store a new object, assuming that the new object or any of its dupli-
cates is inserted into a separable bucket of j th level. The maximum
number of distance evaluations is limited by ∑h

i=1 mi. One can ob-
ject to the fact that the insertion algorithm calls a split function twice
per level, however, during the first call the evaluated distances are
stored thus the second call of the function can benefit from the saved
distanced that need not be computed again.

1The original object x or any of its copies.

124

6. ED-INDEX

Because some objects are replicated in the eD-Index we also have
to modify search algorithms. In particular, algorithms without any
modifications would report also duplicates and such the behavior is
not desirable.

6.4.1 Range Query Algorithm

In this section, we provide the modified algorithm for range queries.
Given a query region Q = R(q, r) with q ∈ D and the query radius
r ≤ d+. A range search algorithm executes the similarity range query
as follows.

Algorithm 6.4.2 Range Search

01. for i=1 to h
02. if 〈smi,ρ+r

i (q)〉 < 2mi then
the query is exclusively contained in a separable

bucket
03a. R = {x|x ∈ Q ∩ B

i,〈s
mi,ρ+r

i
(q)〉

};
03b. return all objects x such that x ∈ R and x has not the

copy flag switched on;
exit;

04. end if
05. if r ≤ ρ then

search radius up to ρ
06. if 〈smi,ρ−r

i (q)〉 < 2mi then
the query is not exclusively contained in the ex-

clusion bucket of the level i
07a. R = {x|x ∈ Q ∩ B

i,〈s
mi,ρ−r

i
(q)〉

};
07b. return all objects x such that x ∈ R and x has not

the copy flag switched on;
08. end if
09. else

search radius greater than ρ
10. let{l1, l2, . . . , lk} = G(smi,r−ρ

i (q))
11a. R = {x|x ∈ Q ∩ Bi,l1 or x ∈ Q ∩ Bi,l2 or . . . or

x ∈ Q ∩ Bi,lk};

125

6. ED-INDEX

11b. return all objects x such that x ∈ R and x has not the
copy flag switched on;

12. end if
13. end for
14a. R = {x|x ∈ Q ∩ Eh};
14b. return all objects x such that x ∈ R and x has not the

copy flag switched on;

The detail description of Algorithm 6.4.2 is provided in Section 4.4.4
where Algorithm 4.4.3 is presented. This algorithm is a slight mod-
ification of Algorithm 4.4.3. Changes are made only in steps where
qualifying objects are reported. Specifically, the original step 03 is
expanded into two lines 03a and 03b. On the line 03a we collect all
objects that satisfy the query (this is the same as in the original algo-
rithm) and we then discard the objects that are duplicates, i.e. they
have the copy flag set. The same modifications are made on the lines
07a, 07b, 11a, 11b, and 14a, 14b.

6.4.2 Nearest Neighbors Search

In section 4.4.5, Algorithm 4.4.4 for k-nearest neighbors queries is
specified. However, the eD-Index structure also needs slightly mod-
ified version of the algorithm. In the new version, we only change the
fashion in which bucket are accessed. When a bucket is visited and
all objects that satisfy the constraint by a range query are reported
we filter out every object that is marked as a copy. For further details
about accessing buckets see the description of the original algorithm
in Section 4.4.5.

6.4.3 Similarity Self Join Algorithm

The outline of the similarity self join algorithm is following: exe-
cute the join query independently on every separable bucket of ev-
ery level of the eD-Index and additionally on the exclusion bucket
of the whole structure. This behavior is correct due to the exclusion
set overloading principle – every object of a separable set that can
make a qualifying pair with an object of the exclusion set of a level is

126

6. ED-INDEX

copied to the exclusion set. The partial results are then concatenated
and form the final answer.

Given a similarity self join query SJ(µ), the similarity self join al-
gorithm which processes sub-queries in individual buckets is based
on the sliding window algorithm. The idea of this algorithm is
straightforward, see Figure 6.6. All objects of a bucket are or-

window

p
oj

d(p,oj)olo oup

µ≤d

o1 o2 on

Figure 6.6: The Sliding Window algorithm.

dered with respect to a pivot p, which is the reference object of
a ρ-split function used by the eD-Index. We then define a slid-
ing window of objects [olo, oup] that always satisfies the constraint:
d(p, oup) − d(p, olo) ≤ µ, i.e. the window’s width is ≤ µ. Algo-
rithm 6.4.3 starts with the window [o1, o2] and successively moves
the upper bound of the window up by one object while the lower
bound is increased to preserve the window’s width ≤ µ. The algo-
rithm terminates when the last object on is reached. All pairs (oj, oup),
such that lo ≤ j < up, are collected in each window [olo, oup] and, at
the same time, the applied pivot-based strategy significantly reduces
the number of pairs which must be checked. Finally, all qualifying
pairs are reported.

Algorithm 6.4.3 Sliding Window

lo = 1
for up = 2 to n

move the lower boundary up to preserve window’s
width ≤ µ
increment lo while d(oup, p) − d(olo, p) > µ

for j = lo to up − 1
for all objects in the window
if PivotCheck() = FALSE then

127

6. ED-INDEX

apply the pivot-based strategy
compute d(oj, oup)
if d(oj, oup) ≤ µ then

add pair (oj, oup) to result
end if

end if
end for

end for

The eD-Index structure also stores distances between stored ob-
jects and reference objects of ρ-split functions. Remind that these
distances are computed when objects are inserted into the structure
and they are utilized by the pivot-based strategy, see Section 2.6 for
details. The function PivotCheck() in the algorithm uses not only the
pivots of ρ-split functions but it also utilizes the dynamic pivot prin-
ciple described in Section 6.2.2. In particular, the algorithm promotes
the upper boundary of the current sliding window (i.e. the object
oup) to the dynamic pivot. Once the current dynamic pivot goes out
of scope, that is, out of the sliding window, the upper boundary is
selected as the new dynamic pivot again.

The application of the exclusion set overloading principle implies
two important issues. The former one concerns the problem of dupli-
cate pairs in the result of a join query. This fact is caused by the copies
of objects that are reinserted into the exclusion set. The described
algorithm evades this behavior by coloring object’s duplicates. Pre-
cisely, each level of the eD-Index has its unique color and every du-
plicate of an object has colors of all the preceding levels where the
replicated object is stored. Figure 6.7 provides with an example of
an eD-Index structure with 4 objects emphasized (a circle, a square,
a triangle, and a hexagon). For example, the circle is replicated and
stored at levels 1, 3, and 6. The circle at level 1 has no color because
it is not a duplicate while the circle at level 3 has color of level 1
because it has already been stored at level 1. Similarly, the circle at
level 6 is colored with red and blue, since it is stored at the preced-
ing levels 1 and 3. By analogy, other objects are marked. Notice that
the exclusion bucket has not specific color assigned, however, objects
stored in the exclusion bucket can have colors if they are copies (e.g.
see the square). The triangle stored at the second level is not colored

128

6. ED-INDEX

th4 level: 2 buckets

th5 level: 2 buckets

th6 level: 2 buckets

rd3 level: 2 buckets

st1 level: 4 buckets

nd2 level: 4 buckets

exclusion bucket

Figure 6.7: Coloring technique applied in the eD-Index.

129

6. ED-INDEX

because it is not accommodated at any preceding levels. Before the
algorithm examines a pair it decides whether the objects of the pair
share any color. If they have at least one color in common the pair is
eliminated. The concept of sharing a color by two objects means that
these objects are stored at the same level thus they are checked in a
bucket of that level. For convenience, see the circle and the hexagon
at the level 6, which share the red color. This is the consequence that
both these objects are also stored at the first level.

The latter issue limits the value of parameter ρ, that is, 2ρ ≥ ε. If
ε > 2ρ some qualifying pairs are not examined by the algorithm. In
detail, a pair is missed if one object is from one separable set while
the other object of the pair is from another separable set. Such the
pairs cannot be found with this algorithm because the exclusion set
overloading principle does not duplicate objects among separable
sets. Consequently, the separable sets are not contrasted enough to
avoid missing some qualifying pairs.

130

Chapter 7

eD-Index Evaluation

7.1 Performance Evaluation

In order to demonstrate suitability of the eD-Index to the problem of
similarity self join, we have compared several different approaches
to join operation. The naive algorithm strictly follows the definition
of similarity join and computes the Cartesian product between two
sets to decide the pairs of objects that must be checked on the thresh-
old µ. Considering the similarity self join, this algorithm has the time
complexity O(N 2), where N = |X|. A more efficient implementa-
tion, called the nested loops, uses the symmetric property of metric
distance functions for pruning some pairs. The time complexity is
O(N ·(N−1)

2
). More sophisticated methods use prefiltering strategies

to discard dissimilar pairs without actually computing distances be-
tween them. A representative of these algorithms is the range query
join algorithm applied on the eD-Index. Finally, the last compared
method is the overloading join algorithm, which is described in Sec-
tion 6.4.3.

We have conducted experiments on two real application envi-
ronments. The first data set consisted of sentences of Czech lan-
guage corpus compared by the edit distance measure, so-called Lev-
enshtein distance [68]. The most frequent distance was around 100
and the longest distance was 500, equal to the length of the longest
sentence. The second data set was composed of 45-dimensional vec-
tors of color features extracted from images. Vectors were compared
by the quadratic form distance measure. The distance distribution of
this data set was practically normal distribution with the most fre-
quent distance equal to 4,100 and the maximum distance equal to
8,100. Figure 5.1 shows distance distributions in graphs.

131

7. ED-INDEX EVALUATION

10000

100000

1e+06

1e+07

1e+08

0 5 10 15 20 25 30

Join query size

 Distance computations

NL
RJ
OJ

Figure 7.1: Join queries on the text data set.

In all experiments, we have compared three different techniques
for the problem of the similarity self join, the nested loops (NL) algo-
rithm, the range query join (RJ) algorithm applied on the eD-Index,
and the overloading join (OJ) algorithm, again applied on the eD-
Index.

7.1.1 Join-cost ratio

The objective of this group of tests was to study the relationship be-
tween the query size (threshold, radius, or selectivity) and the search
costs measured in terms of distance computations. The experiments
were conducted on both the data sets each consisting of 11,169 ob-
jects. The eD-Index structure used on the text data set consisted of
nine levels and thirty-nine buckets. The structure for the vector data
collection contained eleven levels and twenty-one buckets. Both the
structures were fixed for all experiments.

We have tested several query radii up to µ = 28 for the text set
and up to µ = 1, 800 for the vector data. The similarity self join op-
eration retrieved about 900,000 text pairs for µ = 28 and 1,000,000
pairs of vectors for µ = 1, 800, which is much more than being inter-
esting. Figure 7.1 shows results of experiments for the text data set.
As expected, the number of distance computations performed by RJ
and OJ increases quite fast with growing µ. However, RJ and OJ al-

132

7. ED-INDEX EVALUATION

10000

100000

1e+06

1e+07

1e+08

300 600 900 120015001800

Join query size

 Distance computations

NL
RJ
OJ

Figure 7.2: Join queries on vectors.

gorithms are still more than four times faster then NL algorithm for
µ = 28. OJ algorithm has nearly exceeded the performance of RJ al-
gorithm for large µ > 20. Nevertheless, OJ is more than twice faster
than RJ for small values of µ ≤ 4, which are used in data cleaning
area. Figure 7.2 demonstrates results for the vector data collection.
The number of distance computations executed by RJ and OJ has
the similar trend as for the text data set – it grows quite fast and it
nearly exceeds the performance of NL algorithm. However, the OJ
algorithm performed even better than RJ comparing to the results for
the text data. Especially, OJ is fifteen times and nine times more ef-
ficient than RJ for µ = 50 and µ = 100, respectively. Tables 7.1, 7.2
presents the exact values of speedup measured for both text and vec-
tor datasets.

The results for OJ are presented only for radii µ ≤ 600. This lim-
itation is caused by the distance distribution of the vector data set.
Specifically, we have to choose values of ε and ρ at least equal to
1, 800 and 900, respectively, for being able to run join queries with
µ = 1, 800. This implies that more than 80% of the whole data set
is duplicated at each level of the eD-Index structure, this means that
the exclusion bucket of the whole structure contains practically all
objects of the data set, thus, the data set is indivisible in this respect.
However, this behavior does not apply to small values of µ and ε
where only small portions of data sets were duplicated.

133

7. ED-INDEX EVALUATION

Speedup
Radius RJ OJ

1 435.2 1136.0
2 115.5 266.1
3 51.5 102.3
4 29.5 52.7
5 33.7 49.2

10 10.0 13.8
15 6.3 9.2
20 5.8 7.3
28 4.1 5.8

Table 7.1: Join Speedup for text

Speedup
Radius RJ OJ

50 51.6 748.7
100 25.2 239.1
300 7.8 30.6
600 3.7 8.4
900 2.4

1200 1.8
1500 1.5
1800 1.3

Table 7.2: Join Speedup for vectors

134

7. ED-INDEX EVALUATION

Speedup
Radius RJ OJ

1 274.3 448.8
2 100.0 195.5
3 48.2 89.1
4 28.3 48.1
5 31.0 42.2

10 9.8 11.8
15 6.2 7.4
20 5.7 5.9
28 4.1 4.3

Table 7.3: Join Speedup for text with building costs included

This group of experiments was aimed at situations where similar-
ity join operations are performed repetitively on the same structure.
The data stored in the structure can, of course, vary, i.e. insertions
and deletions can be performed. In the following tables 7.3, 7.4 we
present the same results, however, the numbers of distance compu-
tations include the costs needed to create the structure. In particu-
lar, the presented values are numbers of distance function evalua-
tions made during the join query execution and during building the
structure. To ensure objective comparison, the tables quote values
of speedup. The results are mainly influenced by building costs for
small queries while the speedup is more stable for larger values of
the query threshold. In general, the eD-Index is applicable in both
the situations when a similarity join query is performed only once or
the query is repeated.

7.1.2 Scalability

The scalability is probably the most important issue to investigate
considering the web-based dimension of data. In the elementary
case, it is necessary to study what happens with the performance
of algorithms when the size of a data set grows. We have experimen-
tally investigated the behavior of the eD-Index on the text data set
with sizes from 50,000 to 250,000 objects (sentences).

We have mainly concentrated on small queries, which are typical

135

7. ED-INDEX EVALUATION

Speedup
Radius RJ OJ

50 50.0 521.0
100 24.8 209.8
300 7.7 30.1
600 3.7 8.4
900 2.4

1200 1.8
1500 1.5
1800 1.3

Table 7.4: Join Speedup for vectors with building costs included

0

50

100

150

200

250

300

350

400

1 2 3 4 5

Data set size (x 50,000)

 speedup

µ=1
µ=2
µ=3

Figure 7.3: RJ algorithm scalability.

136

7. ED-INDEX EVALUATION

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

Data set size (x 50,000)

 speedup

µ=1
µ=2
µ=3

Figure 7.4: OJ algorithm scalability.

for data cleaning area. Figure 7.3 and Figure 7.4 report the speedup
(s) of RJ and OJ algorithms, respectively. The results indicate that
both RJ and OJ have practically constant speedup when the size of
data set is significantly increasing. The exceptions are the values for
µ = 1 where RJ slightly deteriorates while OJ improves its perfor-
mance. Nevertheless, OJ performs at least twice faster than RJ algo-
rithm.

In summary, the figures demonstrate that the speedup is very
high and constant for different values of µ with respect to the data
set size. This implies that the similarity self join with the eD-Index,
specifically the overloading join algorithm, is also suitable for large
and growing data sets.

137

Chapter 8

Conclusion

Contrary to the traditional database approach, the Information Re-
trieval community has always considered search results as a ranked
list of objects. Given a query, some objects are more relevant to the
query specification than the others and users are typically interested
in the most relevant objects, that is the objects with the highest ranks.
This search paradigm has recently been generalized into a model
in which a set of objects can only be pair-wise compared through
a distance measure satisfying the metric space properties. Metric
spaces have recently become an important paradigm for similarity
search and many index structures supporting execution of similarity
queries have been proposed. However, most of the existing struc-
tures are limited to operate on main memory only, so they do not
scale up to high volumes of data. In this dissertation, we have con-
centrated on the case where indexed data are stored on disk memo-
ries.

8.1 Summary

In the first stage, we provide the necessities for understanding the
metric spaces. We also give examples of distance measures to il-
lustrate the wide applicability of structures based on metric spaces.
Next, we define several similarity queries – the simplest is range
search, the nearest neighbors search, its reverse variant and similar-
ity join queries. Combinations of these queries are also concerned.
The most important part of this chapter presents fundamental con-
cepts of using metric postulates to increase the search efficiency. We
formulate several lemmata supplemented with mathematical proofs.
All indexing techniques in metric spaces utilize at least one of parti-

139

8. CONCLUSION

tioning and filtering algorithms. We provide the reader with expla-
nations of ideas of these methods. Finally, we mention the problem
of selecting reference elements because all indexes need directly or
indirectly some fixed points for partitioning or filtering.

In the next chapter, the survey of existing solutions for metric
spaces is rendered. We start with the ball partitioning principle such
as Fixed Queries Trees or Vantage Point Trees. Next, we concentrate
on methods based on the generalized hyperplane partitioning. A
separate section is dedicated to probably the most successful struc-
ture called M-Tree. To conclude this part, we focus on matrix-based
approaches and we also shortly discuss the problem of transforming
metric spaces to vector spaces.

The remaining parts present the contributions of this dissertation.
In Chapter 4, we propose the novel access structure D-Index, which
is able to deal with large archives because it supports disks. As a
result, the D-Index reduces both I/O and CPU costs. The organiza-
tion stores data objects in buckets with direct access to avoid hier-
archical bucket dependencies. Such the organization also results in
a very efficient insertion and deletion of objects. Though similarity
constraints of queries can be defined arbitrarily, the structure is ex-
tremely efficient for queries searching for very close objects. The next
chapter contains results of exhaustive experiments that have been
conducted to verify D-Index properties. We have also compared the
D-Index with other approaches, such as the M-Tree, the Excluded
Middle Vantage Point Forest and a sequential scan.

In the next chapter, we concentrated on the problem of similar-
ity joins, which are applicable in the areas of data cleaning or copy
detection. First, we start with the theoretical overview of individual
approaches and categorize them. We then study and compare pos-
sible implementations. Next, we propose a modification of original
D-Index called eD-Index. This structure supports not only range and
k-nearest neighbor queries but also similarity joins. The idea incor-
porated is that we duplicate some objects to allow to perform the join
operation independently in buckets. This work concludes with the
evaluation of eD-Index.

140

8. CONCLUSION

8.2 Contribution

This thesis contributes two novel access structures D-Index and eD-
Index to the IR and DB community. The D-Index access structure
synergistically combines more principles to a single system in order
to minimize both I/O and CPU costs, that is, it reduces the number of
accessed data and the number of distance evaluations needed to re-
trieve them. This new technique recursively divides the metric space
into separable partitions (buckets) of data blocks to create a multi-
level structure. At the same time, the applied pivot-based strategies
(filtering algorithms) drastically decrease I/O costs. We sum up the
most important properties of D-Index in the following:

• A new object is typically inserted with one block access. Since
blocks are of fixed size the accessed block can overflow and
splitting of the block leads to another block access.

• The number of distance computations between pivots and in-
serted objects is upper-bounded by ∑h

i=1 mi.

• For all queries such that the most dissimilar object is within
the distance of ρ from the query object, the number of accessed
buckets is h + 1 at maximum.

• For range queries with radius r = 0, i.e. the exact match, the
successful search is typically solved with one block access and
the unsuccessful search usually does not require any access.
This is the very desired property because the exact match is
used for locating an object to delete.

• For search radii greater than ρ, the number of visited buckets
is higher than h + 1, and for very large search radii, the query
evaluation can eventually access all buckets of the structure.

• The number of distance computations between the query ob-
ject and pivots is determined by the highest level of an accessed
bucket. We can upper-bound the number of distance computa-
tions by the expression ∑h

i=1 mi.

141

8. CONCLUSION

• There is also a possibility of approximate similarity search. If we
limit the search radius r to the ρ regardless the fact that its ac-
tual value is greater than ρ we employ the property that the
D-Index visits h+1 buckets at maximum. In this case, the costs
are upper-bounded, however, we receive only partial results.

• The multilevel design of D-Index inherently offers parallel and
distributed implementations. The simplest option is to allocate
each level on a separate site.

• The D-Index access structure is not limited only to vectors or
strings. It is applicable on any data, however, the distance func-
tion must satisfy the metric postulates.

Contrary to other index structures, such as the M-tree, the D-
Index stores and deletes any object with one block access cost, so it is
particularly suitable for dynamic data environments. Compared to
the M-tree, it typically needs less distance computations and much
less disk reads to execute a query. The D-Index is also economical
in space requirements. It needs slightly more space than a sequen-
tial organization, but at least two times less disk space compared to
the M-tree. As experiments confirm, it scales up well to large data
volumes.

We have also concerned the problem of similarity joins. This is-
sue did not attract much attention of research community. Nonethe-
less, a few studies on indexing of similarity joins have been recently
published. We have developed new algorithms for similarity joins,
especially, for similarity self joins. The new structure eD-Index is
based on the D-Index and it extends its domain of supported queries
with similarity self joins. The idea behind the eD-Index is to modify
the partitioning so that the exclusion bucket overlaps with separa-
ble buckets and some objects are replicated. This principle ensures
that there exists a bucket for every pair qualifying the query SJ(µ)
where the pair occurs. Consequently, we can execute similarity joins
in each bucket separately. A special algorithm is used to efficiently
find buckets, which must be accessed, and avoid access to replicated
pairs. In this way, the eD-Index speeds up the evaluation of similar-
ity joins. To conclude, we summarize properties of the eD-Index:

• preserves all advantages of D-Index structure,

142

8. CONCLUSION

• extremely efficient for small radii of similarity joins where prac-
tically on-line response times are guaranteed,

• never worse in comparison with specialized techniques [42, 44].

8.3 Research Directions

Many interesting research directions are ahead.

• Recently, many researchers recognized the urgent need to deal
with large data archives and they focus on the design of dis-
tributed search engines that would support lower response
times and would scale up well to the future needs. This, of
course, relates to the fast development of computer networks
and the availability of broadband connections that allow such
the systems. The D-Index structure is designed as a multilevel
structure that offers parallel and distributed implementations.
There are several ways of distributing the structure on several
disks or computers. We will exploit the ideas in the future.

• The D-Index is able to cope with dynamic data but its struc-
ture is rather static and does not change. In case of difficulties
the structure can be redesigned and data reinserted. Our fu-
ture work will concern this issue and we plan to develop the
D-Index with dynamic structure to avoid expensive reorgani-
zations.

• Recent works have highlighted the importance of reverse near-
est neighbor queries (see Section 2.3) in many application ar-
eas, such as mobile networks, decision support systems, and
document repositories. This type of similarity query is very
challenging and we will focus on it in the near future.

• To support usage of metric space indexes in the computer in-
dustry it is necessary to provide implementations for common
database systems, e.g. PostgreSQL.

• The next goal is to verify properties of proposed structures in
real and functional applications. We would like to develop

143

8. CONCLUSION

a system for image retrieval that would support similarity
queries.

144

Bibliography

[1] Helmut Alt, Bernd Behrends, and Johannes Blömer. Approxi-
mate matching of polygonal shapes (extended abstract). In Pro-
ceedings of the seventh annual symposium on Computational geome-
try, pages 186–193. ACM Press, 1991.

[2] Franz Aurenhammer. Voronoi diagrams - a survey of a fun-
damental geometric data structure. ACM Computing Surveys,
23(3):345–405, 1991.

[3] R. A. Baeza-Yates. Searching: an algorithmic tour. In A. Kent
and J. Williams, editors, Encyclopedia of Computer Science and
Technology, volume 37, pages 331–359. Marcel Dekker, Inc., 1997.

[4] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proxim-
ity matching using fixed-queries trees. In M. Crochemore and
D. Gusfield, editors, Proceedings of the 5th Annual Symposium on
Combinatorial Pattern Matching, pages 198–212, Asilomar, CA,
1994. Springer-Verlag, Berlin.

[5] Ricardo A. Baeza-Yates and Gonzalo Navarro. Fast approximate
string matching in a dictionary. In String Processing and Informa-
tion Retrieval, pages 14–22, 1998.

[6] Jon Louis Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM, 18(9):509–
517, 1975.

[7] Jon Louis Bentley. Multidimensional binary search trees in
database applications. IEEE Transactions on Software Engineer-
ing, 5(4):333–340, 1979.

[8] Jon Louis Bentley. Multidimensional divide-and-conquer. Com-
munications of the ACM, 23(4):214–229, 1980.

145

BIBLIOGRAPHY

[9] Jon Louis Bentley and Jerome H. Friedman. Data structures for
range searching. ACM Computing Surveys, 11(4):397–409, 1979.

[10] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The
X-tree: An index structure for high-dimensional data. In T. M.
Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nand-
lal L. Sarda, editors, VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India, pages 28–39. Morgan Kaufmann, 1996.

[11] Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Search-
ing in high-dimensional spaces: Index structures for improving
the performance of multimedia databases. ACM Computing Sur-
veys, 33(3):322–373, 2001.

[12] Tolga Bozkaya and Z. Meral Özsoyoglu. Distance-based index-
ing for high-dimensional metric spaces. In Joan Peckham, edi-
tor, SIGMOD 1997, Proceedings ACM SIGMOD International Con-
ference on Management of Data, May 13-15, 1997, Tucson, Arizona,
USA, pages 357–368. ACM Press, 1997.

[13] Tolga Bozkaya and Z. Meral Özsoyoglu. Indexing large metric
spaces for similarity search queries. ACM TODS, 24(3):361–404,
1999.

[14] Sergey Brin. Near neighbor search in large metric spaces. In
Umeshwar Dayal, Peter M. D. Gray, and Shojiro Nishio, ed-
itors, VLDB’95, Proceedings of 21th International Conference on
Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland,
pages 574–584. Morgan Kaufmann, 1995.

[15] E. Bugnion, S. Fhei, T. Roos, P. Widmayer, and F. Widmer. A
spatial index for approximate multiple string matching. In R. A.
Baeza-Yates and N. Ziviani, editors, 1st South American Workshop
on String Processing (WSP’93), pages 43–53, 1993.

[16] Walter A. Burkhard and Robert M. Keller. Some approaches to
best-match file searching. Communications of the ACM, 16(4):230–
236, 1973.

146

BIBLIOGRAPHY

[17] B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques
for proximity searching in metric spaces. In SCCC 2001, Proceed-
ings of the XXI Conference of the Chilean Computer Science Society,
pages 33–40. IEEE CS Press, 2001.

[18] Kaushik Chakrabarti and Sharad Mehrotra. The Hybrid Tree:
An index structure for high dimensional feature spaces. In Pro-
ceedings of the 15th International Conference on Data Engineering,
23-26 March 1999, Sydney, Austrialia, pages 440–447. IEEE Com-
puter Society, 1999.

[19] Edgar Chávez, José L. Marroquı́n, and Ricardo A. Baeza-Yates.
Spaghettis: An array based algorithm for similarity queries in
metric spaces. In Proceedings of String Processing and Informa-
tion Retrieval Symposium & International Workshop on Groupware
(SPIRE/CRIWG 1999), pages 38–46, 1999.

[20] Edgar Chávez, José L. Marroquı́n, and Gonzalo Navarro. Over-
coming the curse of dimensionality. In European Workshop on
Content-Based Multimedia Indexing (CBMI’99), pages 57–64, 1999.

[21] Edgar Chávez, José L. Marroquı́n, and Gonzalo Navarro. Fixed
Queries Array: A fast and economical data structure for proxim-
ity searching. ACM Multimedia Tools and Applications, 14(2):113–
135, 2001.

[22] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroquı́n. Searching in metric spaces. ACM Com-
puting Surveys (CSUR), 33(3):273–321, 2001.

[23] Tzi-cker Chiueh. Content-based image indexing. In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors, VLDB’94, Pro-
ceedings of 20th International Conference on Very Large Data Bases,
September 12-15, 1994, Santiago de Chile, Chile, pages 582–593.
Morgan Kaufmann, 1994.

[24] Paolo Ciaccia and Marco Patella. Bulk loading the M-tree. In
Proceedings of th 9th Australasian Database Conference (ADC’98),
Perth, Australia, pages 15–26, 1998.

147

BIBLIOGRAPHY

[25] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An ef-
ficient access method for similarity search in metric spaces. In
Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H.
Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld, edi-
tors, VLDB’97, Proceedings of 23rd International Conference on Very
Large Data Bases, August 25-29, 1997, Athens, Greece, pages 426–
435. Morgan Kaufmann, 1997.

[26] Paolo Ciaccia, Marco Patella, and Pavel Zezula. A cost model
for similarity queries in metric spaces. In Proceedings of the Sev-
enteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, June 1-3, 1998, Seattle, Washington, pages
59–68. ACM Press, 1998.

[27] Paolo Ciaccia, Marco Patella, and Pavel Zezula. Processing
complex similarity queries with distance-based access methods.
In Hans-Jörg Schek, Fèlix Saltor, Isidro Ramos, and Gustavo
Alonso, editors, Advances in Database Technology - EDBT’98, 6th
International Conference on Extending Database Technology, Valen-
cia, Spain, March 23-27, 1998, Proceedings, volume 1377 of Lecture
Notes in Computer Science, pages 9–23. Springer, 1998.

[28] Gregory Cobena, Serge Abiteboul, and Amélie Marian. Detect-
ing changes in XML documents. In IEEE International Conference
on Data Engineering (ICDE’02), San Jose, California, USA, pages
41–52, 2002.

[29] Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys
(CSUR), 11(2):121–137, 1979.

[30] Trevor F. Cox and Micheal A. Cox. Multidimensional Scaling.
Chapman and Hall, 1994.

[31] Frank K. H. A. Dehne and Hartmut Noltemeier. Voronoi trees
and clustering problems. Information Systems (IS), 12(2):171–175,
1987.

[32] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and
Pavel Zezula. Separable splits in metric data sets. In Augusto
Celentano, Letizia Tanca, and Paolo Tiberio, editors, Proceedings

148

BIBLIOGRAPHY

of 9-th Italian Symposium on Advanced Database Systems, SEBD
2001, Venezia, Italy, June 27-29, 2001, pages 45–62. LCM Selecta
Group - Milano, 2001.

[33] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and
Pavel Zezula. D-Index: Distance searching index for metric data
sets. Multimedia Tools and Applications, 21(1):9–33, 2003.

[34] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and
Pavel Zezula. Similarity join in metric spaces. In Fabrizio Se-
bastiani, editor, Proceedings of 25th European Conference on IR Re-
search, ECIR 2003, Pisa, Italy, April 14-16, 2003, volume 2633 of
Lecture Notes in Computer Science, pages 452–467. Springer, 2003.

[35] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. A met-
ric index for approximate text management. In Proceedings
of the IASTED International Conference Information Systems and
Databases, ISDB 2002, Tokyo, Japan, September 25-27, 2002, pages
37–42. ACTA press, September 2002.

[36] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. Ac-
cess structures for advanced similarity search in metric spaces.
In Sergio Flesca, Sergio Greco, Domenico Saccà, and Ester
Zumpano, editors, Proceedings of the Eleventh Italian Symposium
on Advanced Database Systems, SEBD 2003, Cetraro (CS), Italy, June
24-27, 2003, pages 483–494. Rubettino Editore, 2003.

[37] Vlastislav Dohnal, Claudio Gennaro, and Pavel Zezula. Simi-
larity join in metric spaces using ed-index. In Vladimı́r Mařı́k,
Werner Retschitzegger, and Olga Štěpánková, editors, Proceed-
ings of Database and Expert Systems Applications, 14th International
Conference, DEXA 2003, Prague, Czech Republic, September 1-5,
2003, pages 484–493. Springer – Lecture Notes in Computer Sci-
ence, 2003.

[38] Christos Faloutsos, Ron Barber, Myron Flickner, Jim Hafner,
Wayne Niblack, Dragutin Petkovic, and William Equitz. Effi-
cient and effective querying by image content. Journal of Intelli-
gent Information Systems (JIIS), 3(3/4):231–262, 1994.

149

BIBLIOGRAPHY

[39] Christos Faloutsos and King-Ip Lin. FastMap: A fast algo-
rithm for indexing, data-mining and visualization of traditional
and multimedia datasets. In Michael J. Carey and Donovan A.
Schneider, editors, Proceedings of the 1995 ACM SIGMOD Inter-
national Conference on Management of Data, San Jose, California,
May 22-25, 1995, pages 163–174. ACM Press, 1995.

[40] William Frakes and Ricardo Baeza-Yates. Information Retrieval:
Data Structures and Algorithms. Prentice Hall, 1992.

[41] Volker Gaede and Oliver Gnther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231, 1998.

[42] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Si-
mon, and Cristian-Augustin Saita. Declarative data cleaning:
Language, model, and algorithms. In Peter M. G. Apers, Paolo
Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamoha-
narao, and Richard T. Snodgrass, editors, VLDB 2001, Proceed-
ings of 27th International Conference on Very Large Data Bases,
September 11-14, 2001, Roma, Italy, pages 371–380. Morgan Kauf-
mann, 2001.

[43] Claudio Gennaro, Pasquale Savino, and Pavel Zezula. Similar-
ity search in metric databases through hashing. In Proceedings of
the 2001 ACM workshops on Multimedia, pages 1–5. ACM Press,
2001.

[44] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick
Koudas, S. Muthukrishnan, and Divesh Srivastava. Approxi-
mate string joins in a database (almost) for free. In Peter M. G.
Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kota-
giri Ramamohanarao, and Richard T. Snodgrass, editors, VLDB
2001, Proceedings of 27th International Conference on Very Large
Data Bases, September 11-14, 2001, Roma, Italy, pages 491–500.
Morgan Kaufmann, 2001.

[45] Alfred Gray. Modern Differential Geometry of Curves and Surfaces
with Mathematica. CRC Press; 2 edition, December 29, 1997. For
citations of definition of METRIC.

150

BIBLIOGRAPHY

[46] Sudipto Guha, H. V. Jagadish, Nick Koudas, Divesh Srivastava,
and Ting Yu. Approximate XML joins. In Michael J. Franklin,
Bongki Moon, and Anastassia Ailamaki, editors, ACM SIGMOD
International Conference on Management of Data, Madison, Wiscon-
sin, June 3-6, 2002, pages 287–298. ACM, 2002.

[47] Antonin Guttman. R-Trees: A dynamic index structure for spa-
tial searching. In Beatrice Yormark, editor, SIGMOD’84, Proceed-
ings of Annual Meeting, Boston, Massachusetts, pages 47–57. ACM
Press, 1984.

[48] James L. Hafner, Harpreet S. Sawhney, William Equitz, Myron
Flickner, and Wayne Niblack. Efficient color histogram index-
ing for quadratic form distance functions. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 17(7):729–736,
July 1995.

[49] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Gen-
eralized search trees for database systems. In Umeshwar Dayal,
Peter M. D. Gray, and Shojiro Nishio, editors, VLDB’95, Pro-
ceedings of 21th International Conference on Very Large Data Bases,
September 11-15, 1995, Zurich, Switzerland, pages 562–573. Mor-
gan Kaufmann, 1995.

[50] Andreas Henrich. The LSDh-Tree: An access structure for fea-
ture vectors. In Proceedings of the Fourteenth International Confer-
ence on Data Engineering, February 23-27, 1998, Orlando, Florida,
USA, pages 362–369. IEEE Computer Society, 1998.

[51] Gı́sli R. Hjaltason and Hanan Samet. Incremental similarity
search in multimedia databases.

[52] Daniel P. Huttenlocher, Gregory A. Klanderman, and William
Rucklidge. Comparing images using the Hausdorff distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI’93), 15(9):850–863, 1993.

[53] Caetano Traina Jr., Agma J. M. Traina, Bernhard Seeger, and
Christos Faloutsos. Slim-Trees: High performance metric trees

151

BIBLIOGRAPHY

minimizing overlap between nodes. In Carlo Zaniolo, Pe-
ter C. Lockemann, Marc H. Scholl, and Torsten Grust, editors,
Advances in Database Technology - EDBT 2000, 7th International
Conference on Extending Database Technology, Konstanz, Germany,
March 27-31, 2000, Proceedings, volume 1777 of Lecture Notes in
Computer Science, pages 51–65. Springer, 2000.

[54] Iraj Kalantari and Gerard McDonald. A data structure and an
algorithm for the nearest point problem. IEEE Transactions on
Software Engineering (TSE’83), 9(5):631–634, 1983.

[55] Kothuri Venkata Ravi Kanth, Divyakant Agrawal, and Am-
buj K. Singh. Dimensionality reduction for similarity searching
in dynamic databases. In Laura M. Haas and Ashutosh Tiwary,
editors, SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, June 2-4, 1998, Seattle, Wash-
ington, USA, pages 166–176. ACM Press, 1998.

[56] J. L. Kelly. General Topology. D. Van Nostrand, New York, 1955.

[57] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras.
Nearest neighbor queries in a mobile environment. In Spatio-
Temporal Database Management, pages 119–134, 1999.

[58] Flip Korn and S. Muthukrishnan. Influence sets based on re-
verse nearest neighbor queries. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-
18, 2000, Dallas, Texas, USA, pages 201–212, 2000.

[59] J. B. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. In Proceedings of the American
Mathematical Society, volume 7, pages 48–50, 1956.

[60] Karen Kukich. Technique for automatically correcting words in
text. ACM Computing Surveys (CSUR), 24(4):377–439, 1992.

[61] Dongwon Lee. Query Relaxation for XML Model. PhD thesis,
University of California, Los Angeles, 2002. One chapter about
metrics on XML documents (XML data trees).

152

BIBLIOGRAPHY

[62] V. I. Levenshtein. Binary codes capable of correcting spurious
insertions and deletions of ones. Problems of Information Trans-
mission, 1:8–17, 1965.

[63] Luisa Micó, Jose Oncina, and Rafael C. Carrasco. A fast branch
& bound nearest neighbour classifier in metric spaces. Pattern
Recognition Letters, 17(7):731–739, 1996.

[64] Marı́a Luisa Micó, José Oncina, and Enrique Vidal. An algo-
rithm for finding nearest neighbors in constant average time
with a linear space complexity. In Proceedings of the 11th Interna-
tional Conference on Pattern Recognition (ICPR’92), volume vol. II,
pages 557–560, 1992.

[65] Marı́a Luisa Micó, José Oncina, and Enrique Vidal. A new ver-
sion of the nearest-neighbour approximating and eliminating
search algorithm (AESA) with linear preprocessing time and
memory requirements. Pattern Recognition Letters, 15(1):9–17,
1994.

[66] Francisco Moreno-Seco, Luisa Micó, and Jose Oncina. A modi-
fication of the LAESA algorithm for approximated k-NN classi-
fication. Pattern Recognition Letters, 24(1-3):47–53, 2003.

[67] Gonzalo Navarro. Searching in metric spaces by spatial approx-
imation. In Proceedings of String Processing and Information Re-
trieval (SPIRE’99), Cancun, Mexico, pages 141–148, 1999.

[68] Gonzalo Navarro. A guided tour to approximate string match-
ing. ACM Computing Surveys (CSUR), 33(1):31–88, 2001.

[69] Gonzalo Navarro. Searching in metric spaces by spatial approx-
imation. The VLDB Journal, 11(1):28–46, 2002.

[70] Gonzalo Navarro and Nora Reyes. Fully dynamic spatial ap-
proximation trees. In Alberto H. F. Laender and Arlindo L.
Oliveira, editors, String Processing and Information Retrieval, 9th
International Symposium, SPIRE 2002, Lisbon, Portugal, September
11-13, 2002, Proceedings, volume 2476 of Lecture Notes in Com-
puter Science, pages 254–270. Springer, 2002.

153

BIBLIOGRAPHY

[71] Hartmut Noltemeier. Voronoi trees and applications. In Inter-
national Workshop on Discrete Algorithms and Complexity, pages
69–74, 1989.

[72] Hartmut Noltemeier, Knut Verbarg, and Christian Zirkelbach.
A data structure for representing and efficient querying large
scenes of geometric objects: MB∗ Trees. In Geometric Modelling,
pages 211–226, 1992.

[73] Hartmut Noltemeier, Knut Verbarg, and Christian Zirkelbach.
Monotonous Bisector∗ Trees - a tool for efficient partitioning of
complex scenes of geometric objects. In Data Structures and Effi-
cient Algorithms, pages 186–203, 1992.

[74] Juan Ramón Rico-Juan and Luisa Micó. Comparison of
AESA and LAESA search algorithms using string and tree-edit-
distances. Pattern Recognition Letters, 24(9-10):1417–1426, 2003.

[75] Enrique Vidal Ruiz. An algorithm for finding nearest neighbors
in (approximately) constant average time. Pattern Recognition
Letters, 4(3):145–157, 1986.

[76] Hanan Samet. The quadtree and related hierarchical data struc-
tures. ACM Computing Surveys (CSUR), 16(2):187–260, 1984.

[77] Bernhard Seeger, Per-Åke Larson, and Ron McFayden. Read-
ing a set of disk pages. In Rakesh Agrawal, Seán Baker, and
David A. Bell, editors, Procceding of 19th International Confer-
ence on Very Large Data Bases, August 24-27, 1993, Dublin, Ireland,
pages 592–603. Morgan Kaufmann, 1993.

[78] Thomas Seidl and Hans-Peter Kriegel. Efficient user-adaptable
similarity search in large multimedia databases. In The VLDB
Journal, pages 506–515, 1997.

[79] Marvin Shapiro. The choice of reference points in best-match
file searching. Communications of the ACM, 20(5):339–343, 1977.

[80] Tomáš Skopal, Jaroslav Pokorný, Michal Krátký, and Václav
Snášel. Revisiting M-Tree building principles. In Leonid A.
Kalinichenko, Rainer Manthey, Bernhard Thalheim, and Uwe

154

BIBLIOGRAPHY

Wloka, editors, Advances in Databases and Information Systems,
7th East European Conference, ADBIS 2003, Dresden, Germany,
September 3-6, 2003, Proceedings, volume 2798 of Lecture Notes in
Computer Science. Springer, 2003.

[81] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse
nearest neighbor queries for dynamic databases. In ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pages 44–53, 2000.

[82] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal, and
Amr El Abbadi. Discovery of influence sets in frequently up-
dated databases. In The VLDB Journal, pages 99–108, 2001.

[83] Jeffrey K. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Letters,
40(4):175–179, 1991.

[84] Enrique Vidal. New formulation and improvements of the
nearest-neighbour approximating and eliminating search algo-
rithm (AESA). Pattern Recognition Letters, 15(1):1–7, 1994.

[85] Juan Miguel Vilar. Reducing the overhead of the AESA metric-
space nearest neighbour searching algorithm. Information Pro-
cessing Letters, 56(5):265–271, 1995.

[86] Congjun Yang and King-Ip Lin. An index structure for efficient
reverse nearest neighbor queries. In ICDE, pages 485–492, 2001.

[87] Peter N. Yianilos. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Proceedings of
the fourth annual ACM-SIAM Symposium on Discrete algorithms,
pages 311–321. ACM Press, 1993.

[88] Peter N. Yianilos. Excluded middle vantage point forests for
nearest neighbor search. In 6th DIMACS Implementation Chal-
lenge, ALENEX’99, Baltimore, MD, 1999.

155

