
'
&

$
%

Chapter 3: Relational Model

• Structure of Relational Databases

• Relational Algebra

• Tuple Relational Calculus

• Domain Relational Calculus

• Extended Relational-Algebra-Operations

• Modification of the Database

• Views

Database Systems Concepts 3.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Basic Structure

• Given sets A1, A2, ..., An a relation r is a subset of
A1 × A2 × ... × An

Thus a relation is a set of n-tuples (a1, a2, ..., an) where
ai ∈ Ai

• Example: If

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = {(Jones, Main, Harrison), (Smith, North, Rye), (Curry,
North, Rye), (Lindsay, Park, Pittsfield)} is a relation over

customer-name × customer-street × customer-city

Database Systems Concepts 3.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Relation Schema

• A1, A2, ..., An are attributes

• R = (A1, A2, ..., An) is a relation schema

Customer-schema = (customer-name, customer-street,
customer-city)

• r (R) is a relation on the relation schema R

customer (Customer-schema)

Database Systems Concepts 3.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Relation Instance

• The current values (relation instance) of a relation are
specified by a table.

• An element t of r is a tuple; represented by a row in a table.

customer-name customer-street customer-city

Jones Main Harrison

Smith North Rye

Curry North Rye

Lindsay Park Pittsfield

customer

Database Systems Concepts 3.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Keys

• Let K ⊆ R

• K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R). By “possible r” we
mean a relation r that could exist in the enterprise we are
modeling.

Example: {customer-name, customer-street} and
{customer-name} are both superkeys of Customer, if no two
customers can possibly have the same name.

• K is a candidate key if K is minimal

Example: {customer-name} is a candidate key for Customer,
since it is a superkey (assuming no two customers can possibly
have the same name), and no subset of it is a superkey.

Database Systems Concepts 3.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Determining Keys from E-R Sets

• Strong entity set. The primary key of the entity set becomes
the primary key of the relation.

• Weak entity set. The primary key of the relation consists of
the union of the primary key of the strong entity set and the
discriminator of the weak entity set.

• Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.
For binary many-to-many relationship sets, above super key is
also the primary key.
For binary many-to-one relationship sets, the primary key of
the “many” entity set becomes the relation’s primary key.
For one-to-one relationship sets, the relation’s primary key can
be that of either entity set.

Database Systems Concepts 3.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Query Languages

• Language in which user requests information from the
database.

• Categories of languages:

– Procedural
– Non-procedural

• “Pure” languages:

– Relational Algebra
– Tuple Relational Calculus
– Domain Relational Calculus

• Pure languages form underlying basis of query languages that
people use.

Database Systems Concepts 3.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Relational Algebra

• Procedural language

• Six basic operators

– select

– project

– union

– set difference

– Cartesian product

– rename

• The operators take two or more relations as inputs and give a
new relation as a result.

Database Systems Concepts 3.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Select Operation

• Notation: σP(r)

• Defined as:
σP(r) = {t | t ∈ r and P(t)}

Where P is a formula in propositional calculus, dealing with
terms of the form:

<attribute> = <attribute> or <constant>

6=
>

≥
<

≤

“connected by”: ∧ (and), ∨ (or), ¬ (not)

Database Systems Concepts 3.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Select Operation – Example

• Relation r : A B C D

α α 1 7

α β 5 7

β β 12 3

β β 23 10

• σA = B ∧ D > 5 (r) A B C D

α α 1 7

β β 23 10

Database Systems Concepts 3.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Project Operation

• Notation:

ΠA1, A2, ..., Ak (r)

where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets

Database Systems Concepts 3.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Project Operation – Example

• Relation r : A B C

α 10 1

α 20 1

β 30 1

β 40 2

• ΠA, C (r) A C A C

α 1 α 1

α— 1— = β 1

β 1 β 2

β 2

Database Systems Concepts 3.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Union Operation

• Notation: r ∪ s

• Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}

• For r ∪ s to be valid,

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd
column of r deals with the same type of values as does the
2nd column of s)

Database Systems Concepts 3.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Union Operation – Example

• Relations r , s:
A B A B

α 1 α 2

α 2 β 3

β 1 s

r

• r ∪ s A B

α 1

α 2

β 1

β 3

Database Systems Concepts 3.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Set Difference Operation

• Notation: r − s

• Defined as:

r − s = {t | t ∈ r and t /∈ s}

• Set differences must be taken between compatible relations.

– r and s must have the same arity

– attribute domains of r and s must be compatible

Database Systems Concepts 3.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Set Difference Operation – Example

• Relations r , s:
A B A B

α 1 α 2

α 2 β 3

β 1 s

r

• r − s A B

α 1

β 1

Database Systems Concepts 3.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Cartesian-Product Operation

• Notation: r × s

• Defined as:

r × s = {t q | t ∈ r and q ∈ s}

• Assume that attributes of r (R) and s(S) are disjoint. (That is,
R ∩ S = ∅).
• If attributes of r (R) and s(S) are not disjoint, then renaming

must be used.

Database Systems Concepts 3.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Cartesian-Product Operation – Example

• Relations r , s: A B C D E
α 1 α 10 +
β 2 β 10 +

r β 20 −
γ 10 −

s

• r × s A B C D E
α 1 α 10 +
α 1 β 10 +
α 1 β 20 −
α 1 γ 10 −
β 2 α 10 +
β 2 β 10 +
β 2 β 20 −
β 2 γ 10 −

Database Systems Concepts 3.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Composition of Operations

• Can build expressions using multiple operations

• Example: σA=C(r × s)

• r × s

– Notation: r 1 s

– Let r and s be relations on schemas R and S respectively.
The result is a relation on schema R ∪ S which is obtained
by considering each pair of tuples tr from r and ts from s.

– If tr and ts have the same value on each of the attributes in
R ∩ S, a tuple t is added to the result, where

∗ t has the same value as tr on r
∗ t has the same value as ts on s

Database Systems Concepts 3.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Composition of Operations (Cont.)

Example:

R = (A, B, C, D)
S = (E, B, D)

• Result schema = (A, B, C, D, E)

• r 1 s is defined as:

Πr.A,r.B,r.C,r.D,s.E(σr.B=s.B ∧ r.D=s.D(r × s))

Database Systems Concepts 3.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Natural Join Operation – Example

• Relations r , s:

A B C D B D E
α 1 α a 1 a α
β 2 γ a 3 a β
γ 4 β b 1 a γ
α 1 γ a 2 b δ
δ 2 β b 3 b ε

r s

• r 1 s A B C D E
α 1 α a α
α 1 α a γ
α 1 γ a α
α 1 γ a γ
δ 2 β b δ

Database Systems Concepts 3.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Division Operation

r ÷ s

• Suited to queries that include the phrase “for all.”

• Let r and s be relations on schemas R and S respectively,
where

– R = (A1, ..., Am, B1, ..., Bn)

– S = (B1, ..., Bn)

The result of r ÷ s is a relation on schema
R − S = (A1, ..., Am)

r ÷ s = {t | t ∈ ΠR−S(r) ∧ ∀ u ∈ s (tu ∈ r)}

Database Systems Concepts 3.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Division Operation (Cont.)

• Property

– Let q = r ÷ s

– Then q is the largest relation satisfying: q × s ⊆ r

• Definition in terms of the basic algebra operation

Let r (R) and s(S) be relations, and let S ⊆ R

r ÷ s = ΠR−S (r) − ΠR−S ((ΠR−S (r) × s) − ΠR−S,S(r))

To see why:

– ΠR−S,S(r) simply reorders attributes of r

– ΠR−S((ΠR−S (r) × s) − ΠR−S,S(r)) gives those tuples t in
ΠR−S(r) such that for some tuple u ∈ s, tu 6∈ r .

Database Systems Concepts 3.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Division Operation – Example

• Relations r , s: A B B
α 1 1
α 2 2
α 3 s
β 1
γ 1
δ 1
δ 3
δ 4
δ 6
ε 1
ε 2

r

• r ÷ s A
α
ε

Database Systems Concepts 3.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Another Division Example

• Relations r , s:

A B C D E D E
α a α a 1 a 1
α a γ a 1 b 1
α a γ b 1 s
β a γ a 1
β a γ b 3
γ a γ a 1
γ a γ b 1
γ a β b 1

r

• r ÷ s A B C
α a γ
γ a γ

Database Systems Concepts 3.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Assignment Operation

• The assignment operation (←) provides a convenient way to
express complex queries; write query as a sequential program
consisting of a series of assignments followed by an
expression whose value is displayed as the result of the query.

• Assignment must always be made to a temporary relation
variable.

• Example: Write r ÷ s as

temp1 ← ΠR−S (r)
temp2 ← ΠR−S ((temp1 × s) − ΠR−S,S(r))
result = temp1 − temp2

– The result to the right of the← is assigned to the relation
variable on the left of the←.

– May use variable in subsequent expressions.

Database Systems Concepts 3.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find all customers who have an account from at least the
“Downtown” and “Uptown” branches.

– Query 1

ΠCN(σBN = “Downtown”(depositor 1 account)) ∩
ΠCN(σBN = “Uptown”(depositor 1 account))

where CN denotes customer-name and BN denotes
branch-name.

– Query 2

Πcustomer-name, branch-name (depositor 1 account)
÷ ρtemp(branch-name)({ (“Downtown”), (“Uptown”) })

Database Systems Concepts 3.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find all customers who have an account at all branches
located in Brooklyn.

Πcustomer-name, branch-name (depositor 1 account)
÷ Πbranch-name (σbranch-city = “Brooklyn” (branch))

Database Systems Concepts 3.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuple Relational Calculus

• A nonprocedural query language, where each query is of the
form

{t | P (t) }

• It is the set of all tuples t such that predicate P is true for t

• t is a tuple variable; t[A] denotes the value of tuple t on
attribute A

• t ∈ r denotes that tuple t is in relation r

• P is a formula similar to that of the predicate calculus

Database Systems Concepts 3.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., <, ≤, =, 6=, >, ≥)

3. Set of connectives: and (∧), or (∨), not (¬)

4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬ x ∨ y

5. Set of quantifiers:

• ∃ t ∈ r (Q(t)) ≡ “there exists” a tuple t in relation r
such that predicate Q(t) is true

• ∀ t ∈ r (Q(t)) ≡ Q is true “for all” tuples t
in relation r

Database Systems Concepts 3.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (branch-name, account-number, balance)

loan (branch-name, loan-number, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Database Systems Concepts 3.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the branch-name, loan-number, and amount for loans of
over $1200

{t | t ∈ loan ∧ t [amount] > 1200}

• Find the loan number for each loan of an amount greater than
$1200

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number]
∧ s[amount] > 1200)}

Notice that a relation on schema [customer-name] is
implicitly defined by the query

Database Systems Concepts 3.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers having a loan, an account, or
both at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∨∃u ∈ depositor(t[customer-name] = u[customer-name])}

• Find the names of all customers who have a loan and an
account at the bank.

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∧∃u ∈ depositor(t[customer-name] = u[customer-name])}

Database Systems Concepts 3.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers having a loan at the
Perryridge branch

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
∧ u[loan-number] = s[loan-number]))}

• Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
∧ u[loan-number] = s[loan-number])

∧ 6 ∃v ∈ depositor (v[customer-name] = t[customer-name]}

Database Systems Concepts 3.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers having a loan from the
Perryridge branch and the cities they live in

{t | ∃ s ∈ loan (s[branch-name] = “Perryridge”

∧ ∃ u ∈ borrower (u[loan-number] = s[loan-number]
∧ t [customer-name] = u[customer-name]

∧ ∃ v ∈ customer (u[customer-name] = v[customer-name]
∧ t [customer-city] = v[customer-city])))}

Database Systems Concepts 3.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers who have an account at all
branches located in Brooklyn:

{t | ∀ s ∈ branch (s[branch-city] = “Brooklyn” ⇒
∃ u ∈ account (s[branch-name] = u[branch-name]
∧ ∃ s ∈ depositor (t[customer-name] = s[customer-name]
∧ s[account-number] = u[account-number])))}

Database Systems Concepts 3.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Safety of Expressions

• It is possible to write tuple calculus expressions that generate
infinite relations.

• For example, {t | ¬ t ∈ r} results in an infinite relation if the
domain of any attribute of relation r is infinite

• To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

• An expression {t | P (t)} in the tuple relational calculus is safe
if every component of t appears in one of the relations, tuples,
or constants that appear in P

Database Systems Concepts 3.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Domain Relational Calculus

• A nonprocedural query language equivalent in power to the
tuple relational calculus.

• Each query is an expression of the form:

{< x1, x2, ..., xn > | P(x1, x2, ..., xn)}

– x1, x2, ..., xn represent domain variables

– P represents a formula similar to that of the predicate
calculus

Database Systems Concepts 3.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the branch-name, loan-number, and amount for loans of
over $1200:

{< b, l, a > | < b, l, a > ∈ loan ∧ a > 1200}

• Find the names of all customers who have a loan of over
$1200:

{< c > | ∃ b, l, a (< c, l > ∈ borrower∧ < b, l, a > ∈ loan
∧ a > 1200)}

• Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

{< c, a > | ∃ l (< c, l > ∈ borrower
∧ ∃ b (< b, l, a > ∈ loan ∧ b = “Perryridge”))}

Database Systems Concepts 3.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Queries

• Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{< c > | ∃ l (< c, l >∈ borrower
∧∃ b, a (< b, l, a >∈ loan ∧ b = “Perryridge”))
∨∃ a (< c, a >∈ depositor
∧∃ b, n (< b, a, n >∈ account ∧ b = “Perryridge”))}

• Find the names of all customers who have an account at all
branches located in Brooklyn:

{< c > | ∀ x, y, z (< x, y, z > ∈ branch ∧ y = “Brooklyn”)⇒
∃ a, b (< x, a, b >∈ account ∧ < c, a >∈ depositor)}

Database Systems Concepts 3.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Safety of Expressions

{< x1, x2, ..., xn > | P (x1, x2, ..., xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values
from dom(P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the
subformula is true if and only if there is a value x in dom(P1)
such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1(x)), the
subformula is true if and only if P1(x) is true for all values x
from dom(P1).

Database Systems Concepts 3.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Extended Relational-Algebra-Operations

• Generalized Projection

• Outer Join

• Aggregate Functions

Database Systems Concepts 3.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Generalized Projection

• Extends the projection operation by allowing arithmetic
functions to be used in the projection list.

ΠF1,F2,...,Fn (E)

• E is any relational-algebra expression

• Each of F1, F2, . . . , Fn are arithmetic expressions involving
constants and attributes in the schema of E.

• Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

Πcustomer-name, limit − credit-balance (credit-info)

Database Systems Concepts 3.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Outer Join

• An extension of the join operation that avoids loss of
information.

• Computes the join and then adds tuples from one relation that
do not match tuples in the other relation to the result of the join.

• Uses null values:

– null signifies that the value is unknown or does not exist.

– All comparisons involving null are false by definition.

Database Systems Concepts 3.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Outer Join – Example

• Relation loan

branch-name loan-number amount
Downtown L-170 3000
Redwood L-230 4000
Perryridge L-260 1700

• Relation borrower

customer-name loan-number
Jones L-170
Smith L-230
Hayes L-155

Database Systems Concepts 3.45 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Outer Join – Example

• loan 1 Borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith

• loan ––1 borrower

branch-name loan-number amount customer-name loan-number
Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 null null

Database Systems Concepts 3.46 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Outer Join – Example

• loan 1–– Borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
null L-155 null Hayes

• loan ––1–– borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
Perryridge L-260 1700 null
null L-155 null Hayes

Database Systems Concepts 3.47 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Functions

• Aggregation operator G takes a collection of values and returns
a single value as a result.

avg : average value
min : minimum value
max :maximum value
sum : sum of values
count : number of values

G1,G2,...,Gn G F1 A1, F2 A2,..., Fm Am (E)

– E is any relational-algebra expression

– G1, G2, . . . , Gn is a list of attributes on which to group

– Fi is an aggregate function

– Ai is an attribute name

Database Systems Concepts 3.48 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Function – Example

• Relation r : A B C

α α 7

α β 7

β β 3

β β 10

• sumC(r) sum-C

27

Database Systems Concepts 3.49 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Aggregate Function – Example

• Relation account grouped by branch-name:

branch-name account-number balance
Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 750
Brighton A-215 750
Redwood A-222 700

• branch-name G sum balance(account)

branch-name sum-balance
Perryridge 1300
Brighton 750
Redwood 700

Database Systems Concepts 3.50 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Modification of the Database

• The content of the database may be modified using the
following operations:

– Deletion

– Insertion

– Updating

• All these operations are expressed using the assignment
operator.

Database Systems Concepts 3.51 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deletion

• A delete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.

• Can delete only whole tuples; cannot delete values on only
particular attributes.

• A deletion is expressed in relational algebra by:

r ← r − E

where r is a relation and E is a relational algebra query.

Database Systems Concepts 3.52 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deletion Examples

• Delete all account records in the Perryridge branch.

account←
account − σbranch-name = “Perryridge” (account)

• Delete all loan records with amount in the range 0 to 50.

loan ← loan − σamount ≥ 0 and amount ≤ 50 (loan)

• Delete all accounts at branches located in Needham.

r1 ← σbranch-city = “Needham” (account 1 branch)
r2 ← Πbranch-name, account-number, balance (r1)
r3 ← Πcustomer-name, account-number (r2 1 depositor)
account ← account − r2

depositor ← depositor − r3

Database Systems Concepts 3.53 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Insertion

• To insert data into a relation, we either:

– specify a tuple to be inserted

– write a query whose result is a set of tuples to be inserted

• In relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.

• The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

Database Systems Concepts 3.54 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Insertion Examples

• Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account← account ∪ {(“Perryridge”, A-973, 1200)}
depositor← depositor ∪ {(“Smith”, A-973)}

• Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve as
the account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower 1 loan))
account← account ∪ Πbranch-name, loan-number,200 (r1)
depositor← depositor ∪ Πcustomer-name, loan-number (r1)

Database Systems Concepts 3.55 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Updating

• A mechanism to change a value in a tuple without changing all
values in the tuple

• Use the generalized projection operator to do this task

r ← ΠF1,F2,...,Fn (r)

– Each Fi is either the ith attribute of r , if the ith attribute is
not updated, or, if the attribute is to be updated

– Fi is an expression, involving only constants and the
attributes of r , which gives the new value for the attribute

Database Systems Concepts 3.56 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Update Examples

• Make interest payments by increasing all balances by 5
percent.

account ← ΠBN,AN,BAL ← BAL ∗1.05 (account)

where BAL, BN and AN stand for balance, branch-name
and account-number, respectively.

• Pay all accounts with balances over $10,000
6 percent interest and pay all others 5 percent.

account ← ΠBN,AN,BAL ← BAL ∗1.06 (σBAL > 10000 (account))
∪ ΠBN,AN,BAL ← BAL ∗1.05 (σBAL ≤ 10000 (account))

Database Systems Concepts 3.57 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Views

• In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the
database.)

• Consider a person who needs to know a customer’s loan
number but has no need to see the loan amount. This person
should see a relation described, in the relational algebra, by

Πcustomer-name, loan-number (borrower 1 loan)

• Any relation that is not part of the conceptual model but is
made visible to a user as a “virtual relation” is called a view.

Database Systems Concepts 3.58 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

View Definition

• A view is defined using the create view statement which has
the form

create view v as <query expression>

where <query expression> is any legal relational algebra
query expression. The view name is represented by v.

• Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

• View definition is not the same as creating a new relation by
evaluating the query epression. Rather, a view definition
causes the saving of an expression to be substituted into
queries using the view.

Database Systems Concepts 3.59 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

View Examples

• Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as
Πbranch-name, customer-name (depositor 1 account)
∪ Πbranch-name, customer-name (borrower 1 loan)

• We can find all customers of the Perryridge branch by writing:

Πcustomer-name

(σbranch-name = “Perryridge” (all-customer))

Database Systems Concepts 3.60 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Updates Through Views

• Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

• Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person,
branch-loan, is defined as:

create view branch-loan as
Πbranch-name, loan-number (loan)

Since we allow a view name to appear wherever a relation
name is allowed, the person may write:

branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}

Database Systems Concepts 3.61 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Updates Through Views (Cont.)

• The previous insertion must be represented by an insertion
into the actual relation loan from which the view branch-loan is
constructed.

• An insertion into loan requires a value for amount. The
insertion can be dealt with by either

– rejecting the insertion and returning an error message to
the user

– inserting a tuple (“Perryridge”, L-37, null) into the loan
relation

Database Systems Concepts 3.62 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Views Defined Using Other Views

• One view may be used in the expression defining another view

• A view relation v1 is said to depend directly on a view relation
v2 if v2 is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2 if and
only if there is a path in the dependency graph from v2 to v1.

• A view relation v is said to be recursive if it depends on itself.

Database Systems Concepts 3.63 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

View Expansion

• A way to define the meaning of views defined in terms of other
views.

• Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

• View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

• As long as the view definitions are not recursive, this loop will
terminate.

Database Systems Concepts 3.64 Silberschatz, Korth and Sudarshan c©1997

	Basic Structure
	Relation Schema
	Relation Instance
	Keys
	Determining Keys from E-R Sets
	Query Languages
	Relational Algebra
	Select Operation
	Select Operation -- Example
	Project Operation
	Project Operation -- Example
	Union Operation
	Union Operation -- Example
	Set Difference Operation
	Set Difference Operation -- Example
	Cartesian-Product Operation
	Cartesian-Product Operation -- Example
	Composition of Operations
	Composition of Operations (Cont.)
	Natural Join Operation -- Example
	Division Operation
	Division Operation (Cont.)
	Division Operation -- Example
	Another Division Example
	Assignment Operation
	Example Queries
	Example Queries
	Tuple Relational Calculus
	Predicate Calculus Formula
	Banking Example
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Example Queries
	Safety of Expressions
	Domain Relational Calculus
	Example Queries
	Example Queries
	Safety of Expressions
	Extended Relational-Algebra-Operations
	Generalized Projection
	Outer Join
	Outer Join -- Example
	Outer Join -- Example
	Outer Join -- Example
	Aggregate Functions
	Aggregate Function -- Example
	Aggregate Function -- Example
	Modification of the Database
	Deletion
	Deletion Examples
	Insertion
	Insertion Examples
	Updating
	Update Examples
	Views
	 View Definition
	View Examples
	Updates Through Views
	Updates Through Views (Cont.)
	Views Defined Using Other Views
	View Expansion

