Chapter 3: Relational Model

- Structure of Relational Databases
- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus
- Extended Relational-Algebra-Operations
- Modification of the Database
- Views

Basic Structure

- Given sets $A_{1}, A_{2}, \ldots, A_{n}$ a relation r is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$
Thus a relation is a set of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i} \in A_{i}$
- Example: If

$$
\begin{aligned}
& \text { customer-name }=\{\text { Jones, Smith, Curry, Lindsay }\} \\
& \text { customer-street }=\{\text { Main, North, Park }\} \\
& \text { customer-city }=\{\text { Harrison, Rye, Pittsfield }\}
\end{aligned}
$$

Then $r=\{($ Jones, Main, Harrison), (Smith, North, Rye), (Curry,
North, Rye), (Lindsay, Park, Pittsfield) $\}$ is a relation over

$$
\text { customer-name } \times \text { customer-street } \times \text { customer-city }
$$

Relation Schema

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema

Customer-schema $=$ (customer-name, customer-street, customer-city)

- $r(R)$ is a relation on the relation schema R
customer (Customer-schema)

Relation Instance

- The current values (relation instance) of a relation are specified by a table.
- An element t of r is a tuple; represented by a row in a table.

customer-name	customer-street	customer-city
Jones	Main	Harrison
Smith	North	Rye
Curry	North	Rye
Lindsay	Park	Pittsfield
customer		

Keys

- Let $K \subseteq R$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation $r(R)$. By "possible r " we mean a relation r that could exist in the enterprise we are modeling.
Example: \{customer-name, customer-street\} and \{customer-name\} are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a candidate key if K is minimal

Example: \{customer-name\} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining Keys from E-R Sets

- Strong entity set. The primary key of the entity set becomes the primary key of the relation.
- Weak entity set. The primary key of the relation consists of the union of the primary key of the strong entity set and the discriminator of the weak entity set.
- Relationship set. The union of the primary keys of the related entity sets becomes a super key of the relation.
For binary many-to-many relationship sets, above super key is also the primary key.
For binary many-to-one relationship sets, the primary key of the "many" entity set becomes the relation's primary key.
For one-to-one relationship sets, the relation's primary key can be that of either entity set.

Query Languages

- Language in which user requests information from the database.
- Categories of languages:
- Procedural
- Non-procedural
- "Pure" languages:
- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators
- select
- project
- union
- set difference
- Cartesian product
- rename
- The operators take two or more relations as inputs and give a new relation as a result.

Select Operation

- Notation: $\sigma_{P}(r)$
- Defined as:

$$
\sigma_{P}(r)=\{t \mid t \in r \text { and } P(t)\}
$$

Where P is a formula in propositional calculus, dealing with terms of the form:

$<$ attribute $>$	$=\quad$ attribute $>$ or $<$ constant $>$
	\neq
	$>$
	\geq
	$<$
	\leq

"connected by": \wedge (and), $\vee($ or $), \neg($ not $)$

Select Operation - Example

- Relation r :

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B} \wedge D>5(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Project Operation

- Notation:

$$
\Pi_{A_{1}, A_{2}, \ldots, A_{k}}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets

Project Operation - Example

- Relation r :

A	B	C
α	10	1
α	20	1
β	30	1
β	40	2

- $\Pi_{A, C}(r)$

A	C			
α	1			
-	+			
β	1			
β	2	$=$	A	C
:---:	:---:			
α	1			
β	2			

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid,

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of r deals with the same type of values as does the 2nd column of s)

Union Operation - Example

- Relations r,s:

A	B
α	1
α	2
β	1
r	

A	B
α	2
β	3
s	

- r $\cup s$

A	B
α	1
α	2
β	1
β	3

Set Difference Operation

- Notation: r - s
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.
- r and s must have the same arity
- attribute domains of r and s must be compatible

Set Difference Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1
r	

A	B
α	2
β	3
S	

- r-s

A	B
α	1
β	1

Cartesian-Product Operation

- Notation: $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\emptyset)$.
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Cartesian-Product Operation - Example

- Relations r, s :

A	B
α	1
β	2
r	

C	D	E	
α	10	+	
β	10	+	
β	20	-	
γ	10	-	
S			

- $r \times s$

A	B	C	D	E
α	1	α	10	+
α	1	β	10	+
α	1	β	20	-
α	1	γ	10	-
β	2	α	10	+
β	2	β	10	+
β	2	β	20	-
β	2	γ	10	-

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$
- $r \times s$
- Notation: $r \bowtie s$
- Let r and s be relations on schemas R and S respectively. The result is a relation on schema $R \cup S$ which is obtained by considering each pair of tuples t_{r} from r and t_{s} from s.
- If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, a tuple t is added to the result, where
* t has the same value as t_{r} on r
* t has the same value as t_{s} on s

Composition of Operations (Cont.)

Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

- Result schema $=(A, B, C, D, E)$
- $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, S . E}\left(\sigma_{r . B=s . B \wedge r . D=s . D}(r \times s)\right)
$$

Natural Join Operation - Example

- Relations r, s :

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
r			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	ϵ
S		

- $r \bowtie s$

\boldsymbol{A}	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Division Operation

$$
r \div s
$$

- Suited to queries that include the phrase "for all."
- Let r and s be relations on schemas R and S respectively, where
$-R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$
$-S=\left(B_{1}, \ldots, B_{n}\right)$
The result of $r \div s$ is a relation on schema

$$
R-S=\left(A_{1}, \ldots, A_{m}\right)
$$

$$
r \div s=\left\{t \mid t \in \Pi_{R-s}(r) \wedge \forall u \in s(t u \in r)\right\}
$$

Division Operation (Cont.)

- Property
- Let $q=r \div s$
- Then q is the largest relation satisfying: $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let $r(R)$ and $s(S)$ be relations, and let $S \subseteq R$

$$
r \div s=\Pi_{R-S}(r)-\Pi_{R-S}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)
$$

To see why:

- $\Pi_{R-s, s}(r)$ simply reorders attributes of r
- $\Pi_{R-s}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, s}(r)\right)$ gives those tuples t in $\Pi_{R-s}(r)$ such that for some tuple $u \in s, t u \notin r$.

Division Operation - Example

- Relations r, s :

A	B
α	1
α	2
α	3
β	1
γ	1
δ	1
δ	3
δ	4
δ	6
ϵ	1
ϵ	2

B
1
2
S

- $r \div s$

A
α
ϵ

Another Division Example

- Relations r, s :

A	B	C	D	E
α	a	α	a	1
α	a	γ	a	1
α	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	a	β	b	1
r				

D	E
a	1
b	1
S	

- $r \div s$

A	B	C
α	a	γ
γ	a	γ

Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries; write query as a sequential program consisting of a series of assignments followed by an expression whose value is displayed as the result of the query.
- Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$
\begin{aligned}
& \text { temp } 1 \leftarrow \Pi_{R-S}(r) \\
& \text { temp } 2 \leftarrow \Pi_{R-S}\left((t e m p 1 \times s)-\Pi_{R-S, S}(r)\right) \\
& \text { result }=\text { temp } 1-\text { temp } 2
\end{aligned}
$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.
- May use variable in subsequent expressions.

Example Queries

- Find all customers who have an account from at least the "Downtown" and "Uptown" branches.
- Query 1

$$
\begin{gathered}
\Pi_{C N}\left(\sigma_{B N}=\text { "Downtown" }(\text { depositor } \bowtie \text { account })\right) \cap \\
\Pi_{C N}\left(\sigma_{B N}=\text { "Uptown" }(\text { depositor } \bowtie \text { account })\right)
\end{gathered}
$$

where $C N$ denotes customer-name and $B N$ denotes branch-name.

- Query 2

$$
\begin{aligned}
& \Pi_{\text {customer-name, branch-name }}(\text { depositor } \bowtie \text { account }) \\
& \div \rho_{\text {temp(branch-name }}(\{\text { ("Downtown"), ("Uptown") }\})
\end{aligned}
$$

Example Queries

- Find all customers who have an account at all branches located in Brooklyn.

$$
\begin{gathered}
\Pi_{\text {customer-name, branch-name }}(\text { depositor } \bowtie \text { account }) \\
\div \Pi_{\text {branch-name }}\left(\sigma_{\text {branch-city }} \text { "Brooklyn" }(\text { branch })\right)
\end{gathered}
$$

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

$$
\{t \mid P(t)\}
$$

- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable; $t[A]$ denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$)
3. Set of connectives: and (\wedge), or (\vee), not (\neg)
4. Implication $(\Rightarrow): x \Rightarrow y$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple t in relation r such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Banking Example

branch (branch-name, branch-city, assets)
customer (customer-name, customer-street, customer-city)
account (branch-name, account-number, balance)
loan (branch-name, loan-number, amount)
depositor (customer-name, account-number)
borrower (customer-name, loan-number)

Example Queries

- Find the branch-name, loan-number, and amount for loans of over \$1200

$$
\{t \mid t \in \text { loan } \wedge t[\text { amount }]>1200\}
$$

- Find the loan number for each loan of an amount greater than $\$ 1200$

$$
\begin{gathered}
\{t \mid \exists s \in \operatorname{loan}(t[\text { loan-number }]=s[\text { loan-number }] \\
\wedge s[\text { amount }]>1200)\}
\end{gathered}
$$

Notice that a relation on schema [customer-name] is implicitly defined by the query

Example Queries

- Find the names of all customers having a loan, an account, or both at the bank

```
{t | \existss \in borrower(t[customer-name] = s[customer-name])
    \vee\existsu\in depositor(t[customer-name] = u[customer-name])}
```

- Find the names of all customers who have a loan and an account at the bank.

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower }(t[\text { customer-name }]=s[\text { customer-name }]) \\
& \wedge \exists u \in \text { depositor }(t[\text { customer-name }]=u[\text { customer-name }])\}
\end{aligned}
$$

Example Queries

- Find the names of all customers having a loan at the Perryridge branch
$\{t \mid \exists s \in$ borrower(t[customer-name] $=s$ [customer-name]
$\wedge \exists u \in$ loan(u[branch-name] = "Perryridge"
$\wedge u[$ loan-number $]=s[/ o a n-n u m b e r]))\}$
- Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank
$\{t \mid \exists s \in$ borrower(t[customer-name] $=s$ [customer-name]
$\wedge \exists u \in$ loan(u[branch-name] = "Perryridge"
$\wedge u[$ loan-number] $=s[$ loan-number] $)$
$\wedge \nexists v \in$ depositor (v[customer-name] $=t[$ customer-name $]\}$

Example Queries

- Find the names of all customers having a loan from the Perryridge branch and the cities they live in
$\{t \mid \exists s \in \operatorname{loan}$ (s[branch-name] = "Perryridge"
$\wedge \exists u \in$ borrower (u[loan-number] =s[loan-number]
$\wedge t[$ customer-name $]=u[$ customer-name $]$
$\wedge \exists v \in$ customer (u[customer-name] $=v$ [customer-name]
$\wedge t[$ customer-city] $=v[$ customer-city]) $))\}$

Example Queries

- Find the names of all customers who have an account at all branches located in Brooklyn:
$\{t \mid \forall s \in \operatorname{branch}$ (s[branch-city] = "Brooklyn" \Rightarrow $\exists u \in$ account (s[branch-name] = u[branch-name] $\wedge \exists s \in$ depositor (t[customer-name] $=s$ [customer-name] $\wedge s[$ account-number $]=u[$ account-number $])))\}$

Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{t \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus.
- Each query is an expression of the form:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
- P represents a formula similar to that of the predicate calculus

Example Queries

- Find the branch-name, loan-number, and amount for loans of over \$1200:

$$
\{<b, I, a\rangle|<b, I, a\rangle \in \operatorname{loan} \wedge a>1200\}
$$

- Find the names of all customers who have a loan of over $\$ 1200$:

$$
\begin{gathered}
\{<c>\mid \exists b, I, a(<c, l>\in \text { borrower } \wedge<b, l, a>\in \text { loan } \\
\wedge a>1200)\}
\end{gathered}
$$

- Find the names of all customers who have a loan from the Perryridge branch and the loan amount:

$$
\begin{aligned}
\{\langle c, a\rangle & \mid \exists I(<c, I\rangle \in \text { borrower } \\
& \wedge \exists b(<b, I, a\rangle \in \text { loan } \wedge b=\text { "Perryridge") })\}
\end{aligned}
$$

Example Queries

- Find the names of all customers having a loan, an account, or both at the Perryridge branch:
$\{\langle c\rangle \mid \exists I(\langle c, I\rangle \in$ borrower

$$
\begin{aligned}
& \wedge \exists b, a(<b, I, a>\in \text { Ioan } \wedge b=\text { "Perryridge") } \\
& \vee \exists a(<c, a>\in \text { depositor } \\
& \wedge \exists b, n(<b, a, n>\in \text { account } \wedge b=\text { "Perryridge") })\}
\end{aligned}
$$

- Find the names of all customers who have an account at all branches located in Brooklyn:

$$
\begin{aligned}
\{\langle c\rangle \mid & \forall x, y, z(<x, y, z>\in \text { branch } \wedge y=\text { "Brooklyn" }) \Rightarrow \\
& \exists a, b(<x, a, b>\in \text { account } \wedge\langle c, a\rangle \in \text { depositor })\}
\end{aligned}
$$

Safety of Expressions

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from $\operatorname{dom}(P)$ (that is, the values appear either in P or in a tuple of a relation mentioned in P).
2. For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value x in $\operatorname{dom}\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall x\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values x from $\operatorname{dom}\left(P_{1}\right)$.

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functions

Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\Pi_{F_{1}, F_{2}, \ldots, F_{n}}(E)
$$

- E is any relational-algebra expression
- Each of $F_{1}, F_{2}, \ldots, F_{n}$ are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit-info(customer-name, limit, credit-balance), find how much more each person can spend:

$$
\Pi_{\text {customer-name, limit - credit-balance }} \text { (credit-info) }
$$

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Uses null values:
- null signifies that the value is unknown or does not exist.
- All comparisons involving null are false by definition.

Outer Join - Example

- Relation loan

branch-name	loan-number	amount
Downtown	L-170	3000
Redwood	L-230	4000
Perryridge	L-260	1700

- Relation borrower

customer-name	loan-number
Jones	$\mathrm{L}-170$
Smith	$\mathrm{L}-230$
Hayes	$\mathrm{L}-155$

Outer Join - Example

- Ioan \bowtie Borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith

- Ioan $\exists \rtimes$ borrower

branch-name	loan-number	amount	customer-name	loan-number
Downtown	L-170	3000	Jones	$\mathrm{L}-170$
Redwood	L-230	4000	Smith	L-230
Perryridge	L-260	1700	null	null

Outer Join - Example

- loan $\ltimes \subset$ Borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
null	L-155	null	Hayes

- loan $ニ \wedge \sqsubset$ borrower

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

Aggregate Functions

- Aggregation operator \mathcal{G} takes a collection of values and returns a single value as a result.
avg: average value
min: minimum value max:maximum value sum: sum of values count: number of values

$$
G_{1}, G_{2}, \ldots, G_{n} \mathcal{G}_{F_{1}} A_{1}, F_{2} A_{2}, \ldots, F_{m} A_{m}(E)
$$

- E is any relational-algebra expression
- $G_{1}, G_{2}, \ldots, G_{n}$ is a list of attributes on which to group
- F_{i} is an aggregate function
- A_{i} is an attribute name

Aggregate Function - Example

- Relation r :

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

- $\operatorname{sum}_{C}(r)$

sum- - C
27

Aggregate Function - Example

- Relation account grouped by branch-name:

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

- branch-name $\mathcal{G}_{\text {sum balance }}($ account $)$

branch-name	sum-balance
Perryridge	1300
Brighton	750
Redwood	700

Modification of the Database

- The content of the database may be modified using the following operations:
- Deletion
- Insertion
- Updating
- All these operations are expressed using the assignment operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes.
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where r is a relation and E is a relational algebra query.

Deletion Examples

- Delete all account records in the Perryridge branch.

$$
\begin{aligned}
& \text { account } \leftarrow \\
& \qquad \text { account }-\sigma_{\text {branch-name }=\text { "Perryridge" }}(\text { account })
\end{aligned}
$$

- Delete all loan records with amount in the range 0 to 50 .

$$
\text { Ioan } \leftarrow \text { loan }-\sigma_{\text {amount }} \geq 0 \text { and amount } \leq 50 \text { (loan) }
$$

- Delete all accounts at branches located in Needham.

$$
\begin{aligned}
& r_{1} \leftarrow \sigma_{\text {branch-city }=\text { "Needham" }}(\text { account } \bowtie \text { branch }) \\
& r_{2} \leftarrow \Pi_{\text {branch-name, account-number, balance }}\left(r_{1}\right) \\
& r_{3} \leftarrow \Pi_{\text {customer-name, account-number }}\left(r_{2} \bowtie \text { depositor }\right) \\
& \text { account } \leftarrow \text { account }-r_{2} \\
& \text { depositor } \leftarrow \text { depositor }-r_{3}
\end{aligned}
$$

Insertion

- To insert data into a relation, we either:
- specify a tuple to be inserted
- write a query whose result is a set of tuples to be inserted
- In relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where r is a relation and E is a relational algebra expression.

- The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Insertion Examples

- Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

$$
\begin{aligned}
& \text { account } \leftarrow \text { account } \cup\{(\text { "Perryridge", A-973, 1200) }\} \\
& \text { depositor } \leftarrow \text { depositor } \cup\{\text { ("Smith", A-973) }\}
\end{aligned}
$$

- Provide as a gift for all loan customers in the Perryridge branch, a $\$ 200$ savings account. Let the loan number serve as the account number for the new savings account.

$$
\begin{aligned}
& r_{1} \leftarrow\left(\sigma_{\text {branch-name }=\text { "Perryridge" }}(\text { borrower } \bowtie \text { loan })\right) \\
& \text { account } \leftarrow \text { account } \cup \Pi_{\text {branheh-name, loan-number,200 }}\left(r_{1}\right) \\
& \text { depositor } \leftarrow \text { depositor } \cup \Pi_{\text {customer-name, loan-number }}\left(r_{1}\right)
\end{aligned}
$$

Updating

- A mechanism to change a value in a tuple without changing all values in the tuple
- Use the generalized projection operator to do this task

$$
r \leftarrow \Pi_{F_{1}, F_{2}, \ldots, F_{n}}(r)
$$

- Each F_{i} is either the i th attribute of r, if the i th attribute is not updated, or, if the attribute is to be updated
- F_{i} is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Update Examples

- Make interest payments by increasing all balances by 5 percent.

$$
\text { account } \leftarrow \Pi_{B N, A N, B A L} \leftarrow B A L * 1.05 \text { (account) }
$$

where $B A L, B N$ and $A N$ stand for balance, branch-name and account-number, respectively.

- Pay all accounts with balances over $\$ 10,000$ 6 percent interest and pay all others 5 percent.

$$
\begin{gathered}
\text { account } \leftarrow \Pi_{B N, A N, B A L} \leftarrow B A L * 1.06\left(\sigma_{B A L}>10000(\text { account })\right) \\
\cup \Pi_{B N, A N, B A L} \leftarrow B A L * 1.05\left(\sigma_{B A L} \leq 10000(\text { account })\right)
\end{gathered}
$$

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual relations stored in the database.)
- Consider a person who needs to know a customer's loan number but has no need to see the loan amount. This person should see a relation described, in the relational algebra, by

$$
\Pi_{\text {customer-name, loan-number }}(\text { borrower } \bowtie \text { loan })
$$

- Any relation that is not part of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

- A view is defined using the create view statement which has the form
create view vas <query expression> where <query expression> is any legal relational algebra query expression. The view name is represented by v.
- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query epression. Rather, a view definition causes the saving of an expression to be substituted into queries using the view.

View Examples

- Consider the view (named all-customer) consisting of branches and their customers.

create view all-customer as

$\Pi_{\text {branch-name, customer-name }}$ (depositor \bowtie account)
$\cup \Pi_{\text {branch-name, customer-name }}$ (borrower \bowtie loan)

- We can find all customers of the Perryridge branch by writing:

$$
\begin{aligned}
& \Pi_{\text {customer-name }} \\
& \quad\left(\sigma_{\text {branch-name }=\text { "Perryridge" }}(\text { all-customer })\right)
\end{aligned}
$$

Updates Through Views

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the loan relation except amount. The view given to the person, branch-loan, is defined as:

create view branch-loan as

$$
\Pi_{\text {branch-name, loan-number }} \text { (loan) }
$$

Since we allow a view name to appear wherever a relation name is allowed, the person may write:

$$
\text { branch-loan } \leftarrow \text { branch-loan } \cup\{(\text { "Perryridge", L-37) }\}
$$

Updates Through Views (Cont.)

- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.
- An insertion into loan requires a value for amount. The insertion can be dealt with by either
- rejecting the insertion and returning an error message to the user
- inserting a tuple ("Perryridge", L-37, null) into the loan relation

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v_{1} is said to depend directly on a view relation v_{2} if v_{2} is used in the expression defining v_{1}
- A view relation v_{1} is said to depend on view relation v_{2} if and only if there is a path in the dependency graph from v_{2} to v_{1}.
- A view relation v is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_{1} be defined by an expression e_{1} that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step: repeat

Find any view relation v_{i} in e_{1}
Replace the view relation v_{i} by the expression defining v_{i} until no more view relations are present in e_{1}

- As long as the view definitions are not recursive, this loop will terminate.

