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Chapter 3: Relational Model

• Structure of Relational Databases

• Relational Algebra

• Tuple Relational Calculus

• Domain Relational Calculus

• Extended Relational-Algebra-Operations

• Modification of the Database

• Views
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Basic Structure

• Given sets A1, A2, ..., An a relation r is a subset of
A1 × A2 × ... × An

Thus a relation is a set of n-tuples (a1, a2, ..., an) where
ai ∈ Ai

• Example: If

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = {(Jones, Main, Harrison), (Smith, North, Rye), (Curry,
North, Rye), (Lindsay, Park, Pittsfield)} is a relation over

customer-name × customer-street × customer-city
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Relation Schema

• A1, A2, ..., An are attributes

• R = (A1, A2, ..., An) is a relation schema

Customer-schema = (customer-name, customer-street,
customer-city)

• r (R) is a relation on the relation schema R

customer (Customer-schema)
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Relation Instance

• The current values (relation instance) of a relation are
specified by a table.

• An element t of r is a tuple; represented by a row in a table.

customer-name customer-street customer-city

Jones Main Harrison

Smith North Rye

Curry North Rye

Lindsay Park Pittsfield

customer
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Keys

• Let K ⊆ R

• K is a superkey of R if values for K are sufficient to identify a
unique tuple of each possible relation r(R). By “possible r” we
mean a relation r that could exist in the enterprise we are
modeling.

Example: {customer-name, customer-street} and
{customer-name} are both superkeys of Customer, if no two
customers can possibly have the same name.

• K is a candidate key if K is minimal

Example: {customer-name} is a candidate key for Customer,
since it is a superkey (assuming no two customers can possibly
have the same name), and no subset of it is a superkey.
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Determining Keys from E-R Sets

• Strong entity set. The primary key of the entity set becomes
the primary key of the relation.

• Weak entity set. The primary key of the relation consists of
the union of the primary key of the strong entity set and the
discriminator of the weak entity set.

• Relationship set. The union of the primary keys of the related
entity sets becomes a super key of the relation.
For binary many-to-many relationship sets, above super key is
also the primary key.
For binary many-to-one relationship sets, the primary key of
the “many” entity set becomes the relation’s primary key.
For one-to-one relationship sets, the relation’s primary key can
be that of either entity set.
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Query Languages

• Language in which user requests information from the
database.

• Categories of languages:

– Procedural
– Non-procedural

• “Pure” languages:

– Relational Algebra
– Tuple Relational Calculus
– Domain Relational Calculus

• Pure languages form underlying basis of query languages that
people use.
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Relational Algebra

• Procedural language

• Six basic operators

– select

– project

– union

– set difference

– Cartesian product

– rename

• The operators take two or more relations as inputs and give a
new relation as a result.
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Select Operation

• Notation: σP(r )

• Defined as:
σP(r ) = {t | t ∈ r and P(t)}

Where P is a formula in propositional calculus, dealing with
terms of the form:

<attribute> = <attribute> or <constant>

6=
>

≥
<

≤

“connected by”: ∧ (and ), ∨ (or ), ¬ (not )
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Select Operation – Example

• Relation r : A B C D

α α 1 7

α β 5 7

β β 12 3

β β 23 10

• σA = B ∧ D > 5 (r ) A B C D

α α 1 7

β β 23 10

Database Systems Concepts 3.10 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Project Operation

• Notation:

ΠA1, A2, ..., Ak (r )

where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets
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Project Operation – Example

• Relation r : A B C

α 10 1

α 20 1

β 30 1

β 40 2

• ΠA, C (r ) A C A C

α 1 α 1

α— 1— = β 1

β 1 β 2

β 2
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Union Operation

• Notation: r ∪ s

• Defined as:

r ∪ s = {t | t ∈ r or t ∈ s}

• For r ∪ s to be valid,

1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd
column of r deals with the same type of values as does the
2nd column of s)
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Union Operation – Example

• Relations r , s:
A B A B

α 1 α 2

α 2 β 3

β 1 s

r

• r ∪ s A B

α 1

α 2

β 1

β 3
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Set Difference Operation

• Notation: r − s

• Defined as:

r − s = {t | t ∈ r and t /∈ s}

• Set differences must be taken between compatible relations.

– r and s must have the same arity

– attribute domains of r and s must be compatible
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Set Difference Operation – Example

• Relations r , s:
A B A B

α 1 α 2

α 2 β 3

β 1 s

r

• r − s A B

α 1

β 1
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Cartesian-Product Operation

• Notation: r × s

• Defined as:

r × s = {t q | t ∈ r and q ∈ s}

• Assume that attributes of r (R) and s(S) are disjoint. (That is,
R ∩ S = ∅).
• If attributes of r (R) and s(S) are not disjoint, then renaming

must be used.
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Cartesian-Product Operation – Example

• Relations r , s: A B C D E
α 1 α 10 +
β 2 β 10 +

r β 20 −
γ 10 −

s

• r × s A B C D E
α 1 α 10 +
α 1 β 10 +
α 1 β 20 −
α 1 γ 10 −
β 2 α 10 +
β 2 β 10 +
β 2 β 20 −
β 2 γ 10 −
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Composition of Operations

• Can build expressions using multiple operations

• Example: σA=C(r × s)

• r × s

– Notation: r 1 s

– Let r and s be relations on schemas R and S respectively.
The result is a relation on schema R ∪ S which is obtained
by considering each pair of tuples tr from r and ts from s.

– If tr and ts have the same value on each of the attributes in
R ∩ S, a tuple t is added to the result, where

∗ t has the same value as tr on r
∗ t has the same value as ts on s
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Composition of Operations (Cont.)

Example:

R = (A, B, C, D)
S = (E, B, D)

• Result schema = (A, B, C, D, E)

• r 1 s is defined as:

Πr.A,r.B,r.C,r.D,s.E(σr.B=s.B ∧ r.D=s.D(r × s))
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Natural Join Operation – Example

• Relations r , s:

A B C D B D E
α 1 α a 1 a α
β 2 γ a 3 a β
γ 4 β b 1 a γ
α 1 γ a 2 b δ
δ 2 β b 3 b ε

r s

• r 1 s A B C D E
α 1 α a α
α 1 α a γ
α 1 γ a α
α 1 γ a γ
δ 2 β b δ
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Division Operation

r ÷ s

• Suited to queries that include the phrase “for all.”

• Let r and s be relations on schemas R and S respectively,
where

– R = (A1, ..., Am, B1, ..., Bn)

– S = (B1, ..., Bn)

The result of r ÷ s is a relation on schema
R − S = (A1, ..., Am)

r ÷ s = {t | t ∈ ΠR−S(r ) ∧ ∀ u ∈ s (tu ∈ r )}
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Division Operation (Cont.)

• Property

– Let q = r ÷ s

– Then q is the largest relation satisfying: q × s ⊆ r

• Definition in terms of the basic algebra operation

Let r (R) and s(S) be relations, and let S ⊆ R

r ÷ s = ΠR−S (r ) − ΠR−S ( (ΠR−S (r ) × s) − ΠR−S,S(r ))

To see why:

– ΠR−S,S(r ) simply reorders attributes of r

– ΠR−S((ΠR−S (r ) × s) − ΠR−S,S(r )) gives those tuples t in
ΠR−S(r ) such that for some tuple u ∈ s, tu 6∈ r .
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Division Operation – Example

• Relations r , s: A B B
α 1 1
α 2 2
α 3 s
β 1
γ 1
δ 1
δ 3
δ 4
δ 6
ε 1
ε 2

r

• r ÷ s A
α
ε
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Another Division Example

• Relations r , s:

A B C D E D E
α a α a 1 a 1
α a γ a 1 b 1
α a γ b 1 s
β a γ a 1
β a γ b 3
γ a γ a 1
γ a γ b 1
γ a β b 1

r

• r ÷ s A B C
α a γ
γ a γ
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Assignment Operation

• The assignment operation (←) provides a convenient way to
express complex queries; write query as a sequential program
consisting of a series of assignments followed by an
expression whose value is displayed as the result of the query.

• Assignment must always be made to a temporary relation
variable.

• Example: Write r ÷ s as

temp1 ← ΠR−S (r )
temp2 ← ΠR−S ((temp1 × s) − ΠR−S,S(r ))
result = temp1 − temp2

– The result to the right of the← is assigned to the relation
variable on the left of the←.

– May use variable in subsequent expressions.
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Example Queries

• Find all customers who have an account from at least the
“Downtown” and “Uptown” branches.

– Query 1

ΠCN(σBN = “Downtown”(depositor 1 account)) ∩
ΠCN(σBN = “Uptown”(depositor 1 account))

where CN denotes customer-name and BN denotes
branch-name.

– Query 2

Πcustomer-name, branch-name (depositor 1 account)
÷ ρtemp(branch-name)({ (“Downtown”), (“Uptown”) })
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Example Queries

• Find all customers who have an account at all branches
located in Brooklyn.

Πcustomer-name, branch-name (depositor 1 account)
÷ Πbranch-name (σbranch-city = “Brooklyn” (branch))
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Tuple Relational Calculus

• A nonprocedural query language, where each query is of the
form

{t | P (t) }

• It is the set of all tuples t such that predicate P is true for t

• t is a tuple variable; t[A] denotes the value of tuple t on
attribute A

• t ∈ r denotes that tuple t is in relation r

• P is a formula similar to that of the predicate calculus
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Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators: (e.g., <, ≤, =, 6=, >, ≥)

3. Set of connectives: and (∧), or (∨), not (¬)

4. Implication (⇒): x ⇒ y, if x if true, then y is true

x ⇒ y ≡ ¬ x ∨ y

5. Set of quantifiers:

• ∃ t ∈ r (Q(t)) ≡ “there exists” a tuple t in relation r
such that predicate Q(t) is true

• ∀ t ∈ r (Q(t)) ≡ Q is true “for all” tuples t
in relation r
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Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)

account (branch-name, account-number, balance)

loan (branch-name, loan-number, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)
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Example Queries

• Find the branch-name, loan-number, and amount for loans of
over $1200

{t | t ∈ loan ∧ t [amount] > 1200}

• Find the loan number for each loan of an amount greater than
$1200

{t | ∃ s ∈ loan (t[loan-number] = s[loan-number]
∧ s[amount] > 1200)}

Notice that a relation on schema [customer-name] is
implicitly defined by the query
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Example Queries

• Find the names of all customers having a loan, an account, or
both at the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∨∃u ∈ depositor(t[customer-name] = u[customer-name])}

• Find the names of all customers who have a loan and an
account at the bank.

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name])
∧∃u ∈ depositor(t[customer-name] = u[customer-name])}
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Example Queries

• Find the names of all customers having a loan at the
Perryridge branch

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
∧ u[loan-number] = s[loan-number]))}

• Find the names of all customers who have a loan at the
Perryridge branch, but no account at any branch of the bank

{t | ∃s ∈ borrower(t[customer-name] = s[customer-name]
∧ ∃u ∈ loan(u[branch-name] = “Perryridge”
∧ u[loan-number] = s[loan-number])

∧ 6 ∃v ∈ depositor (v[customer-name] = t[customer-name]}
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Example Queries

• Find the names of all customers having a loan from the
Perryridge branch and the cities they live in

{t | ∃ s ∈ loan (s[branch-name] = “Perryridge”

∧ ∃ u ∈ borrower (u[loan-number] = s[loan-number]
∧ t [customer-name] = u[customer-name]

∧ ∃ v ∈ customer (u[customer-name] = v[customer-name]
∧ t [customer-city] = v[customer-city])))}
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Example Queries

• Find the names of all customers who have an account at all
branches located in Brooklyn:

{t | ∀ s ∈ branch (s[branch-city] = “Brooklyn” ⇒
∃ u ∈ account (s[branch-name] = u[branch-name]
∧ ∃ s ∈ depositor (t[customer-name] = s[customer-name]
∧ s[account-number] = u[account-number])))}
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Safety of Expressions

• It is possible to write tuple calculus expressions that generate
infinite relations.

• For example, {t | ¬ t ∈ r} results in an infinite relation if the
domain of any attribute of relation r is infinite

• To guard against the problem, we restrict the set of allowable
expressions to safe expressions.

• An expression {t | P (t)} in the tuple relational calculus is safe
if every component of t appears in one of the relations, tuples,
or constants that appear in P
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Domain Relational Calculus

• A nonprocedural query language equivalent in power to the
tuple relational calculus.

• Each query is an expression of the form:

{< x1, x2, ..., xn > | P(x1, x2, ..., xn)}

– x1, x2, ..., xn represent domain variables

– P represents a formula similar to that of the predicate
calculus
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Example Queries

• Find the branch-name, loan-number, and amount for loans of
over $1200:

{< b, l, a > | < b, l, a > ∈ loan ∧ a > 1200}

• Find the names of all customers who have a loan of over
$1200:

{< c > | ∃ b, l, a (< c, l > ∈ borrower∧ < b, l, a > ∈ loan
∧ a > 1200)}

• Find the names of all customers who have a loan from the
Perryridge branch and the loan amount:

{< c, a > | ∃ l (< c, l > ∈ borrower
∧ ∃ b (< b, l, a > ∈ loan ∧ b = “Perryridge”))}
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Example Queries

• Find the names of all customers having a loan, an account, or
both at the Perryridge branch:

{< c > | ∃ l (< c, l >∈ borrower
∧∃ b, a (< b, l, a >∈ loan ∧ b = “Perryridge”))
∨∃ a (< c, a >∈ depositor
∧∃ b, n (< b, a, n >∈ account ∧ b = “Perryridge”))}

• Find the names of all customers who have an account at all
branches located in Brooklyn:

{< c > | ∀ x, y, z (< x, y, z > ∈ branch ∧ y = “Brooklyn”)⇒
∃ a, b (< x, a, b >∈ account ∧ < c, a >∈ depositor)}
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Safety of Expressions

{< x1, x2, ..., xn > | P (x1, x2, ..., xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values
from dom(P) (that is, the values appear either in P or in a tuple
of a relation mentioned in P).

2. For every “there exists” subformula of the form ∃ x (P1(x)), the
subformula is true if and only if there is a value x in dom(P1)
such that P1(x) is true.

3. For every “for all” subformula of the form ∀x (P1(x)), the
subformula is true if and only if P1(x) is true for all values x
from dom(P1).
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Extended Relational-Algebra-Operations

• Generalized Projection

• Outer Join

• Aggregate Functions
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Generalized Projection

• Extends the projection operation by allowing arithmetic
functions to be used in the projection list.

ΠF1,F2,...,Fn (E)

• E is any relational-algebra expression

• Each of F1, F2, . . . , Fn are arithmetic expressions involving
constants and attributes in the schema of E.

• Given relation credit-info(customer-name, limit, credit-balance),
find how much more each person can spend:

Πcustomer-name, limit − credit-balance (credit-info)
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Outer Join

• An extension of the join operation that avoids loss of
information.

• Computes the join and then adds tuples from one relation that
do not match tuples in the other relation to the result of the join.

• Uses null values:

– null signifies that the value is unknown or does not exist.

– All comparisons involving null are false by definition.
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Outer Join – Example

• Relation loan

branch-name loan-number amount
Downtown L-170 3000
Redwood L-230 4000
Perryridge L-260 1700

• Relation borrower

customer-name loan-number
Jones L-170
Smith L-230
Hayes L-155
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Outer Join – Example

• loan 1 Borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith

• loan ––1 borrower

branch-name loan-number amount customer-name loan-number
Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 null null
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Outer Join – Example

• loan 1–– Borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
null L-155 null Hayes

• loan ––1–– borrower

branch-name loan-number amount customer-name
Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
Perryridge L-260 1700 null
null L-155 null Hayes
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Aggregate Functions

• Aggregation operator G takes a collection of values and returns
a single value as a result.

avg : average value
min : minimum value
max :maximum value
sum : sum of values
count : number of values

G1,G2,...,Gn G F1 A1, F2 A2,..., Fm Am (E)

– E is any relational-algebra expression

– G1, G2, . . . , Gn is a list of attributes on which to group

– Fi is an aggregate function

– Ai is an attribute name
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Aggregate Function – Example

• Relation r : A B C

α α 7

α β 7

β β 3

β β 10

• sumC(r ) sum-C

27
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Aggregate Function – Example

• Relation account grouped by branch-name:

branch-name account-number balance
Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 750
Brighton A-215 750
Redwood A-222 700

• branch-name G sum balance(account)

branch-name sum-balance
Perryridge 1300
Brighton 750
Redwood 700
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Modification of the Database

• The content of the database may be modified using the
following operations:

– Deletion

– Insertion

– Updating

• All these operations are expressed using the assignment
operator.
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Deletion

• A delete request is expressed similarly to a query, except
instead of displaying tuples to the user, the selected tuples are
removed from the database.

• Can delete only whole tuples; cannot delete values on only
particular attributes.

• A deletion is expressed in relational algebra by:

r ← r − E

where r is a relation and E is a relational algebra query.
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Deletion Examples

• Delete all account records in the Perryridge branch.

account←
account − σbranch-name = “Perryridge” (account)

• Delete all loan records with amount in the range 0 to 50.

loan ← loan − σamount ≥ 0 and amount ≤ 50 (loan)

• Delete all accounts at branches located in Needham.

r1 ← σbranch-city = “Needham” (account 1 branch)
r2 ← Πbranch-name, account-number, balance (r1)
r3 ← Πcustomer-name, account-number (r2 1 depositor)
account ← account − r2

depositor ← depositor − r3
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Insertion

• To insert data into a relation, we either:

– specify a tuple to be inserted

– write a query whose result is a set of tuples to be inserted

• In relational algebra, an insertion is expressed by:

r ← r ∪ E

where r is a relation and E is a relational algebra expression.

• The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.
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Insertion Examples

• Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account← account ∪ {(“Perryridge”, A-973, 1200)}
depositor← depositor ∪ {(“Smith”, A-973)}

• Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve as
the account number for the new savings account.

r1 ← (σbranch-name = “Perryridge” (borrower 1 loan))
account← account ∪ Πbranch-name, loan-number,200 (r1)
depositor← depositor ∪ Πcustomer-name, loan-number (r1)
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Updating

• A mechanism to change a value in a tuple without changing all
values in the tuple

• Use the generalized projection operator to do this task

r ← ΠF1,F2,...,Fn (r )

– Each Fi is either the ith attribute of r , if the ith attribute is
not updated, or, if the attribute is to be updated

– Fi is an expression, involving only constants and the
attributes of r , which gives the new value for the attribute
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Update Examples

• Make interest payments by increasing all balances by 5
percent.

account ← ΠBN,AN,BAL ← BAL ∗1.05 (account)

where BAL, BN and AN stand for balance, branch-name
and account-number, respectively.

• Pay all accounts with balances over $10,000
6 percent interest and pay all others 5 percent.

account ← ΠBN,AN,BAL ← BAL ∗1.06 (σBAL > 10000 (account))
∪ ΠBN,AN,BAL ← BAL ∗1.05 (σBAL ≤ 10000 (account))
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Views

• In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the
database.)

• Consider a person who needs to know a customer’s loan
number but has no need to see the loan amount. This person
should see a relation described, in the relational algebra, by

Πcustomer-name, loan-number (borrower 1 loan)

• Any relation that is not part of the conceptual model but is
made visible to a user as a “virtual relation” is called a view.
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View Definition

• A view is defined using the create view statement which has
the form

create view v as <query expression>

where <query expression> is any legal relational algebra
query expression. The view name is represented by v.

• Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

• View definition is not the same as creating a new relation by
evaluating the query epression. Rather, a view definition
causes the saving of an expression to be substituted into
queries using the view.
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View Examples

• Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as
Πbranch-name, customer-name (depositor 1 account)
∪ Πbranch-name, customer-name (borrower 1 loan)

• We can find all customers of the Perryridge branch by writing:

Πcustomer-name

(σbranch-name = “Perryridge” (all-customer))
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Updates Through Views

• Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

• Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person,
branch-loan, is defined as:

create view branch-loan as
Πbranch-name, loan-number (loan)

Since we allow a view name to appear wherever a relation
name is allowed, the person may write:

branch-loan ← branch-loan ∪ {(“Perryridge”, L-37)}
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Updates Through Views (Cont.)

• The previous insertion must be represented by an insertion
into the actual relation loan from which the view branch-loan is
constructed.

• An insertion into loan requires a value for amount. The
insertion can be dealt with by either

– rejecting the insertion and returning an error message to
the user

– inserting a tuple (“Perryridge”, L-37, null) into the loan
relation
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Views Defined Using Other Views

• One view may be used in the expression defining another view

• A view relation v1 is said to depend directly on a view relation
v2 if v2 is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2 if and
only if there is a path in the dependency graph from v2 to v1.

• A view relation v is said to be recursive if it depends on itself.
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View Expansion

• A way to define the meaning of views defined in terms of other
views.

• Let view v1 be defined by an expression e1 that may itself
contain uses of view relations.

• View expansion of an expression repeats the following
replacement step:

repeat
Find any view relation vi in e1

Replace the view relation vi by the expression defining vi

until no more view relations are present in e1

• As long as the view definitions are not recursive, this loop will
terminate.
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