
'
&

$
%

Chapter 7: Relational Database Design

• Pitfalls in Relational Database Design

• Decomposition

• Normalization Using Functional Dependencies

• Normalization Using Multivalued Dependencies

• Normalization Using Join Dependencies

• Domain-Key Normal Form

• Alternative Approaches to Database Design

Database Systems Concepts 7.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Pitfalls in Relational Database Design

• Relational database design requires that we find a “good”
collection of relation schemas. A bad design may lead to

– Repetition of information.

– Inability to represent certain information.

• Design Goals:

– Avoid redundant data

– Ensure that relationships among attributes are represented

– Facilitate the checking of updates for violation of database
integrity constraints

Database Systems Concepts 7.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

• Redundancy:

– Data for branch-name, branch-city, assets are repeated for
each loan that a branch makes

– Wastes space and complicates updating

• Null values

– Cannot store information about a branch if no loans exist

– Can use null values, but they are difficult to handle

Database Systems Concepts 7.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Decomposition

• Decompose the relation schema Lending-schema into:

Branch-customer-schema = (branch-name, branch-city,
assets, customer-name)

Customer-loan-schema = (customer-name, loan-number, amount)

• All attributes of an original schema (R) must appear in the
decomposition (R1, R2):

R = R1 ∪ R2

• Lossless-join decomposition.
For all possible relations r on schema R

r = ΠR1 (r) 1 ΠR2 (r)

Database Systems Concepts 7.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example of a Non Lossless-Join Decomposition

• Decomposition of R = (A, B)
R1 = (A) R2 = (B)

A B A B

α 1 α 1
α 2 β 2
β 1

r ΠA (r) ΠB (r)

• ΠA (r) 1 ΠB (r) A B

α 1
α 2
β 1
β 2

Database Systems Concepts 7.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Goal — Devise a Theory for the Following:

• Decide whether a particular relation R is in “good” form.

• In the case that a relation R is not in “good” form, decompose it
into a set of relations {R1, R2, ..., Rn} such that

– each relation is in good form

– the decomposition is a lossless-join decomposition

• Our theory is based on:

– functional dependencies

– multivalued dependencies

Database Systems Concepts 7.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Normalization Using Functional Dependencies

When we decompose a relation schema R with a set of functional
dependencies F into R1 and R2 we want:

• Lossless-join decomposition: At least one of the following
dependencies is in F+:

– R1 ∩ R2 → R1

– R1 ∩ R2 → R2

• No redundancy: The relations R1 and R2 preferably should be
in either Boyce-Codd Normal Form or Third Normal Form.

• Dependency preservation: Let Fi be the set of dependencies in
F + that include only attributes in Ri . Test to see if:

– (F1 ∪ F2)+ = F +

Otherwise, checking updates for violation of functional
dependencies is expensive.

Database Systems Concepts 7.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C)
F = {A → B, B → C}

• R1 = (A, B), R2 = (B, C)

– Lossless-join decomposition:

R1 ∩ R2 = {B} and B → BC

– Dependency preserving

• R1 = (A, B), R2 = (A, C)

– Lossless-join decomposition:

R1 ∩ R2 = {A} and A → AB

– Not dependency preserving
(cannot check B → C without computing R1 1 R2)

Database Systems Concepts 7.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F + of the form
α → β, where α ⊆ R and β ⊆ R, at least one of the following
holds:

• α → β is trivial (i.e., β ⊆ α)

• α is a superkey for R

Database Systems Concepts 7.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C)

F = {A → B
B → C}

Key = {A}
• R is not in BCNF

• Decomposition R1 = (A, B), R2 = (B, C)

– R1 and R2 in BCNF

– Lossless-join decomposition

– Dependency preserving

Database Systems Concepts 7.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

BCNF Decomposition Algorithm

result := {R};
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional
dependency that holds on Ri

such that α → Ri is not in F +,
and α ∩ β = ∅ ;

result := (result − Ri) ∪(Ri − β) ∪(α, β);
end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

Database Systems Concepts 7.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example of BCNF Decomposition

• R = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

F = {branch-name → assets branch-city
loan-number → amount branch-name}

Key = {loan-number, customer-name}
• Decomposition

– R1 = (branch-name, branch-city, assets)

– R2 = (branch-name, customer-name, loan-number, amount)

– R3 = (branch-name, loan-number, amount)

– R4 = (customer-name, loan-number)

• Final decomposition

R1, R3, R4

Database Systems Concepts 7.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is
dependency preserving

• R = (J, K, L)

F = {JK → L
L → K}

Two candidate keys = JK and JL

• R is not in BCNF

• Any decomposition of R will fail to preserve

JK → L

Database Systems Concepts 7.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Third Normal Form

• A relation schema R is in third normal form (3NF) if for all:

α → β in F +

at least one of the following holds:

– α → β is trivial (i.e., β ∈ α)

– α is a superkey for R

– Each attribute A in β − α is contained in a candidate key
for R.

• If a relation is in BCNF it is in 3NF (since in BCNF one of the first
two conditions above must hold).

Database Systems Concepts 7.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

3NF (Cont.)

• Example

– R = (J, K, L)
F = {JK → L, L → K}

– Two candidate keys: JK and JL

– R is in 3NF
JK → L JK is a superkey
L → K K is contained in a candidate key

• Algorithm to decompose a relation schema R into a set of
relation schemas {R1, R2, ..., Rn} such that:

– each relation schema Ri is in 3NF

– lossless-join decomposition

– dependency preserving

Database Systems Concepts 7.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

3NF Decomposition Algorithm

Let Fc be a canonical cover for F ;
i := 0;
for each functional dependency α → β in Fc do

if none of the schemas Rj , 1 ≤ j ≤ i contains α β

then begin
i := i + 1;
Ri := α β;

end
if none of the schemas Rj , 1 ≤ j ≤ i contains
a candidate key for R

then begin
i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, ..., Ri)

Database Systems Concepts 7.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• Relation schema:

Banker-info-schema = (branch-name, customer-name,
banker-name, office-number)

• The functional dependencies for this relation schema are:

banker-name → branch-name office-number
customer-name branch-name → banker-name

• The key is:

{customer-name, branch-name}

Database Systems Concepts 7.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Applying 3NF to Banker − info − schema

• The for loop in the algorithm causes us to include the following
schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,
office-number)

Banker-schema = (customer-name, branch-name,
banker-name)

• Since Banker-schema contains a candidate key for
Banker-info-schema, we are done with the decomposition
process.

Database Systems Concepts 7.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Comparison of BCNF and 3NF

• It is always possible to decompose a relation into relations in
3NF and

– the decomposition is lossless

– dependencies are preserved

• It is always possible to decompose a relation into relations in
BCNF and

– the decomposition is lossless

– it may not be possible to preserve dependencies

Database Systems Concepts 7.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Comparison of BCNF and 3NF (Cont.)

• R = (J, K, L)
F = {JK → L

L → K}
• Consider the following relation

J L K

j1 l1 k1

j2 l1 k1

j3 l1 k1

null l2 k2

• A schema that is in 3NF but not in BCNF has the problems of
– repetition of information (e.g., the relationship l1, k1)

– need to use null values (e.g., to represent the relationship
l2, k2 where there is no corresponding value for J).

Database Systems Concepts 7.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Design Goals

• Goal for a relational database design is:

– BCNF.

– Lossless join.

– Dependency preservation.

• If we cannot achieve this, we accept:

– 3NF.

– Lossless join.

– Dependency preservation.

Database Systems Concepts 7.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Normalization Using Multivalued Dependencies

• There are database schemas in BCNF that do not seem to be
sufficiently normalized

• Consider a database

classes(course, teacher, book)

such that (c,t,b) ∈ classes means that t is qualified to teach c,
and b is a required textbook for c

• The database is supposed to list for each course the set of
teachers any one of which can be the course’s instructor, and
the set of books, all of which are required for the course (no
matter who teaches it).

Database Systems Concepts 7.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

course teacher book
database Avi Korth
database Avi Ullman
database Hank Korth
database Hank Ullman
database Sudarshan Korth
database Sudarshan Ullman
operating systems Avi Silberschatz
operating systems Avi Shaw
operating systems Jim Silberschatz
operating systems Jim Shaw

classes

• Since there are no non-trivial dependencies, (course, teacher,
book) is the only key, and therefore the relation is in BCNF

• Insertion anomalies – i.e., if Sara is a new teacher that can
teach database, two tuples need to be inserted

(database, Sara, Korth)
(database, Sara, Ullman)

Database Systems Concepts 7.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

• Therefore, it is better to decompose classes into:

course teacher
database Avi
database Hank
database Sudarshan
operating systems Avi
operating systems Jim

teaches

course book
database Korth
database Ullman
operating systems Silberschatz
operating systems Shaw

text

• We shall see that these two relations are in Fourth Normal
Form (4NF)

Database Systems Concepts 7.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multivalued Dependencies (MVDs)

• Let R be a relation schema and let α ⊆ R and β ⊆ R. The
multivalued dependency

α →→ β

holds on R if in any legal relation r(R), for all pairs of tuples t1
and t2 in r such that t1[α] = t2[α], there exist tuples t3 and t4 in
r such that:

t1[α] = t2[α] = t3[α] = t4[α]
t3[β] = t1[β]
t3[R − β] = t2[R − β]
t4[β] = t2[β]
t4[R − β] = t1[R − β]

Database Systems Concepts 7.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

MVD (Cont.)

• Tabular representation of α →→ β

α β R − α − β

t1 a1 ... ai ai + 1 ... aj aj + 1 ... an

t2 a1 ... ai bi + 1 ... bj bj + 1 ... bn

t3 a1 ... ai ai + 1 ... aj bj + 1 ... bn

t4 a1 ... ai bi + 1 ... bj aj + 1 ... an

Database Systems Concepts 7.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• Let R be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets,

Y , Z , W

• We say that Y →→ Z (Y multidetermines Z)
if and only if for all possible relations r(R)

< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r

then

< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r

• Note that since the behavior of Z and W are identical it follows
that Y →→ Z iff Y →→ W

Database Systems Concepts 7.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example (Cont.)

• In our example:

course →→ teacher
course →→ book

• The above formal definition is supposed to formalize the notion
that given a particular value of Y (course) it has associated
with it a set of values of Z (teacher) and a set of values of W
(book), and these two sets are in some sense independent of
each other.

• Note:

– If Y → Z then Y →→ Z

– Indeed we have (in above notation) Z1 = Z2

The claim follows.

Database Systems Concepts 7.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Use of Multivalued Dependencies

• We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under
a given set of functional and multivalued dependencies.

2. To specify constraints on the set of legal relations. We shall
thus concern ourselves only with relations that satisfy a
given set of functional and multivalued dependencies.

• If a relation r fails to satisfy a given multivalued dependency,
we can construct a relation r ′ that does satisfy the multivalued
dependency by adding tuples to r.

Database Systems Concepts 7.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Theory of Multivalued Dependencies

• Let D denote a set of functional and multivalued dependencies.
The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.

• Sound and complete inference rules for functional and
multivalued dependencies:

1. Reflexivity rule . If α is a set of attributes and β ⊆ α, then
α → β holds.

2. Augmentation rule . If α → β holds and γ is a set of
attributes, then γα → γβ holds.

3. Transitivity rule . If α → β holds and β → γ holds, then α

→ γ holds.

Database Systems Concepts 7.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Theory of Multivalued Dependencies (Cont.)

4. Complementation rule . If α →→ β holds, then
α →→ R − β − α holds.

5. Multivalued augmentation rule . If α →→ β holds and γ

⊆ R and δ ⊆ γ, then γα →→ δβ holds.

6. Multivalued transitivity rule . If α →→ β holds and
β →→ γ holds, then α →→ γ − β holds.

7. Replication rule . If α → β holds, then α →→ β.

8. Coalescence rule . If α →→ β holds and γ ⊆ β and
there is a δ such that δ ⊆ R and δ ∩ β = ∅ and δ → γ, then
α → γ holds.

Database Systems Concepts 7.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Simplification of the Computation of D+

• We can simplify the computation of the closure of D by using
the following rules (proved using rules 1–8).

– Multivalued union rule . If α →→ β holds and α →→ γ

holds, then α →→ βγ holds.

– Intersection rule . If α →→ β holds and α →→ γ holds, then
α →→ β ∩ γ holds.

– Difference rule . If α →→ β holds and α →→ γ holds, then
α →→ β − γ holds and α →→ γ − β holds.

Database Systems Concepts 7.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C, G, H, I)
D = {A →→ B

B →→ HI
CG → H}

• Some members of D+:

– A →→ CGHI.
Since A →→ B, the complementation rule (4) implies that
A →→ R − B − A.
Since R − B − A = CGHI, so A →→ CGHI.

– A →→ HI.
Since A →→ B and B →→ HI, the multivalued transitivity
rule (6) implies that A →→ HI − B.
Since HI − B = HI, A →→ HI.

Database Systems Concepts 7.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example (Cont.)

• Some members of D+ (cont.):

– B → H.
Apply the coalescence rule (8); B →→ HI holds.
Since H ⊆ HI and CG → H and CG ∩ HI = ∅, the
coalescence rule is satisfied with α being B, β being HI, δ

being CG, and γ being H. We conclude that B → H.

– A →→ CG.
A →→ CGHI and A →→ HI.
By the difference rule, A →→ CGHI − HI.
Since CGHI − HI = CG, A →→ CG.

Database Systems Concepts 7.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Fourth Normal Form

• A relation schema R is in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆
R, at least one of the following hold:

– α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)

– α is a superkey for schema R

• If a relation is in 4NF it is in BCNF

Database Systems Concepts 7.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

4NF Decomposition Algorithm

result := {R};
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in 4NF)
then begin

let α → β be a nontrivial multivalued
dependency that holds on Ri such that
α → Ri is not in F +, and α ∩ β = ∅ ;

result := (result − Ri) ∪(Ri − β) ∪(α, β);
end

else done := true;

Note: each Ri is in 4NF, and decomposition is lossless-join.

Database Systems Concepts 7.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C, G, H, I)
F = {A →→ B

B →→ HI
CG → H}

• R is not in 4NF since A →→ B and A is not a superkey for R

• Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I) (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I) (R4 is not in 4NF)

• Since A →→ B and B →→ HI, A →→ HI, A →→ I

e) R5 = (A, I) (R5 is in 4NF)
f) R6 = (A, C, G) (R6 is in 4NF)

Database Systems Concepts 7.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multivalued Dependency Preservation

• Let R1, R2, . . . , Rn be a decomposition of R, and D a set of both
functional and multivalued dependencies.

• The restriction of D to Ri is the set Di , consisting of

– All functional dependencies in D+ that include only
attributes of Ri

– All multivalued dependencies of the form α →→ β ∩ Ri

where α ⊆ Ri and α →→ β is in D+

• The decomposition is dependency-preserving with respect to
D if, for every set of relations r1(R1), r2(R2), . . ., rn(Rn) such that
for all i , ri satisfies Di , there exists a relation r(R) that satisfies
D and for which ri = ΠRi (r) for all i.

• Decomposition into 4NF may not be dependency preserving
(even on just the multivalued dependencies)

Database Systems Concepts 7.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Normalization Using Join Dependencies

• Join dependencies constrain the set of legal relations over a
schema R to those relations for which a given decomposition is
a lossless-join decomposition.

• Let R be a relation schema and R1, R2, ..., Rn be a
decomposition of R. If R = R1 ∪ R2 ∪ ... ∪ Rn, we say that a
relation r(R) satisfies the join dependency *(R1, R2, ..., Rn) if:

r = ΠR1 (r) 1 ΠR2 (r) 1 ... 1 ΠRn (r)

A join dependency is trivial if one of the Ri is R itself.

• A join dependency *(R1, R2) is equivalent to the multivalued
dependency R1 ∩ R2 →→ R2. Conversely, α →→ β is
equivalent to ∗(α ∪ (R − β), α ∪ β)

• However, there are join dependencies that are not equivalent
to any multivalued dependency.

Database Systems Concepts 7.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Project-Join Normal Form (PJNF)

• A relation schema R is in PJNF with respect to a set D of
functional, multivalued, and join dependencies if for all join
dependencies in D+ of the form

*(R1, R2, ..., Rn) where each Ri ⊆ R
and R = R1 ∪ R2 ∪ ... ∪ Rn,

at least one of the following holds:

– *(R1, R2, ..., Rn) is a trivial join dependency.

– Every Ri is a superkey for R.

• Since every multivalued dependency is also a join dependency,
every PJNF schema is also in 4NF.

Database Systems Concepts 7.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• Consider Loan-info-schema = (branch-name, customer-name,
loan-number, amount).

• Each loan has one or more customers, is in one or more
branches and has a loan amount; these relationships are
independent, hence we have the join dependency

*((loan-number, branch-name), (loan-number, customer-name),
(loan-number, amount))

• Loan-info-schema is not in PJNF with respect to the set of
dependencies containing the above join dependency. To put
Loan-info-schema into PJNF, we must decompose it into the
three schemas specified by the join dependency:

– (loan-number, branch-name)

– (loan-number, customer-name)

– (loan-number, amount)

Database Systems Concepts 7.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Domain-Key Normal Form (DKNY)

• Domain declaration . Let A be an attribute, and let dom be a
set of values. The domain declaration A ⊆ dom requires that
the A value of all tuples be values in dom .

• Key declaration . Let R be a relation schema with K ⊆ R. The
key declaration key (K) requires that K be a superkey for
schema R (K → R). All key declarations are functional
dependencies but not all functional dependencies are key
declarations.

• General constraint . A general constraint is a predicate on the
set of all relations on a given schema.

• Let D be a set of domain constraints and let K be a set of key
constraints for a relation schema R. Let G denote the general
constraints for R. Schema R is in DKNF if D ∪ K logically imply
G.

Database Systems Concepts 7.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• Accounts whose account-number begins with the digit 9 are
special high-interest accounts with a minimum balance of
$2500.

• General constraint: “If the first digit of t[account-number] is 9,
then t[balance] ≥ 2500.”

• DKNF design:

Regular-acct-schema = (branch-name, account-number, balance)
Special-acct-schema = (branch-name, account-number, balance)

• Domain constraints for Special-acct-schema require that for
each account:

– The account number begins with 9.

– The balance is greater than 2500.

Database Systems Concepts 7.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

DKNF rephrasing of PJNF Definition

• Let R = (A1, A2, ..., An) be a relation schema. Let dom(Ai)
denote the domain of attribute Ai , and let all these domains be
infinite. Then all domain constraints D are of the form
Ai ⊆ dom(Ai).

• Let the general constraints be a set G of functional,
multivalued, or join dependencies. If F is the set of functional
dependencies in G, let the set K of key constraints be those
nontrivial functional dependencies in F + of the form α → R.

• Schema R is in PJNF if and only if it is in DKNF with respect to
D, K, and G.

Database Systems Concepts 7.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Alternative Approaches to Database Design

• Dangling tuples —Tuples that “disappear” in computing a join.

– Let r1(R1), r2(R2), ..., rn(Rn) be a set of relations.

– A tuple t of relation ri is a dangling tuple if t is not in the
relation:

ΠRi (r1 1 r2 1 ... 1 rn)

• The relation r1 1 r2 1 ... 1 rn is called a universal relation
since it involves all the attributes in the “universe” defined by
R1 ∪ R2 ∪ ... ∪ Rn.

• If dangling tuples are allowed in the database, instead of
decomposing a universal relation, we may prefer to synthesize
a collection of normal form schemas from a given set of
attributes.

Database Systems Concepts 7.45 Silberschatz, Korth and Sudarshan c©1997

	Pitfalls in Relational Database Design
	Example
	Decomposition
	Example of a Non Lossless-Join Decomposition
	Goal --- Devise a Theory for the Following:
	Normalization Using Functional Dependencies
	Example
	Boyce-Codd Normal Form
	Example
	BCNF Decomposition Algorithm
	Example of BCNF Decomposition
	BCNF and Dependency Preservation
	Third Normal Form
	3NF (Cont.)
	3NF Decomposition Algorithm
	Example
	Applying 3NF to Banker-info-schema
	Comparison of BCNF and 3NF
	Comparison of BCNF and 3NF (Cont.)
	Design Goals
	Normalization Using Multivalued Dependencies
	Multivalued Dependencies (MVDs)
	MVD (Cont.)
	Example
	Example (Cont.)
	Use of Multivalued Dependencies
	Theory of Multivalued Dependencies
	Theory of Multivalued Dependencies (Cont.)
	Simplification of the Computation of D^+
	Example
	Example (Cont.)
	Fourth Normal Form
	4NF Decomposition Algorithm
	Example
	Multivalued Dependency Preservation
	Normalization Using Join Dependencies
	Project-Join Normal Form (PJNF)
	Example
	Domain-Key Normal Form (DKNY)
	Example
	DKNF rephrasing of PJNF Definition
	Alternative Approaches to Database Design

