
'
&

$
%

Chapter 5: Other Relational Languages

• Query-by-Example (QBE)

• Quel

• Datalog

Database Systems Concepts 5.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query-by-Example (QBE)

• Basic Structure

• Queries on One Relation

• Queries on Several Relations

• The Condition Box

• The Result Relation

• Ordering the Display of Tuples

• Aggregate Operations

• Modification of the Database

Database Systems Concepts 5.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

QBE — Basic Structure

• A graphical query language which is based (roughly) on the
domain relational calculus

• Two dimensional syntax – system creates templates of
relations that are requested by users

• Queries are expressed “by example”

Database Systems Concepts 5.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Skeleton Tables

branch branch-name branch-city assets

customer customer-name customer-street customer-city

loan branch-name loan-number amount

Database Systems Concepts 5.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Skeleton Tables (Cont.)

borrower customer-name loan-number

account branch-name account-number balance

depositor customer-name account-number

Database Systems Concepts 5.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on One Relation

• Find all loan numbers at the Perryridge branch.

loan branch-name loan-number amount

Perryridge P. x

– x is a variable (optional)

– P. means print (display)

– duplicates are removed

loan branch-name loan-number amount

Perryridge P.ALL.

– duplicates are not removed

Database Systems Concepts 5.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on One Relation (Cont.)

• Display full details of all loans

– Method 1:

loan branch-name loan-number amount

P. x P. y P. z

– Method 2: shorthand notation

loan branch-name loan-number amount

P.

• Find the loan number of all loans with a loan amount of more
than $700.

loan branch-name loan-number amount

P. >700

Database Systems Concepts 5.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on One Relation (Cont.)

• Find the loan numbers of all loans made jointly to Smith and
Jones.

borrower customer-name loan-number

“Smith” P. x

“Jones” x

• Find the loan numbers of all loans made to Smith, Jones or
both.

borrower customer-name loan-number

“Smith” P. x

“Jones” P. y

Database Systems Concepts 5.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on Several Relations

• Find the names of all customers who have a loan from the
Perryridge branch.

loan branch-name loan-number amount

Perryridge x

borrower customer-name loan-number

P. y x

Database Systems Concepts 5.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on Several Relations (Cont.)

• Find the names of all customers who have both an account
and a loan at the bank.

depositor customer-name account-number

P. x

borrower customer-name loan-number

x

Database Systems Concepts 5.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on Several Relations (Cont.)

• Find the names of all customers who have an account at the
bank, but do not have a loan from the bank.

depositor customer-name account-number

P. x

borrower customer-name loan-number

¬ x

¬ means “there does not exist”

Database Systems Concepts 5.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queries on Several Relations

• Find all customers who have at least two accounts.

depositor customer-name account-number

P. x y

x ¬ y

¬ means “not equal to”

Database Systems Concepts 5.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Condition Box

• Allows the expression of constraints on domain variables that
are either inconvenient or impossible to express within the
skeleton tables.

• Find all account numbers with a balance between $1,300 and
$2,000 but not exactly $1,500.

account branch-name account-number balance

P. x

conditions

x = (≥ 1300 and ≤ 2000 and ¬ 1500)

Database Systems Concepts 5.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Result Relation

• Find the customer-name, account-number, and balance for all
customers who have an account at the Perryridge branch.

– We need to:

∗ Join depositor and account.

∗ Project customer-name, account-number, and balance.

– To accomplish this we:

∗ Create a skeleton table, called result, with attributes
customer-name, account-number, and balance.

∗ Write the query.

Database Systems Concepts 5.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Result Relation (Cont.)

• The resulting query is:

branch-name account-number balance

Perryridge y z

depositor customer-name account-number

x y

result customer-name account-number balance

P. x y z

Database Systems Concepts 5.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Ordering the Display of Tuples

• AO = ascending order; DO = descending order.
When sorting on multiple attributes, the sorting order is
specified by including with each sort operator (AO or DO) an
integer surrounded by parentheses.

• List all account numbers at the Perryridge branch in ascending
alphabetic order with their respective account balances in
descending order.

account branch-name account-number balance

Perryridge P.AO(1). P.DO(2).

Database Systems Concepts 5.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Operations

• The aggregate operators are AVG, MAX, MIN, SUM,and CNT

• The above operators must always be postfixed with “ALL.”

(e.g., SUM.ALL.or AVG.ALL. x).

• Find the total balance of all the accounts maintained at the
Perryridge branch.

account branch-name account-number balance

Perryridge P.SUM.ALL.

Database Systems Concepts 5.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Operations (Cont.)

• Find the total number of customers having an account at the
bank.

depositor customer-name account-number

P.CNT.UNQ.ALL.

Note: UNQ is used to specify that we want to eliminate
duplicates.

Database Systems Concepts 5.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query Examples

• Find the average balance at each branch.

account branch-name account-number balance

P.G. P.AVG.ALL. x

Note:
– The “G” in “P.G” is analogous to SQL’s group by construct
– The “ALL” in the “P.AVG.ALL” entry in the balance column

ensures that all balances are considered

• Find the average account balance at only those branches
where the average account balance is more than $1,200. Add
the condition box:

conditions

AVG.ALL. x > 1200

Database Systems Concepts 5.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query Example

• Find all customers who have an account at all branches
located in Brooklyn:

depositor customer-name account-number

P.G. x y

account branch-name account-number balance

CNT.UNQ.ALL. z y

branch branch-name branch-city assets

z Brooklyn

w Brooklyn

Database Systems Concepts 5.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query Example (Cont.)

conditions

CNT.UNQ.ALL. z = CNT.UNQ.ALL. w

• CNT.UNQ.ALL. w specifies the number of distinct branches in
Brooklyn.

• CNT.UNQ.ALL. z specifies the number of distinct branches in
Brooklyn at which customer x has an account.

Database Systems Concepts 5.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Deletion

• Deletion of tuples from a relation is expressed by use of a D.
command. In the case where we delete information in only
some of the columns, null values, specified by −, are inserted.

• Delete customer Smith

customer customer-name customer-street customer-city

D. Smith

• Delete the branch-city value of the branch whose name is
“Perryridge”.

branch branch-name branch-city assets

Perryridge D.

Database Systems Concepts 5.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deletion Query Examples

• Delete all loans with a loan amount between $1300 and $1500.

loan branch-name loan-number amount

D. y x

borrower customer-name loan-number

D. y

conditions

x = (≥ 1300 and ≤ 1500)

Database Systems Concepts 5.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deletion Query Examples (Cont.)

• Delete all accounts at branches located in Brooklyn.

account branch-name account-number balance

D. x y

depositor customer-name account-number

D. y

branch branch-name branch-city assets

x Brooklyn

Database Systems Concepts 5.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Insertion

• Insertion is done by placing the I. operator in the query
expression.

• Insert the fact that account A-9732 at the Perryridge branch
has a balance of $700.

account branch-name account-number balance

I. Perryridge A-9732 700

• Provide as a gift for all loan customers of the Perryridge
branch, a new $200 savings account for every loan account
they have, with the loan number serving as the account
number for the new savings account.

(next slide)

Database Systems Concepts 5.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Insertion (Cont.)

account branch-name account-number balance

I. Perryridge x 200

depositor customer-name account-number

I. y x

loan branch-name loan-number amount

Perryridge x

borrower customer-name account-number

y x

Database Systems Concepts 5.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Updates

• Use the U. operator to change a value in a tuple without
changing all values in the tuple. QBE does not allow users to
update the primary key fields.

• Update the asset value of the of the Perryridge branch to
$10,000,000.

branch branch-name branch-city assets

Perryridge U.10000000

• Increase all balances by 5 percent.

account branch-name account-number balance

U. x * 1.05

x

Database Systems Concepts 5.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel

• Basic Structure

• Simple Queries

• Tuple Variables

• Aggregate Functions

• Modification of the Database

• Set Operations

• Quel and the Tuple Relational Calculus

Database Systems Concepts 5.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel — Basic Structure

• Introduced as the query language for the Ingres database
system, developed at the University of California, Berkeley.

• Basic structure parallels that of the tuple relational calculus.

• Most Quel queries are expressed using three types of clauses:
range of , retrieve , and where .

– Each tuple variable is declared in a range of clause.

range of t is r

declares t to be a tuple variable restricted to take on values
of tuples in relation r.

– The retrieve clause is similar in function to the select
clause of SQL.

– The where clause contains the selection predicate.

Database Systems Concepts 5.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel Query Structure

• A typical Quel query is of the form:

range of t1 is r1

range of t2 is r2
...

range of tm is rm

retrieve (ti1 .Aj1 , ti2 .Aj2 , ..., tin .Ajn)
where P

– Each ti is a tuple variable.

– Each ri is a relation.

– Each Ajk is an attribute.

– The notation t.A denotes the value of tuple variable t on
attribute A.

Database Systems Concepts 5.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel Query Structure (Cont.)

• Quel does not include relational algebra operations like
intersect , union , and minus .

• Quel does not allow nested subqueries (unlike SQL).

– Cannot have a nested retrieve-where clause inside a
where clause.

• These limitations do not reduce the expressive power of Quel,
but the user has fewer alternatives for expressing a query.

Database Systems Concepts 5.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Simple Queries

• Find the names of all customers having a loan at the bank.

range of t is borrower
retrieve (t.customer-name)

• To remove duplicates, we must add the keyword unique to the
retrieve clause:

range of t is borrower
retrieve unique (t.customer-name)

Database Systems Concepts 5.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query Over Several Relations

• Find the names of all customers who have both a loan and an
account at the bank.

range of s is borrower
range of t is depositor
retrieve unique (s.customer-name)
where t.customer-name = s.customer-name

Database Systems Concepts 5.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuple Variables

• Certain queries need to have two distinct tuple variables
ranging over the same relation.

• Find the name of all customers who live in the same city as
Jones does.

range of s is customer
range of t is customer
retrieve unique (s.customer-name)
where t.customer-name = “Jones” and

s.customer-city = t.customer-city

Database Systems Concepts 5.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuple Variables (Cont.)

• When a query requires only one tuple variable ranging over a
relation, we can omit the range of statement and use the
relation name itself as an implicitly declared tuple variable.

• Find the names of all customers who have both a loan and an
account at the bank.

retrieve unique (borrower.customer-name)
where depositor.customer-name = borrower.customer-name

Database Systems Concepts 5.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Functions

• Aggregate functions in Quel compute functions on groups of
tuples.

• Grouping is specified as part of each aggregate expression.

• Quel aggregate expressions may take the following forms:

aggregate function (t.A)
aggregate function (t.A where P)
aggregate function (t.A by s.B1, s.B2, ..., s.Bn where P)

– aggregate function is one of count , sum , avg , max , min ,
countu , sumu , avgu , or any

– t and s are tuple variables

– A, B1, B2, . . . , Bn are attributes

– P is a predicate similar to the where clause in a retrieve

Database Systems Concepts 5.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Functions (Cont.)

• The functions countu , sumu , and avgu are identical to count ,
sum , and avg , respectively, except that they remove duplicates
from their operands.

• An aggregate expression may appear anywhere a constant
may appear; for example, in a where clause.

Database Systems Concepts 5.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the average account balance for all accounts at the
Perryridge branch.

range of t is account
retrieve avg (t.balance where

t.branch-name = “Perryridge”)

• Find all accounts whose balance is higher than the average
balance of Perryridge-branch accounts.

range of u is account
range of t is account
retrieve (t.account-number)
where t.balance > avg (u.balance where

u.branch-name = “Perryridge”)

Database Systems Concepts 5.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find all accounts whose balance is higher than the average
balance at the branch where the account is held.

– Compute for each tuple t in account the average balance at
branch t.branch-name.

– In order to form these groups of tuples, use the by construct
in the aggregate expression.

The query is:

range of u is account
range of t is account
retrieve (t.account-number)
where t.balance > avg (u.balance by t.branch-name

where u.branch-name = t.branch-name)

Database Systems Concepts 5.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Query

• Find the names of all customers who have an account at the
bank, but do not have a loan from the bank.

range of t is depositor
range of u is borrower
retrieve unique (t.customer-name)
where any (u.loan-number by t.customer-name

where u.customer-name = t.customer-name) = 0

• The use of a comparison with any is analogous to the “there
exists” quantifier of the relational calculus.

Database Systems Concepts 5.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Query

• Find the names of all customers who have an account at all
branches located in Brooklyn.
– First determine the number of branches in Brooklyn.
– Compare this number with the number of distinct branches

in Brooklyn at which each customer has an account.

range of t is depositor
range of u is account
range of s is branch
range of w is branch
retrieve unique (t.customer-name)
where countu (s.branch-name by t.customer-name

where u.account-number = t.account-number
and u.branch-name = s.branch-name
and s.branch-city = “Brooklyn”) =

countu (u.branch-name where u.branch-city = “Brooklyn”)

Database Systems Concepts 5.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Deletion

• The form of a Quel deletion is

range of t is r
delete t
where P

• The tuple variable t can be implicitly defined.

• The predicate P can be any valid Quel predicate.

• If the where clause is omitted, all tuples in the relation are
deleted.

Database Systems Concepts 5.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deletion Query Examples

• Delete all tuples in the loan relation.

range of t is loan
delete t

• Delete all Smith’s account records.

range of t is depositor
delete t
where t.customer-name = “Smith”

• Delete all account records for branches located in Needham.

range of t is account
range of u is branch
delete t
where t.branch-name = u.branch-name and

u.branch-city = “Needham”

Database Systems Concepts 5.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Insertion

• Insertions are expressed in Quel using the append command.

• Insert the fact that account A-9732 at the Perryridge branch
has a balance of $700.

append to account (branch-name = “Perryridge”,
account-number = A-9732,
balance = 700)

Database Systems Concepts 5.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Insertion Query Example

• Provide as a gift for all loan customers of the Perryridge
branch, a new $200 savings account for every loan account
that they have. Let the loan number serve as the account
number for the new savings account.

range of t is loan
range of s is borrower
append to account (branch-name = t.branch-name,

account-number = t.loan-number,
balance = 200)

where t.branch-name = “Perryridge”
append to depositor (customer-name = s.customer-name,

account-number = s.loan-number)
where t.branch-name = “Perryridge” and t.loan-number =

s.loan-number

Database Systems Concepts 5.45 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database – Updates

• Updates are expressed in Quel using the replace command.

• Increase all account balances by 5 percent.

range of t is account
replace t (balance = 1.05 * t.balance)

• Pay 6 percent interest on accounts with balances over
$10,000, and 5 percent on all other accounts.

range of t is account
replace t (balance = 1.06 ∗ balance)
where t.balance > 10000
replace t (balance = 1.05 ∗ balance)
where t.balance ≤ 10000

Database Systems Concepts 5.46 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Set Operations

• Quel does not include relational algebra operations like
intersect , union , and minus .

• To construct queries that require the use of set operations, we
must create temporary relations (via the use of regular Quel
statements).

• Example: To create a temporary relation temp that holds the
names of all depositors of the bank, we write

range of u is depositor
retrieve into temp unique (u.customer-name)

• The into temp clause causes a new relation, temp, to be
created to hold the result of this query.

Database Systems Concepts 5.47 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers who have an account, a loan,
or both at the bank.

• Since Quel has no union operation, a new relation (called
temp) must be created that holds the names of all borrowers of
the bank.

• We find all borrowers of the bank and insert them in the newly
created relation temp by using the append command.

range of s is borrower
append to temp unique (s.customer-name)

• Complete the query with:

range of t is temp
retrieve unique (t.customer-name)

Database Systems Concepts 5.48 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers who have an account at the
bank but do not have a loan from the bank.

• Create a temporary relation by writing:
range of u is depositor
retrieve into temp (u.customer-name)

• Delete from temp those customers who have a loan.
range of s is borrower
range of t is temp
delete t
where t.customer-name = s.customer-name

• temp now contains the desired list of customers. We write the
following to complete our query.

range of t is temp
retrieve unique (t.customer-name)

Database Systems Concepts 5.49 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel and the Tuple Relational Calculus

The following Quel query

range of t1 is r1

range of t2 is r2

.

.

.
range of tm is rm

retrieve unique (ti1 .Aj1 , ti2 .Aj2 , ..., tin .Ajn)
where P

would be expressed in the tuple relational calculus as:

{t | ∃ t1 ∈ r1, t2 ∈ r2, ..., tm ∈ rm (

t[ri1 .Aj1] = ti1 [Aj1] ∧ t [ri2 .Aj2] = ti2 [Aj2] ∧ ...∧
t [rin .Ajn] = tin [Ajn] ∧ P (t1, t2, ..., tm))}

Database Systems Concepts 5.50 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Quel and TRC (Cont.)

• t1 ∈ r1 ∧ t2 ∈ r2 ∧ ... ∧ tm ∈ rm

Constrains each tuple in t1, t2, ..., tm to take on values of tuples
in the relation over which it ranges.

• t [ri1 .Aj1] = ti1 [Aj1] ∧ ti2 [Aj2] = t[ri2 .Aj2] ∧ ...∧ t [rin .Ajn] = tin [Ajn]

Corresponds to the retrieve clause of the Quel query.

• P(t1, t2, ..., tm)

The constraint on acceptable values for t1, t2, ..., tm imposed by
the where clause in the Quel query.

• Quel achieves the power of the relational algebra by means of
the any aggregate function and the use of insertion and
deletion on temporary relations.

Database Systems Concepts 5.51 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Datalog

• Basic Structure

• Syntax of Datalog Rules

• Semantics of Nonrecursive Datalog

• Safety

• Relational Operations in Datalog

• Recursion in Datalog

• The Power of Recursion

Database Systems Concepts 5.52 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Basic Structure

• Prolog-like logic-based language that allows recursive queries;
based on first-order logic.

• A Datalog program consists of a set of rules that define views.

• Example: define a view relation v1 containing account
numbers and balances for accounts at the Perryridge branch
with a balance of over $700.

v1(A, B) :– account(“Perryridge”, A, B), B > 700.

• Retrieve the balance of account number “A-217” in the view
relation v1.

? v1(“A-217”, B).

Database Systems Concepts 5.53 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Each rule defines a set of tuples that a view relation must
contain.

• The set of tuples in a view relation is then defined as the union
of all the sets of tuples defined by the rules for the view
relation.

• Example:

interest-rate(A, 0) :– account(N, A, B), B < 2000
interest-rate(A, 5) :– account(N, A, B), B >= 2000

• Define a view relation c that contains the names of all
customers who have a deposit but no loan at the bank:

c(N) :– depositor(N, A), not is-borrower(N).
is-borrower(N) :– borrower(N, L).

Database Systems Concepts 5.54 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Syntax of Datalog Rules

• A positive literal has the form

p(t1, t2, . . . , tn)

– p is the name of a relation with n attributes

– each ti is either a constant or variable

• A negative literal has the form

not p(t1, t2, . . . , tn)

Database Systems Concepts 5.55 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Syntax of Datalog Rules (Cont.)

• Rules are built out of literals and have the form:

p(t1, t2, . . ., tn) :– L1, L2, . . ., Ln.

– each of the Li ’s is a literal

– head – the literal p(t1, t2, . . ., tn)

– body – the rest of the literals

• A fact is a rule with an empty body, written in the form:

p(v1, v2, . . ., vn).

– indicates tuple (v1, v2, . . ., vn) is in relation p

Database Systems Concepts 5.56 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Semantics of a Rule

• A ground instantiation of a rule (or simply instantiation) is the
result of replacing each variable in the rule by some constant.

• Rule defining v1

v1(A, B) :– account(“Perryridge”, A, B), B > 700.

• An instantiation of above rule:

v1(“A-217”, 750) :– account(“Perryridge”, “A-217”, 750),
750 > 700.

• The body of rule instantiation R′ is satisfied in a set of facts
(database instance) I if

1. For each positive literal qi (vi,1, . . ., vi,ni) in the body of R′, I
contains the fact q(vi,1, . . ., vi,ni).

2. For each negative literal not qj (vj,1, . . ., vj,nj) in the body of
R′, I does not contain the fact qj (vj,1, . . ., vj,nj).

Database Systems Concepts 5.57 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Semantics of a Rule (Cont.)

• We define the set of facts that can be inferred from a given set
of facts I using rule R as:

infer(R, I) = {p(t1, . . ., tni) | there is an instantiation R′ of R
where p(t1, . . ., tni) is the head of R′, and
the body of R′ is satisfied in I }

• Given a set of rules R = {R1, R2, . . . , Rn}, we define

infer(R, I) = infer(R1, I) ∪ infer(R2, I) ∪ . . . ∪ infer(Rn, I)

Database Systems Concepts 5.58 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Layering of Rules

• Define the interest on each account in Perryridge.

interest(A, I) :– perryridge-account(A, B),
interest-rate(A, R), I = B ∗ R/ 100.

perryridge-account(A, B) :– account(“Perryridge”, A, B).
interest-rate(A, 0) :– account(N, A, B), B < 2000.
interest-rate(A, 5) :– account(N, A, B), B >= 2000.

• Layering of the view relations

interest−rate
perryridge−account

interestlayer 2

layer 1

database account

Database Systems Concepts 5.59 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Layering of Rules (Cont.)

Formally:

• A relation is in layer 1 if all relations used in the bodies of rules
defining it are stored in the database.

• A relation is in layer 2 if all relations used in the bodies of rules
defining it are either stored in the database, or are in layer 1.

• A relation p is in layer i + 1 if

– it is not in layers 1, 2, . . . , i

– all relations used in the bodies of rules defining p are either
stored in the database, or are in layers 1, 2, . . . , i

Database Systems Concepts 5.60 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Semantics of a Program

Let the layers in a given program be 1, 2, . . . , n. Let Ri denote the
set of all rules defining view relations in layer i.

• Define I0 = set of facts stored in the database.

• Define Ii+1 = Ii∪ infer(Ri+1, Ii)

• The set of facts in the view relations defined by the program
(also called the semantics of the program) is given by the set of
facts In corresponding to the highest layer n.

Note: Can instead define semantics using view expansion like in
relational algebra, but above definition is better for handling
extensions such as recursion.

Database Systems Concepts 5.61 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Safety

• It is possible to write rules that generate an infinite number of
answers.

gt(X , Y) :– X > Y
not-in-loan(B, L) :– not loan(B, L)

To avoid this possibility Datalog rules must satisfy the following
safety conditions.

– Every variable that appears in the head of the rule also
appears in a non-arithmetic positive literal in the body of the
rule.

– Every variable appearing in a negative literal in the body of
the rule also appears in some positive literal in the body of
the rule.

Database Systems Concepts 5.62 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Relational Operations in Datalog

• Project out attribute account-name from account.

query(A) :– account(N, A, B).

• Cartesian product of relations r1 and r2.

query(X1, X2, . . ., Xn, Y1, Y2, . . ., Ym) :–
r1(X1, X2, . . ., Xn), r2(Y1, Y2, . . ., Ym).

• Union of relations r1 and r2.

query (X1, X2, . . ., Xn) :– r1(X1, X2, . . ., Xn).
query (X1, X2, . . ., Xn) :– r2(X1, X2, . . ., Xn).

• Set difference of r1 and r2.

query (X1, X2, . . ., Xn) :– r1(X1, X2, . . ., Xn),
not r2(X1, X2, . . ., Xn).

Database Systems Concepts 5.63 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Recursion in Datalog

• Create a view relation empl that contains every tuple (X, Y)
such that X is directly or indirectly managed by Y .

empl(X , Y) :– manager(X , Y).
empl(X , Y) :– manager(X , Z), empl(Z , Y).

• Find the direct and indirect employees of Jones.

? empl(X , “Jones”).

manager

employee-name manager-name
Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger
Rensal Klinger

Database Systems Concepts 5.64 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Semantics of Recursion in Datalog

• The view relations of a recursive program containing a set of
rules R are defined to contain exactly the set of facts I
computed by the iterative procedure Datalog-Fixpoint

procedure Datalog-Fixpoint
I = set of facts in the database
repeat

Old I = I
I = I ∪ infer(R, I)

until I = Old I

• At the end of the procedure, infer(R, I) = I

• I is called a fixpoint of the program.

• Datalog-Fixpoint computes only true facts so long as no rule in
the program has a negative literal.

Database Systems Concepts 5.65 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Power of Recursion

• Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without
recursion or iteration.

• A view V is said to be monotonic if given any two sets of facts
I1 and I2 such that I1 ⊆ I2, EV (I1) ⊆ EV (I2), where EV is the
expression used to define V .

• Procedure Datalog-Fixpoint is sound provided the function
infer is monotonic.

• Relational algebra views defined using only the operators:
Π, σ,×,1,∪,∩ and ρ are monotonic. Views using − are not
monotonic.

Database Systems Concepts 5.66 Silberschatz, Korth and Sudarshan c©1997

	Query-by-Example (QBE)
	QBE --- Basic Structure
	Skeleton Tables
	Skeleton Tables (Cont.)
	Queries on One Relation
	Queries on One Relation (Cont.)
	Queries on One Relation (Cont.)
	Queries on Several Relations
	Queries on Several Relations (Cont.)
	Queries on Several Relations (Cont.)
	Queries on Several Relations
	 The Condition Box
	 The Result Relation
	The Result Relation (Cont.)
	 Ordering the Display of Tuples
	 Aggregate Operations
	Aggregate Operations (Cont.)
	Query Examples
	Query Example
	Query Example (Cont.)
	Modification of the Database -- Deletion
	Deletion Query Examples
	Deletion Query Examples (Cont.)
	Modification of the Database -- Insertion
	Modification of the Database -- Insertion (Cont.)
	Modification of the Database -- Updates
	Quel
	Quel --- Basic Structure
	Quel Query Structure
	Quel Query Structure (Cont.)
	 Simple Queries
	Query Over Several Relations
	Tuple Variables
	Tuple Variables (Cont.)
	Aggregate Functions
	Aggregate Functions (Cont.)
	Example Queries
	Example Queries
	Example Query
	Example Query
	Modification of the Database -- Deletion
	Deletion Query Examples
	Modification of the Database -- Insertion
	Insertion Query Example
	Modification of the Database -- Updates
	Set Operations
	Example Queries
	Example Queries
	Quel and the Tuple Relational Calculus
	Quel and TRC (Cont.)
	Datalog
	Basic Structure
	Example Queries
	Syntax of Datalog Rules
	Syntax of Datalog Rules (Cont.)
	Semantics of a Rule
	Semantics of a Rule (Cont.)
	Layering of Rules
	Layering of Rules (Cont.)
	Semantics of a Program
	Safety
	Relational Operations in Datalog
	Recursion in Datalog
	Semantics of Recursion in Datalog
	The Power of Recursion

