
'
&

$
%

Chapter 10: Storage and File Structure

• Overview of Physical Storage Media

• Magnetic Disks

• RAID

• Tertiary Storage

• Storage Access

• File Organization

• Organization of Records in Files

• Data-Dictionary Storage

• Storage Structures for Object-Oriented Databases

Database Systems Concepts 10.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Classification of Physical Storage Media

• Speed with which data can be accessed

• Cost per unit of data

• Reliability

– data loss on power failure or system crash

– physical failure of the storage device

Can differentiate storage into:

– volatile storage : loses contents when power is switched off

– non-volatile storage : contents persist even when power is
switched off. Includes secondary and tertiary storage, as
well as battery-backed up main-memory.

Database Systems Concepts 10.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Physical Storage Media

• Cache – fastest and most costly form of storage; volatile;
managed by the hardware/operating system.

• Main memory:

– general-purpose machine instructions operate on data
resident in main memory

– fast access, but generally too small to store the entire
database

– sometimes referred to as core memory

– volatile — contents of main memory are usually lost if a
power failure or system crash occurs

Database Systems Concepts 10.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Physical Storage Media (Cont.)

• Flash memory – reads are roughly as fast as main memory;
data survives power failure; but can support a only limited
number of write/erase cycles

• Magnetic-disk storage – primary medium for the long-term
storage of data; typically stores entire database.

– data must be moved from disk to main memory for access,
and written back for storage

– direct-access – possible to read data on disk in any order

– usually survives power failures and system crashes; disk
failure can destroy data, but is much less frequent than
system crashes

Database Systems Concepts 10.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Physical Storage Media (Cont.)

• Optical storage – non-volatile. CD-ROM most popular form.
Write-once, read-many (WORM) optical disks used for archival
storage.

• Tape storage – non-volatile, used primarily for backup (to
recover from disk failure), and for archival data

– sequential-access – much slower than disk

– very high capacity (5GB tapes are common)

– tape can be removed from drive ⇒ storage costs much
cheaper than disk.

Database Systems Concepts 10.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Storage Hierarchy

cache

main memory

flash memory

magnetic disk

optical disk

magnetic tapes

Database Systems Concepts 10.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Storage Hierarchy (Cont.)

• primary storage : Fastest media but volatile (cache, main
memory)

• secondary storage : next level in hierarchy, non-volatile,
moderately fast access time; also called on-line storage (flash
memory, magnetic disks)

• tertiary storage : lowest level in hierarchy, non-volatile, slow
access time; also called off-line storage (magnetic tape,
optical storage)

Database Systems Concepts 10.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Magnetic Disks Mechanism

track t

sector s

spindle

cylinder c

platter

arm

read-write
head

arm assembly

rotation

Database Systems Concepts 10.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Magnetic Disks

• Read–write head – device positioned close to the platter
surface; reads or writes magnetically encoded information.

• Surface of platter divided into circular tracks , and each track is
divided into sectors . A sector is the smallest unit of data that
can be read or written.

• To read/write a sector

– disk arm swings to position head on right track

– platter spins continually; data is read/written when sector
comes under head

• Head–disk assemblies – multiple disk platters on a single
spindle, with multiple heads (one per platter) mounted on a
common arm.

• Cylinder i consists of ith track of all the platters

Database Systems Concepts 10.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Disk Subsystem

Disk
Controller

System Bus

Disks

• Disk controller – interfaces between the computer system and
the disk drive hardware.

– accepts high-level commands to read or write a sector

– initiates actions such as moving the disk arm to the right
track and actually reading or writing the data.

Database Systems Concepts 10.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Performance Measures of Disks

• Access time – the time it takes from when a read or write
request is issued to when data transfer begins. Consists of:

– Seek time – time it takes to reposition the arm over the
correct track. Average seek time is 1/ 3rd the worst case
seek time.

– Rotational latency – time it takes for the sector to be
accessed to appear under the head. Average latency is 1/ 2
of the worst case latency.

• Data-transfer rate – the rate at which data can be retrieved
from or stored to the disk.

• Mean time to failure (MTTF) – the average time the disk is
expected to run continuously without any failure.

Database Systems Concepts 10.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Optimization of Disk-Block Access

• Block – a contiguous sequence of sectors from a single track
– data is transferred between disk and main memory in blocks

– sizes range from 512 bytes to several kilobytes

• Disk-arm–scheduling algorithms order accesses to tracks so
that disk arm movement is minimized (elevator algorithm is
often used)

• File organization – optimize block access time by organizing
the blocks to correspond to how data will be accessed. Store
related information on the same or nearby cylinders.

• Nonvolatile write buffers speed up disk writes by writing
blocks to a non-volatile RAM buffer immediately; controller then
writes to disk whenever the disk has no other requests.

• Log disk – a disk devoted to writing a sequential log of block
updates; this eliminates seek time. Used like nonvolatile RAM.

Database Systems Concepts 10.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

RAID

• Redundant Arrays of Inexpensive Disks – disk organization
techniques that take advantage of utilizing large numbers of
inexpensive, mass-market disks.

• Originally a cost-effective alternative to large, expensive disks

• Today RAIDs are used for their higher reliability and bandwidth,
rather than for economic reasons. Hence the “I” is interpreted
as independent , instead of inexpensive .

Database Systems Concepts 10.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Improvement of Reliability via Redundancy

• The chance that some disk out of a set of N disks will fail is
much higher than the chance that a specific single disk will fail.
E.g., a system with 100 disks, each with MTTF of 100,000
hours (approx. 11 years), will have a system MTTF of 1000
hours (approx. 41 days).

• Redundancy – store extra information that can be used to
rebuild information lost in a disk failure

• E.g. Mirroring (or shadowing)

– duplicate every disk. Logical disk consists of two physical
disks.

– every write is carried out on both disks

– if one disk in a pair fails, data still available in the other

Database Systems Concepts 10.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Improvement in Performance via Parallelism

• Two main goals of parallelism in a disk system:

1. Load balance multiple small accesses to increase
throughput

2. Parallelize large accesses to reduce response time

• Improve transfer rate by striping data across multiple disks.

• Bit-level striping – split the bits of each byte across multiple
disks

– In an array of eight disks, write bit i of each byte to disk i.

– Each access can read data at eight times the rate of a
single disk.

– But seek/access time worse than for a single disk.

• Block-level striping – with n disks, block i of a file goes to
disk (i mod n) + 1.

Database Systems Concepts 10.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

RAID Levels

• Schemes to provide redundancy at lower cost by using disk
striping combined with parity bits

• Different RAID organizations, or RAID levels, have differing
cost, performance and reliability characteristics

• Level 0 : Striping at the level of blocks; non-redundant.

Used in high-performance applications where data loss is not
critical.

• Level 1 : Mirrored disks; offers best write performance.

Popular for applications such as storing log files in a database
system.

Database Systems Concepts 10.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

(a) RAID 0: Non-Redundant Striping

(b) RAID 1: Mirrored Disks

C C C C

(c) RAID 2: Memory Style Error Correcting Codes

(d) RAID 3: Bit Interleaved Parity

(e) RAID 4: Block Interleaved Parity

(f) RAID 5: Block-Interleaved Distributed Parity

P P P P P

P

P

P P P

(g) RAID 6: P + Q Redundancy

P
PPP P

P
P
P

P
P

Database Systems Concepts 10.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

RAID Levels (Cont.)

• Level 2 : Memory-Style Error-Correcting-Codes (ECC) with bit
striping.

• Level 3 : Bit-Interleaved Parity; a single parity bit can be used
for error correction, not just detection.

– When writing data, parity bit must also be computed and
written

– Faster data transfer than with a single disk, but fewer I/Os
per second since every disk has to participate in every I/O.

– Subsumes Level 2 (provides all its benefits, at lower cost).

Database Systems Concepts 10.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

RAID Levels (Cont.)

• Level 4 : Block-Interleaved Parity; uses block-level striping, and
keeps a parity block on a separate disk for corresponding
blocks from N other disks.

– Provides higher I/O rates for independent block reads than
Level 3 (block read goes to a single disk, so blocks stored
on different disks can be read in parallel)

– Provides high transfer rates for reads of multiple blocks

– However, parity block becomes a bottleneck for
independent block writes since every block write also writes
to parity disk

Database Systems Concepts 10.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

RAID Levels (Cont.)

• Level 5 : Block-Interleaved Distributed Parity; partitions data
and parity among all N + 1 disks, rather than storing data in N
disks and parity in 1 disk.

– E.g., with 5 disks, parity block for nth set of blocks is stored
on disk (n mod 5) + 1, with the data blocks stored on the
other 4 disks.

– Higher I/O rates than Level 4. (Block writes occur in parallel
if the blocks and their parity blocks are on different disks.)

– Subsumes Level 4

• Level 6 : P+Q Redundancy scheme; similar to Level 5, but
stores extra redundant information to guard against multiple
disk failures. Better reliability than Level 5 at a higher cost; not
used as widely.

Database Systems Concepts 10.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Optical Disks

• Compact disk–read only memory (CD-ROM)

– Disks can be loaded into or removed from a drive

– High storage capacity (about 500 MG on a disk).

– High seek times and latency; lower data-transfer rates than
magnetic disks

• Digital video disk – new optical format; holds 4.7 to 17 GB

• WORM disks (Write-Once Read-Many) – can be written using
the same drive from which they are read.

– data can only be written once, and cannot be erased.

– high capacity and long lifetime; used for archival storage

– WORM jukeboxes

Database Systems Concepts 10.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Magnetic Tapes

• Hold large volumes of data (5GB tapes are common)

• Currently the cheapest storage medium

• Very slow access time in comparison to magnetic and optical
disks; limited to sequential access.

• Used mainly for backup, for storage of infrequently used
information, and as an off-line medium for transferring
information from one system to another.

• Tape jukeboxes used for very large capacity (terabyte (1012) to
petabyte (1015)) storage

Database Systems Concepts 10.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Storage Access

• A database file is partitioned into fixed-length storage units
called blocks . Blocks are units of both storage allocation and
data transfer.

• Database system seeks to minimize the number of block
transfers between the disk and memory. We can reduce the
number of disk accesses by keeping as many blocks as
possible in main memory.

• Buffer – portion of main memory available to store copies of
disk blocks.

• Buffer manager – subsystem responsible for allocating buffer
space in main memory.

Database Systems Concepts 10.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Buffer Manager

• Programs call on the buffer manager when they need a block
from disk

– The requesting program is given the address of the block in
main memory, if it is already present in the buffer.

– If the block is not in the buffer, the buffer manager allocates
space in the buffer for the block, replacing (throwing out)
some other block, if required, to make space for the new
block.

– The block that is thrown out is written back to disk only if it
was modified since the most recent time that it was written
to/fetched from the disk.

– Once space is allocated in the buffer, the buffer manager
reads in the block from the disk to the buffer, and passes
the address of the block in main memory to the requester.

Database Systems Concepts 10.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Buffer-Replacement Policies

• Most operating systems replace the block least recently used
(LRU)

• LRU – use past pattern of block references as a predictor of
future references

• Queries have well-defined access patterns (such as sequential
scans), and a database system can use the information in a
user’s query to predict future references

LRU can be a bad strategy for certain access patterns involving
repeated scans of data

• Mixed strategy with hints on replacement strategy provided by
the query optimizer is preferable

Database Systems Concepts 10.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Buffer-Replacement Policies (Cont.)

• Pinned block – memory block that is not allowed to be written
back to disk.

• Toss-immediate strategy – frees the space occupied by a
block as soon as the final tuple of that block has been
processed

• Most recently used (MRU) strategy – system must pin the block
currently being processed. After the final tuple of that block
has been processed, the block is unpinned, and it becomes the
most recently used block.

• Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation

– E.g., the data dictionary is frequently accessed. Heuristic:
keep data-dictionary blocks in main memory buffer

Database Systems Concepts 10.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

File Organization

• The database is stored as a collection of files. Each file is a
sequence of records. A record is a sequence of fields.

• One approach:

– assume record size is fixed

– each file has records of one particular type only

– different files are used for different relations

This case is easiest to implement; will consider variable length
records later.

Database Systems Concepts 10.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Fixed-Length Records

• Simple approach:

– Store record i starting from byte n ∗ (i − 1), where n is the
size of each record.

– Record access is simple but records may cross blocks.

• Deletion of record i — alternatives:

– move records i + 1, . . . , n to i, . . . , n − 1

– move record n to i

– Link all free records on a free list

Database Systems Concepts 10.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Free Lists

• Store the address of the first record whose contents are
deleted in the file header.

• Use this first record to store the address of the second
available record, and so on

• Can think of these stored addresses as pointers since they
“point” to the location of a record.

header

record 0 Perryridge A-102 400

record 1

record 2 Mianus A-215 700

record 3 Downtown A-101 500

record 4

record 5 Perryridge A-201 900

record 6

record 7 Downtown A-110 600

record 8 Perryridge A-218 700

Database Systems Concepts 10.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Free Lists (Cont.)

• More space efficient representation: reuse space for normal
attributes of free records to store pointers. (No pointers stored
in in-use records.)

• Dangling pointers occur if we move or delete a record to
which another record contains a pointer; that pointer no longer
points to the desired record.

• Avoid moving or deleting records that are pointed to by other
records; such records are pinned .

Database Systems Concepts 10.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Variable-Length Records

• Variable-length records arise in database systems in several
ways:

– Storage of multiple record types in a file.

– Record types that allow variable lengths for one or more
fields.

– Record types that allow repeating fields (used in some older
data models).

• Byte string representation

– Attach an end-of-record (⊥) control character to the end of
each record

– Difficulty with deletion

– Difficulty with growth

Database Systems Concepts 10.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Variable-Length Records: Slotted Page Structure

Size # Entries
Free Space

Location

Block Header

End of Free Space

• Header contains:
– number of record entries

– end of free space in the block

– location and size of each record

• Records can be moved around within a page to keep them
contiguous with no empty space between them; entry in the
header must then be updated.

• Pointers should not point directly to record — instead they
should point to the entry for the record in header.

Database Systems Concepts 10.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Variable-Length Records (Cont.)

• Fixed-length representation:
– reserved space

– pointers

• Reserved space – can use fixed-length records of a known
maximum length; unused space in shorter records filled with a
null or end-of-record symbol.

 0 Perryridge A-102 400 A-201 900 A-218 700

 1 Round Hill A-305 350

 2 Mianus A-215 700

 3 Downtown A-101 500 A-110 600

 4 Redwood A-222 700

 5 Brighton A-217 750

Database Systems Concepts 10.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Pointer Method

 0 Perryridge A-102 400

 1 Round Hill A-305 350

 2 Mianus A-215 700

 3 Downtown A-101 500

 4 Redwood A-222 700

 5 A-201 900

 6 Brighton A-217 750

 7 A-110 600

 8 A-218 700

• Pointers – the maximum record length is not known; a
variable-length record is represented by a list of fixed-length
records, chained together via pointers.

Database Systems Concepts 10.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Pointer Method (Cont.)

• Disadvantage to pointer structure; space is wasted in all
records except the first in a chain.

• Solution is to allow two kinds of block in file:
– Anchor block – contains the first records of chain

– Overflow block – contains records other than those that are
the first records of chains.

Perryridge A-102 400

Round Hill A-305 350

Mianus A-215 700

Downtown A-101 500

Redwood A-222 700

Brighton A-217 750

A-201 900

A-218 700

A-110 600

anchor
block

overflow
block

Database Systems Concepts 10.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Organization of Records in Files

• Heap – a record can be placed anywhere in the file where
there is space

• Sequential – store records in sequential order, based on the
value of the search key of each record

• Hashing – a hash function is computed on some attribute of
each record; the result specifies in which block of the file the
record should be placed

• Clustering – records of several different relations can be
stored in the same file; related records are stored on the same
block

Database Systems Concepts 10.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Sequential File Organization

• Suitable for applications that require sequential processing of
the entire file

• The records in the file are ordered by a search-key

Brighton A-217 750

Downtown A-101 500

Downtown A-110 600

Mianus A-215 700

Perryridge A-102 400

Perryridge A-201 900

Perryridge A-218 700

Redwood A-222 700

Round Hill A-305 350

Database Systems Concepts 10.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Sequential File Organization (Cont.)

• Deletion – use pointer chains

• Insertion – must locate the position in the file where the record
is to be inserted

– if there is free space insert there

– if no free space, insert the record in an overflow block

– In either case, pointer chain must be updated

• Need to reorganize the file from time to time to restore
sequential order

Database Systems Concepts 10.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Clustering File Organization

• Simple file structure stores each relation in a separate file
• Can instead store several relations in one file using a

clustering file organization
• E.g., clustering organization of customer and depositor:

Hayes Main Brooklyn

Hayes A-102

Hayes A-220

Hayes A-503

Turner Putnam Stamford

Turner A-305

– good for queries involving depositor 1 customer, and for
queries involving one single customer and his accounts

– bad for queries involving only customer

– results in variable size records

Database Systems Concepts 10.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Data Dictionary Storage

Data dictionary (also called system catalog) stores metadata: that
is, data about data, such as

• Information about relations

– names of relations

– names and types of attributes

– physical file organization information

– statistical data such as number of tuples in each relation

• integrity constraints

• view definitions

• user and accounting information

• information about indices (Chapter 11)

Database Systems Concepts 10.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Data Dictionary Storage (Cont.)

• Catalog structure: can use either

– specialized data structures designed for efficient access

– a set of relations, with existing system features used to
ensure efficient access

The latter alternative is usually preferred

• A possible catalog representation:

System-catalog-schema = (relation-name, number-of-attributes)
Attribute-schema = (attribute-name, relation-name, domain-type,

position, length)
User-schema = (user-name, encrypted-password, group)
Index-schema = (index-name, relation-name, index-type,

index-attributes)
View-schema = (view-name, definition)

Database Systems Concepts 10.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Mapping of Objects to Files

• Mapping objects to files is similar to mapping tuples to files in a
relational system; object data can be stored using file
structures.

• Objects in O-O databases may lack uniformity and may be very
large; such objects have to be managed differently from
records in a relational system.

– Set fields with a small number of elements may be
implemented using data structures such as linked lists.

– Set fields with a larger number of elements may be
implemented as B-trees, or as separate relations in the
database.

– Set fields can also be eliminated at the storage level by
normalization.

Database Systems Concepts 10.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Mapping of Objects to Files (Cont.)

• Objects are identified by an object identifier (OID); the storage
system needs a mechanism to locate an object given its OID.

– logical identifiers do not directly specify an object’s
physical location; must maintain an index that maps an OID

to the object’s actual location.

– physical identifiers encode the location of the object so
the object can be found directly. Physical OIDs typically
have the following parts:

1. a volume or file identifier

2. a page identifier within the volume or file

3. an offset within the page

Database Systems Concepts 10.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Management of Persistent Pointers

• Physical OIDs may have a unique identifier. This identifier is
stored in the object also and is used to detect references via
dangling pointers.

Physical Object Identifier Object

Vol. Page Offset Unique-Id Unique-Id Data

(a) General Structure

Location Unique-Id Data

6.32.45608 51data

Good OID 6.32.45608 51

Bad OID 6.32.45608 50

(b) Example of use

Database Systems Concepts 10.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Management of Persistent Pointers (Cont.)

• Implement persistent pointers using OIDs; persistent pointers
are substantially longer than are in-memory pointers

• Pointer swizzling cuts down on cost of locating persistent
objects already in memory.

• Software swizzling (swizzling on pointer dereference)
– When a persistent pointer is first dereferenced, it is

swizzled (replaced by an in-memory pointer) after the
object is located in memory.

– Subsequent dereferences of the same pointer become
cheap

– The physical location of an object in memory must not
change if swizzled pointers point to it; the solution is to pin
pages in memory

– When an object is written back to disk, any swizzled
pointers it contains need to be unswizzled .

Database Systems Concepts 10.45 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling

• Persistent pointers in objects need the same amount of space
as in-memory pointers — extra storage external to the object is
used to store rest of pointer information

• Uses virtual memory translation mechanism to efficiently and
transparently convert between persistent pointers and
in-memory pointers.

• All persistent pointers in a page are swizzled when the page is
first read in.

– thus programmers have to work with just one type of
pointer, i.e. in-memory pointer.

– some of the swizzled pointers may point to virtual memory
addresses that are currently not allocated any real memory

Database Systems Concepts 10.46 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling

• Persistent pointer is conceptually split into two parts: a page
identifier, and an offset within the page.

– The page identifier in a pointer is a short indirect pointer:
Each page has a translation table that provides a mapping
from the short page identifiers to full database page
identifiers.

– Translation table for a page is small (at most 1024 pointers
in a 4096 byte page with 4 byte pointers)

– Multiple pointers in a page to the same page share same
entry in the translation table.

Database Systems Concepts 10.47 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling (Cont.)

 PageID Off.

2395 255

 PageID Off.

4867 020

PageID FullPageID

2395 679.34.28000

4867 519.56.84000

 PageID Off.

2395 170

Object 1 Object 2 Object 3

Translation Table

• Page image when on disk (before swizzling)

Database Systems Concepts 10.48 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling (Cont.)

• When an in-memory pointer is dereferenced, if the operating
system detects the page it points to has not yet been allocated
storage, a segmentation violation occurs.

• mmap call associates function to be called on segmentation
violation

• The function allocates storage for the page and reads in the
page from disk.

• Swizzling is then done for all persistent pointers in the page
(located using object type information).
– If pointer points to a page not already allocated a virtual

memory address, a virtual memory address is allocated
(preferably the address in the short page identifier if it is
unused). Storage is not yet allocated for the page.

– The page identifier in pointer (and translation table entry)
are changed to the virtual memory address of the page

Database Systems Concepts 10.49 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling (Cont.)

PageID Off.

5001 255

PageID Off.

4867 020

PageID FullPageID

5001 679.34.28000

4867 519.56.84000

PageID Off.

5001 170

Object 1 Object 2 Object 3

Translation Table

Page image after swizzling

• Page with short page identifier 2395 was allocated address
5001. Observe change in pointers and translation table.

• Page with short page identifier 4867 has been allocated
address 4867. No change in pointers and translation table

Database Systems Concepts 10.50 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Hardware Swizzling (Cont.)

• After swizzling, all short page identifiers point to virtual
memory address allocated for the page
– functions accessing the objects need not know it has

persistent pointers!

– can reuse existing code and libraries that use in-memory
pointers

• If all pages are allocated the same address as in the short
page identifier, no changes required in the page!

• No need for deswizzling — page after swizzling can be saved
back directly to disk

• A process should not access more pages than size of virtual
memory — reuse of virtual memory addresses for other pages
is expensive

Database Systems Concepts 10.51 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Disk versus Memory Structure of Objects

• The format in which objects are stored in memory may be
different from the format in which they are stored on disk in the
database. Reasons are :-
– software swizzling – structure of persistent and in-memory

pointers are different

– database accessible from different machines, with different
data representations

• Make the physical representation of objects in the database
independent of the machine and the compiler.

• Can transparently convert from disk representation to form
required on the specific machine, language, and compiler,
when the object (or page) is brought into memory.

Database Systems Concepts 10.52 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Large Objects

• Very large objects are called binary large objects (blobs)
because they typically contain binary data. Examples include:
– text documents

– graphical data such as images and computer aided designs

– audio and video data

• Large objects may need to be stored in a contiguous sequence
of bytes when brought into memory.
– If an object is bigger than a page, contiguous pages of the

buffer pool must be allocated to store it.

– May be preferable to disallow direct access to data, and
only allow access through a file-system–like API, to remove
need for contiguous storage.

Database Systems Concepts 10.53 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modifying Large Objects

• Use B-tree structures to represent object: permits reading the
entire object as well as updating, inserting and deleting bytes
from specified regions of the object.

• Special-purpose application programs outside the database
are used to manipulate large objects:
– Text data treated as a byte string manipulated by editors

and formatters.

– Graphical data is represented as a bit map or as a set of
geometric objects; can be managed within the database
system or by special software (i.e., VLSI design).

– Audio/video data is typically created and displayed by
separate application software and modified using special
purpose editing software.

– checkout/checkin method for concurrency control and
creation of versions

Database Systems Concepts 10.54 Silberschatz, Korth and Sudarshan c©1997

	Classification of Physical Storage Media
	Physical Storage Media
	Physical Storage Media (Cont.)
	Physical Storage Media (Cont.)
	Storage Hierarchy
	Storage Hierarchy (Cont.)
	Magnetic Disks Mechanism
	Magnetic Disks
	Disk Subsystem
	Performance Measures of Disks
	Optimization of Disk-Block Access
	RAID
	Improvement of Reliability via Redundancy
	Improvement in Performance via Parallelism
	RAID Levels
	RAID Levels (Cont.)
	RAID Levels (Cont.)
	RAID Levels (Cont.)
	Optical Disks
	Magnetic Tapes
	Storage Access
	Buffer Manager
	Buffer-Replacement Policies
	Buffer-Replacement Policies (Cont.)
	File Organization
	Fixed-Length Records
	Free Lists
	Free Lists (Cont.)
	Variable-Length Records
	Variable-Length Records: Slotted Page Structure
	Variable-Length Records (Cont.)
	Pointer Method
	Pointer Method (Cont.)
	Organization of Records in Files
	Sequential File Organization
	Sequential File Organization (Cont.)
	Clustering File Organization
	Data Dictionary Storage
	Data Dictionary Storage (Cont.)
	Mapping of Objects to Files
	Mapping of Objects to Files (Cont.)
	Management of Persistent Pointers
	Management of Persistent Pointers (Cont.)
	Hardware Swizzling
	Hardware Swizzling
	Hardware Swizzling (Cont.)
	Hardware Swizzling (Cont.)
	Hardware Swizzling (Cont.)
	Hardware Swizzling (Cont.)
	Disk versus Memory Structure of Objects
	Large Objects
	Modifying Large Objects

