Chapter 7: Relational Database Design

- Pitfalls in Relational Database Design
- Decomposition
- Normalization Using Functional Dependencies
- Normalization Using Multivalued Dependencies
- Normalization Using Join Dependencies
- Domain-Key Normal Form
- Alternative Approaches to Database Design

Example

• Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

- Redundancy:
 - Data for *branch-name*, *branch-city*, *assets* are repeated for each loan that a branch makes
 - Wastes space and complicates updating
- Null values
 - Cannot store information about a branch if no loans exist
 - Can use null values, but they are difficult to handle

Decomposition

• Decompose the relation schema *Lending-schema* into:

Branch-customer-schema = (branch-name, branch-city, assets, customer-name)

Customer-loan-schema = (customer-name, loan-number, amount)

• All attributes of an original schema (*R*) must appear in the decomposition (*R*₁, *R*₂):

$$R = R_1 \cup R_2$$

Lossless-join decomposition.
 For all possible relations *r* on schema *R*

$$r = \Pi_{R_1} (r) \bowtie \Pi_{R_2} (r)$$

Goal — Devise a Theory for the Following:

- Decide whether a particular relation *R* is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations {R₁, R₂, ..., R_n} such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies

Normalization Using Functional Dependencies

When we decompose a relation schema R with a set of functional dependencies F into R_1 and R_2 we want:

• Lossless-join decomposition: At least one of the following dependencies is in F+:

$$- R_1 \cap R_2 \rightarrow R_1$$

$$- R_1 \cap R_2 \rightarrow R_2$$

- No redundancy: The relations *R*₁ and *R*₂ preferably should be in either Boyce-Codd Normal Form or Third Normal Form.
- Dependency preservation: Let *F_i* be the set of dependencies in *F*⁺ that include only attributes in *R_i*. Test to see if:

$$- (F_1 \cup F_2)^+ = F^+$$

Otherwise, checking updates for violation of functional dependencies is expensive.

Boyce-Codd Normal Form

A relation schema *R* is in BCNF with respect to a set *F* of functional dependencies if for all functional dependencies in F^+ of the form $\alpha \rightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

- Lossless-join decomposition
- Dependency preserving

BCNF Decomposition Algorithm

```
result := {R};
       done := false;
       compute F^+;
       while (not done) do
           if (there is a schema R_i in result that is not in BCNF)
             then begin
                       let \alpha \rightarrow \beta be a nontrivial functional
                         dependency that holds on R_i
                         such that \alpha \to R_i is not in F^+,
                         and \alpha \cap \beta = \emptyset;
                       result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
                    end
             else done := true;
Note: each R_i is in BCNF, and decomposition is lossless-join.
```

Example of BCNF Decomposition

- *R* = (branch-name, branch-city, assets, customer-name, loan-number, amount)
 - $F = \{branch-name \rightarrow assets branch-city \ loan-number \rightarrow amount branch-name\}$ Key = $\{loan-number, customer-name\}$
- Decomposition
 - $R_1 = (branch-name, branch-city, assets)$
 - R_2 = (branch-name, customer-name, loan-number, amount)
 - R_3 = (branch-name, loan-number, amount)
 - $R_4 = (customer-name, loan-number)$
- Final decomposition

$$R_1, R_3, R_4$$

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

• R = (J, K, L) $F = \{JK \rightarrow L$ $L \rightarrow K\}$

Two candidate keys = JK and JL

- *R* is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow L$$

Third Normal Form

• A relation schema *R* is in third normal form (3NF) if for all:

 $\alpha \rightarrow \beta \text{ in } F^+$

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
- α is a superkey for ${\it R}$
- Each attribute A in $\beta \alpha$ is contained in a candidate key for R.
- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).

- dependency preserving

3NF Decomposition Algorithm

```
Let F_c be a canonical cover for F;
i := 0;
for each functional dependency \alpha \rightarrow \beta in F_c do
  if none of the schemas R_i, 1 \leq j \leq i contains \alpha \beta
        then begin
                  i := i + 1;
                  R_i := \alpha \beta;
             end
if none of the schemas R_j, 1 \leq j \leq i contains
a candidate key for R
  then begin
             i := i + 1;
             R_i := any candidate key for R_i;
        end
return (R_1, R_2, ..., R_i)
```

Example

• Relation schema:

Banker-info-schema = (branch-name, customer-name, banker-name, office-number)

• The functional dependencies for this relation schema are:

 $banker-name \rightarrow branch-name \ office-number$ $customer-name \ branch-name \rightarrow banker-name$

• The key is:

{*customer-name*, *branch-name*}

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and
 - the decomposition is lossless
 - dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless
 - it may not be possible to preserve dependencies

Comparison of BCNF and 3NF (Cont.)

•
$$R = (J, K, L)$$

 $F = \{JK \rightarrow L$
 $L \rightarrow K\}$

• Consider the following relation

J	L	K
<i>j</i> 1	<i>I</i> ₁	<i>k</i> ₁
j 2	<i>I</i> 1	k_1
j 3	<i>I</i> 1	k_1
null	I_2	k 2

- A schema that is in 3NF but not in BCNF has the problems of
 - repetition of information (e.g., the relationship l_1, k_1)
 - need to use null values (e.g., to represent the relationship l_2 , k_2 where there is no corresponding value for J).

Design Goals

- Goal for a relational database design is:
 - BCNF.
 - Lossless join.
 - Dependency preservation.
- If we cannot achieve this, we accept:
 - 3NF.
 - Lossless join.
 - Dependency preservation.

teacher	book
Avi	Korth
Avi	Ullman
Hank	Korth
Hank	Ullman
Sudarshan	Korth
Sudarshan	Ullman
Avi	Silberschatz
Avi	Shaw
Jim	Silberschatz
Jim	Shaw
	<i>teacher</i> Avi Avi Hank Hank Sudarshan Sudarshan Avi Avi Jim Jim

- Since there are no non-trivial dependencies, (*course, teacher, book*) is the only key, and therefore the relation is in BCNF
- Insertion anomalies i.e., if Sara is a new teacher that can teach database, two tuples need to be inserted

(database, Sara, Korth) (database, Sara, Ullman) • Therefore, it is better to decompose *classes* into:

course	teacher		
database	Avi		
database	Hank		
database	Sudarshan		
operating systems	Avi		
operating systems	Jim		
teaches			

course	book
database	Korth
database	Ullman
operating systems	Silberschatz
operating systems	Shaw
text	

 We shall see that these two relations are in Fourth Normal Form (4NF)

Multivalued Dependencies (MVDs)

• Let *R* be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The *multivalued dependency*

$$\alpha \longrightarrow \beta$$

holds on *R* if in any legal relation r(R), for all pairs of tuples t_1 and t_2 in *r* such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in *r* such that:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

$$t_{3}[\beta] = t_{1}[\beta]$$

$$t_{3}[R - \beta] = t_{2}[R - \beta]$$

$$t_{4}[\beta] = t_{2}[\beta]$$

$$t_{4}[R - \beta] = t_{1}[R - \beta]$$

MVD (Cont.)

• Tabular representation of $\alpha \rightarrow \beta$

	α	eta	$R - \alpha - \beta$
<i>t</i> ₁	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
<i>t</i> ₂	a ₁ a _i	b _{i+1} b _j	b _{j+1} b _n
t ₃	a ₁ a _i	a _{i+1} a _j	$b_{j+1} \dots b_n$
<i>t</i> 4	a ₁ a _i	$b_{i+1} \dots b_j$	a _{j+1} a _n

Example
• Let *R* be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets,

$$Y, Z, W$$

• We say that $Y \rightarrow Z$ (*Y* multidetermines *Z*)
if and only if for all possible relations $r(R)$
 $< y_1, z_1, w_1 > \in r$ and $< y_1, z_2, w_2 > \in r$
then
 $< y_1, z_1, w_2 > \in r$ and $< y_1, z_2, w_1 > \in r$
• Note that since the behavior of *Z* and *W* are identical it follows
that $Y \rightarrow Z$ iff $Y \rightarrow W$

Example (Cont.)

• In our example:

 $\begin{array}{rcl} \textit{course} & \longrightarrow & \textit{teacher} \\ \textit{course} & \longrightarrow & \textit{book} \end{array}$

- The above formal definition is supposed to formalize the notion that given a particular value of Y (course) it has associated with it a set of values of Z (teacher) and a set of values of W (book), and these two sets are in some sense independent of each other.
- Note:
 - If $Y \rightarrow Z$ then $Y \rightarrow Z$
 - Indeed we have (in above notation) $Z_1 = Z_2$ The claim follows.

Use of Multivalued Dependencies

- We use multivalued dependencies in two ways:
 - 1. To test relations to determine whether they are legal under a given set of functional and multivalued dependencies.
 - 2. To specify constraints on the set of legal relations. We shall thus concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.
- If a relation *r* fails to satisfy a given multivalued dependency, we can construct a relation *r'* that does satisfy the multivalued dependency by adding tuples to *r*.

Theory of Multivalued Dependencies

- Let D denote a set of functional and multivalued dependencies. The closure D⁺ of D is the set of all functional and multivalued dependencies logically implied by D.
- Sound and complete inference rules for functional and multivalued dependencies:
 - 1. **Reflexivity rule**. If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ holds.
 - 2. Augmentation rule. If $\alpha \rightarrow \beta$ holds and γ is a set of attributes, then $\gamma \alpha \rightarrow \gamma \beta$ holds.
 - 3. Transitivity rule. If $\alpha \rightarrow \beta$ holds and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds.

Example

•
$$R = (A, B, C, G, H, I)$$

 $D = \{A \rightarrow B B \ B \rightarrow HI \ CG \rightarrow H\}$

- Some members of D^+ :
 - $A \rightarrow CGHI$. Since $A \rightarrow B$, the complementation rule (4) implies that $A \rightarrow R - B - A$. Since R - B - A = CGHI, so $A \rightarrow CGHI$. - $A \rightarrow HI$. Since $A \rightarrow B$ and $B \rightarrow HI$, the multivalued transitivity rule (6) implies that $A \rightarrow HI - B$. Since HI - B = HI, $A \rightarrow HI$.

Example (Cont.)

- Some members of *D*⁺ (cont.):
 - $B \rightarrow H.$

Apply the coalescence rule (8); $B \rightarrow HI$ holds. Since $H \subseteq HI$ and $CG \rightarrow H$ and $CG \cap HI = \emptyset$, the coalescence rule is satisfied with α being B, β being HI, δ being CG, and γ being H. We conclude that $B \rightarrow H$.

$$- A \longrightarrow CG.$$

 $A \rightarrow CGHI$ and $A \rightarrow HI$. By the difference rule, $A \rightarrow CGHI - HI$. Since CGHI - HI = CG, $A \rightarrow CG$.

Fourth Normal Form

A relation schema *R* is in 4NF with respect to a set *D* of functional and multivalued dependencies if for all multivalued dependencies in *D*⁺ of the form α →→ β, where α ⊆ *R* and β ⊆ *R*, at least one of the following hold:

-
$$\alpha \longrightarrow \beta$$
 is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)

– α is a superkey for schema ${\it R}$

• If a relation is in 4NF it is in BCNF

4NF Decomposition Algorithm *result* := {*R*}; done := false; compute F^+ ; while (not done) do if (there is a schema R_i in result that is not in 4NF) then begin let $\alpha \rightarrow \beta$ be a nontrivial multivalued dependency that holds on R_i such that $\alpha \to R_i$ is not in F^+ , and $\alpha \cap \beta = \emptyset$; result := $(result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);$ end else *done* := true; Note: each R_i is in 4NF, and decomposition is lossless-join.

Example

•
$$R = (A, B, C, G, H, I)$$

 $F = \{A \rightarrow B B B \rightarrow HI CG \rightarrow H\}$

- *R* is not in 4NF since $A \rightarrow B$ and *A* is not a superkey for *R*
- Decomposition

a)
$$R_1 = (A, B)$$
 $(R_1 \text{ is in 4NF})$ b) $R_2 = (A, C, G, H, I)$ $(R_2 \text{ is not in 4NF})$ c) $R_3 = (C, G, H)$ $(R_3 \text{ is in 4NF})$ d) $R_4 = (A, C, G, I)$ $(R_4 \text{ is not in 4NF})$

• Since $A \rightarrow B$ and $B \rightarrow HI$, $A \rightarrow HI$, $A \rightarrow I$

e) $R_5 = (A, I)$ ($R_5 \text{ is in 4NF}$) f) $R_6 = (A, C, G)$ ($R_6 \text{ is in 4NF}$)

Multivalued Dependency Preservation

- Let R_1, R_2, \ldots, R_n be a decomposition of R, and D a set of both functional and multivalued dependencies.
- The *restriction* of *D* to R_i is the set D_i , consisting of
 - All functional dependencies in D^+ that include only attributes of R_i
 - All multivalued dependencies of the form $\alpha \longrightarrow \beta \cap R_i$ where $\alpha \subseteq R_i$ and $\alpha \longrightarrow \beta$ is in D^+
- The decomposition is *dependency-preserving* with respect to D if, for every set of relations $r_1(R_1)$, $r_2(R_2)$, ..., $r_n(R_n)$ such that for all i, r_i satisfies D_i , there exists a relation r(R) that satisfies D and for which $r_i = \prod_{R_i}(r)$ for all i.
- Decomposition into 4NF may not be dependency preserving (even on just the multivalued dependencies)

Normalization Using Join Dependencies

- Join dependencies constrain the set of legal relations over a schema *R* to those relations for which a given decomposition is a lossless-join decomposition.
- Let *R* be a relation schema and $R_1, R_2, ..., R_n$ be a decomposition of *R*. If $R = R_1 \cup R_2 \cup ... \cup R_n$, we say that a relation r(R) satisfies the *join dependency* *($R_1, R_2, ..., R_n$) if: $r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) \bowtie ... \bowtie \Pi_{R_n}(r)$

A join dependency is *trivial* if one of the R_i is R itself.

- A join dependency *(R₁, R₂) is equivalent to the multivalued dependency R₁ ∩ R₂ →→ R₂. Conversely, α →→ β is equivalent to *(α ∪ (R − β), α ∪ β)
- However, there are join dependencies that are not equivalent to any multivalued dependency.

Project-Join Normal Form (PJNF)

• A relation schema *R* is in PJNF with respect to a set *D* of functional, multivalued, and join dependencies if for all join dependencies in *D*+ of the form

*($R_1, R_2, ..., R_n$) where each $R_i \subseteq R$ and $R = R_1 \cup R_2 \cup ... \cup R_n$,

at least one of the following holds:

- $*(R_1, R_2, ..., R_n)$ is a trivial join dependency.
- Every R_i is a superkey for R.
- Since every multivalued dependency is also a join dependency, every PJNF schema is also in 4NF.

Example

- Consider Loan-info-schema = (branch-name, customer-name, loan-number, amount).
- Each loan has one or more customers, is in one or more branches and has a loan amount; these relationships are independent, hence we have the join dependency

*((loan-number, branch-name), (loan-number, customer-name), (loan-number, amount))

- Loan-info-schema is not in PJNF with respect to the set of dependencies containing the above join dependency. To put Loan-info-schema into PJNF, we must decompose it into the three schemas specified by the join dependency:
 - (loan-number, branch-name)
 - (loan-number, customer-name)
 - (loan-number, amount)

Domain-Key Normal Form (DKNY)

- Domain declaration. Let A be an attribute, and let dom be a set of values. The domain declaration A ⊆ dom requires that the A value of all tuples be values in dom.
- Key declaration. Let *R* be a relation schema with *K* ⊆ *R*. The key declaration key (*K*) requires that *K* be a superkey for schema *R* (*K* → *R*). All key declarations are functional dependencies but not all functional dependencies are key declarations.
- **General constraint**. A general constraint is a predicate on the set of all relations on a given schema.
- Let D be a set of domain constraints and let K be a set of key constraints for a relation schema R. Let G denote the general constraints for R. Schema R is in DKNF if D ∪ K logically imply G.

Example

- Accounts whose account-number begins with the digit 9 are special high-interest accounts with a minimum balance of \$2500.
- General constraint: "If the first digit of *t*[*account-number*] is 9, then *t*[*balance*] ≥ 2500."
- DKNF design:

Regular-acct-schema = (branch-name, account-number, balance) Special-acct-schema = (branch-name, account-number, balance)

- Domain constraints for *Special-acct-schema* require that for each account:
 - The account number begins with 9.
 - The balance is greater than 2500.

DKNF rephrasing of PJNF Definition

- Let R = (A₁, A₂, ..., A_n) be a relation schema. Let dom(A_i) denote the domain of attribute A_i, and let all these domains be infinite. Then all domain constraints **D** are of the form A_i ⊆ dom(A_i).
- Let the general constraints be a set G of functional, multivalued, or join dependencies. If *F* is the set of functional dependencies in G, let the set K of key constraints be those nontrivial functional dependencies in *F*⁺ of the form α → *R*.
- Schema *R* is in PJNF if and only if it is in DKNF with respect to **D**, **K**, and **G**.

