PV027 Optimization

Tomáš Brázdil

Resources \& Prerequisities

Resources:

- Lectures \& tutorials (the main resources)
- Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization. Cambridge University Press, 2021. ISBN: 9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2006. ISBN: 0387303030.

Resources \& Prerequisities

Resources:

- Lectures \& tutorials (the main resources)
- Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization. Cambridge University Press, 2021. ISBN: 9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2006. ISBN: 0387303030.

We shall need elementary knowledge and understanding of

- Linear algebra in \mathbb{R}^{n}

Operations with vectors and matrices, bases, diagonalization.

- Multi-variable calculus (i.e., in \mathbb{R}^{n})

Partial derivatives, gradients, Hessians, Taylor's theorem.
We will refresh our memories during lectures and tutorials.

Evaluation

Oral exam - You will get a manual describing the knowledge necessary for \mathbf{E} and better.

There might be homework assignments that you may discuss at tutorials, but (for this year) there is no mandatory homework.

Please be aware that
This is a difficult math-based course.

What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.
specifically: the mathematical procedures (such as finding the maximum of a function) involved in this

What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.
specifically: the mathematical procedures (such as finding the maximum of a function) involved in this

Britannica

Collection of mathematical principles and methods used for solving quantitative problems in many disciplines, including physics, biology, engineering, economics, and business

Historically, (mathematical/numerical) optimization is called mathematical programming.

Optimization

People optimize in

- scheduling
- transportation,
- education,
- ...

Optimization

People optimize in

- scheduling
- transportation,
- education,
- ...
- investments
- portfolio management,
- utility maximization,
- ...

Optimization

People optimize in

- scheduling
- transportation,
- education,
- ...
- investments
- portfolio management,
- utility maximization,
- ...
- industrial design
- aerodynamics,
- electrical engineering,
- ...

Optimization

People optimize in

- scheduling
- transportation,
- education,
- ...
- investments
- portfolio management,
- utility maximization,
- ...
- industrial design
- aerodynamics,
- electrical engineering,
- ...
- sciences
- molecular modeling,
- computational systems biology,
- ...

Optimization

People optimize in

- scheduling
- transportation,
- education,
- ...
- investments
- portfolio management,
- utility maximization,
- ...
- industrial design
- aerodynamics,
- electrical engineering,
- ...
- sciences
- molecular modeling,
- computational systems biology,
- ...
machine learning

Optimization Algorithms

scipy.optimize.minimize

scipy.optimize.minimize(fun, $x \theta$, $\operatorname{args=(),~method=None,~jac=None,~hess=None,~}$ hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
method : str or callable, optional
Type of solver. Should be one of

- 'Nelder-Mead' (see here)
- 'Powell' (see here)
- 'CG' (see here)
- 'BFGS' (see here)
- 'Newton-CG' (see here)
- 'L-BFGS-B' (see here)

Optimization Algorithms

sklearn. linear_model.LogisticRegression

class sklearn. linear_model. LogisticRegression(penalty=' 122^{\prime}, *, dual $=F a l s e, ~ t o l=0.0001, C=1.0$, fit_intercept $=T$ rue, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, 11_ratio=None)
solver : \{'Ibfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'\}, default='lbfgs' Algorithm to use in the optimization problem. Default is 'lbfgs'. To choose a solver,

Design Optimization Process

Design Optimization Process

A bit naive example:

- Consider a company with several plants producing a single product but with different efficiency.
- The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.

A bit naive example:

- Consider a company with several plants producing a single product but with different efficiency.
- The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- First try: Model each plant's production and maximize the total production efficiency.
This would lead to a solution where only the most efficient plant will produce.

A bit naive example:

- Consider a company with several plants producing a single product but with different efficiency.
- The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- First try: Model each plant's production and maximize the total production efficiency.
This would lead to a solution where only the most efficient plant will produce.
- However, after a certain level of demand, no single plant can satisfy the demand \Rightarrow, introducing constraints on the maximum production of the plants.
This would maximize production of the most efficient plant and then the second one, etc.

A bit naive example:

- Consider a company with several plants producing a single product but with different efficiency.
- The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- First try: Model each plant's production and maximize the total production efficiency.
This would lead to a solution where only the most efficient plant will produce.
- However, after a certain level of demand, no single plant can satisfy the demand \Rightarrow, introducing constraints on the maximum production of the plants.
This would maximize production of the most efficient plant and then the second one, etc.
- Then you notice that all plant employees must work.
- Then you start solving transportation problems depending on the location of the plants.

Optimization Problem Formulation

1. Describe the problem

- Problem formulation is vital since the optimizer exploits any weaknesses in the model formulation.
- You might get the "right answer to the wrong question."
- The problem description is typically informal at the beginning.

2. Gather information

- Identify possible inputs/outputs.
- Gather data and identify the analysis procedure.

1. Describe the problem
2. Gather information
3. Define the design variables
4. Define the objective
5. Define the constraints

Optimization Problem Formulation

3. Define the design variables

- Identify the quantities that describe the system:

$$
x \in \mathbb{R}^{n}
$$

(i.e., certain characteristics of the system, such as position, investments, etc.)

- The variables are supposed to be independent; the optimizer must be free to choose the components of x independently.
- The choice of variables is typically not unique (e.g., a square can be described by its side or area).
- The variables may affect the functional form of the objective and constraints (e.g., linear vs non-linear).

1. Describe the problem
2. Gather information
3. Define the design variables
4. Define the objective
5. Define the constraints

Optimization Problem Formulation

4. Define the objective

- The function determines if one design is better than another.
- Must be a scalar computable from the variables:

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

(e.g., profit, time, potential energy, etc.)

- The objective function is either maximized or minimized depending on the application.
- The choice is not always obvious: E.g., minimizing just the weight of a vehicle might result in a vehicle being too expensive to be manufactured.

1. Describe the problem
2. Gather information
3. Define the design variables
4. Define the objective
5. Define the constraints

Optimization Problem Formulation

5. Define the constraints

- Prescribe allowed values of the variables.
- May have a general form

$$
c(x) \leq 0 \text { or } c(x) \geq 0 \text { or } c(x)=0
$$

(e.g., time cannot be negative, bounded amount of money to invest)
Where $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function depending on the variables.

1. Describe the problem
2. Gather information
3. Define the design variables
4. Define the objective
5. Define the constraints

Modelling and Optimization

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a model.

Modelling and Optimization

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a model.
Modelling is concerned with model building, optimization with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.

Modelling and Optimization

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a model.
Modelling is concerned with model building, optimization with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.
The Optimization Problem (OP): Find settings of variables so that the objective is maximized/minimized while satisfying the constraints.

Modelling and Optimization

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a model.
Modelling is concerned with model building, optimization with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.
The Optimization Problem (OP): Find settings of variables so that the objective is maximized/minimized while satisfying the constraints.

An Optimization Algorithm (OA) solves the above problem and provides a solution, some setting of variables satisfying the constraints and minimizing/maximizing the objective.

Optimization Problems

Optimization Problem Formally

Denote by
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an objective function,
x a vector of real variables,
$g_{1}, \ldots, g_{n_{g}}$ inequality constraint functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
$h_{1}, \ldots, h_{n_{h}}$ equality constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Optimization Problem Formally

Denote by
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ an objective function,
x a vector of real variables,
$g_{1}, \ldots, g_{n_{g}}$ inequality constraint functions $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
$h_{1}, \ldots, h_{n_{h}}$ equality constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
The optimization problem is to

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Optimization Problem - Example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
& g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2} \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-2
\end{aligned}
$$

The optimization problem is

$$
\text { minimize }\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \quad \text { subject to }\left\{\begin{array}{l}
x_{2}-x_{1}^{2} \geq 0 \\
2-x_{1}-x_{2} \geq 0
\end{array}\right.
$$

I.e.,

$$
\text { minimize }\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \quad \text { subject to }\left\{\begin{array}{l}
x_{1}^{2}-x_{2} \leq 0 \\
x_{1}+x_{2}-2 \leq 0
\end{array}\right.
$$

Optimization Problem - Example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} \\
& g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2} \\
& g_{2}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}-2
\end{aligned}
$$

A contour of f is defined, for some $c \in \mathbb{R}$, by $\left\{x \in \mathbb{R}^{n} \mid f(x)=c\right\}$

Constraints

Consider the constraints

$$
\begin{array}{ll}
g_{i}(x) \leq 0 & i=1, \ldots, n_{g} \\
h_{j}(x)=0 & j=1, \ldots, n_{h}
\end{array}
$$

Constraints

Consider the constraints

$$
\begin{array}{ll}
g_{i}(x) \leq 0 & i=1, \ldots, n_{g} \\
h_{j}(x)=0 & j=1, \ldots, n_{h}
\end{array}
$$

Define the feasibility region by

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, i=1, \ldots, n_{g}, j=1, \ldots, n_{h}\right\}
$$

$x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.

Constraints

Consider the constraints

$$
\begin{array}{ll}
g_{i}(x) \leq 0 & i=1, \ldots, n_{g} \\
h_{j}(x)=0 & j=1, \ldots, n_{h}
\end{array}
$$

Define the feasibility region by

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, i=1, \ldots, n_{g}, j=1, \ldots, n_{h}\right\}
$$

$x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.
Note that constraints of the form $g_{i}(x) \geq 0$ can be easily transformed to the inequality contraints $-g_{i}(x) \leq 0$

Constraints

Consider the constraints

$$
\begin{array}{ll}
g_{i}(x) \leq 0 & i=1, \ldots, n_{g} \\
h_{j}(x)=0 & j=1, \ldots, n_{h}
\end{array}
$$

Define the feasibility region by

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, i=1, \ldots, n_{g}, j=1, \ldots, n_{h}\right\}
$$

$x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.
Note that constraints of the form $g_{i}(x) \geq 0$ can be easily transformed to the inequality contraints $-g_{i}(x) \leq 0$
$x^{*} \in \mathcal{F}$ is now a constrained minimizer if

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } \quad x \in \mathcal{F}
$$

Constraints

Inequality constraints $g_{i}(x) \leq 0$ can be active or inactive.
active

$$
g_{i}\left(x^{*}\right)=0
$$

inactive

$$
g_{i}\left(x^{*}\right)<0
$$

More Practical Example

The problem formulation:

- A company has two chemical factories F_{1} and F_{2}, and a dozen retail outlets R_{1}, \ldots, R_{12}.
- Each F_{i} can produce (maximum of) a_{i} tons of a chemical each week.
- Each retail outlet R_{j} demands at least b_{j} tons.
- The cost of shipping one ton from F_{i} to R_{j} is $c_{i j}$.

More Practical Example

The problem formulation:

- A company has two chemical factories F_{1} and F_{2}, and a dozen retail outlets R_{1}, \ldots, R_{12}.
- Each F_{i} can produce (maximum of) a_{i} tons of a chemical each week.
- Each retail outlet R_{j} demands at least b_{j} tons.
- The cost of shipping one ton from F_{i} to R_{j} is $c_{i j}$.

The problem: Determine how much each factory should ship to each outlet to satisfy the requirements and minimize cost.

More Practical Example

Variables: $x_{i j}$ for $i=1,2$ and $j=1, \ldots, 12$. Each $x_{i j}$ (intuitively) corresponds to tons shipped from F_{i} to R_{j}.

The objective:

$$
\min \sum_{i j} c_{i j} x_{i j}
$$

More Practical Example

Variables: $x_{i j}$ for $i=1,2$ and $j=1, \ldots, 12$. Each $x_{i j}$ (intuitively) corresponds to tons shipped from F_{i} to R_{j}.
The objective:

$$
\min \sum_{i j} c_{i j} x_{i j}
$$

subject to

$$
\begin{aligned}
& \sum_{j=1}^{12} x_{i j} \leq a_{i}, \quad i=1,2 \\
& \sum_{i=1}^{2} x_{i j} \geq b_{j}, \quad j=1, \ldots, 12 \\
& x_{i j} \geq 0, \quad i=1,2, \quad j=1, \ldots, 12
\end{aligned}
$$

More Practical Example

Variables: $x_{i j}$ for $i=1,2$ and $j=1, \ldots, 12$. Each $x_{i j}$ (intuitively) corresponds to tons shipped from F_{i} to R_{j}.
The objective:

$$
\min \sum_{i j} c_{i j} x_{i j}
$$

subject to

$$
\begin{aligned}
\sum_{j=1}^{12} x_{i j} \leq a_{i}, \quad i=1,2 \\
\sum_{i=1}^{2} x_{i j} \geq b_{j}, \quad j=1, \ldots, 12 \\
x_{i j} \geq 0, \quad i=1,2, \quad j=1, \ldots, 12
\end{aligned}
$$

The above is linear programming problem since both the objective and constraint functions are linear.

Discrete Optimization

In our original optimization problem definition, we consider real (continuous) variables.
Sometimes, we need to assume discrete values. For example, in the previous example, the factories may produce tractors. In such a case, it does not make sense to produce 4.6 tractors.

Discrete Optimization

In our original optimization problem definition, we consider real (continuous) variables.
Sometimes, we need to assume discrete values. For example, in the previous example, the factories may produce tractors. In such a case, it does not make sense to produce 4.6 tractors.

Usually, an integer constraint is added, such as

$$
x_{i} \in \mathbb{Z}
$$

It constrains x_{i} only to integer values. This leads to so-called integer programming.

Discrete optimization problems have discrete and finite variables.

Wing Design Example

Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are call span b and chord c.

Wing Design Example

Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are call span b and chord c.
However, two other variables are often used in aircraft design:
Wing area S and wing aspect ratio $A R$. It holds that

$$
S=b c \quad A R=b^{2} / S
$$

Wing Design Example

What exactly are the objectives and constraints?

Wing Design Example

What exactly are the objectives and constraints?
Our objective function is the power required to keep level flight:

$$
f(b, c)=\frac{D v}{\eta}
$$

Here,

- D is the draft

That is the aerodynamic force that opposes an aircraft's motion through the air.

- η is the propulsion efficiency

That is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle.

- v is the lift velocity

That is the velocity needed to lift the aircraft, which depends on its weight.

Wing Design Example

For illustration, let us look at the lift velocity v.

Wing Design Example

For illustration, let us look at the lift velocity v.
In level flight, the aircraft must generate enough lift L to equal its weight W, that is $L=W$.

Wing Design Example

For illustration, let us look at the lift velocity v.
In level flight, the aircraft must generate enough lift L to equal its weight W, that is $L=W$.

The weight partially depends on the wing area:

$$
W=W_{0}+W_{S} S
$$

Here $S=b c$ is the wing area, and W_{0} is the payload weight.

Wing Design Example

For illustration, let us look at the lift velocity v.
In level flight, the aircraft must generate enough lift L to equal its weight W, that is $L=W$.

The weight partially depends on the wing area:

$$
W=W_{0}+W_{S} S
$$

Here $S=b c$ is the wing area, and W_{0} is the payload weight.
The lift can be approximated using the following formula.

$$
L=q \cdot C_{L} \cdot S
$$

Where $q=\frac{1}{2} \varrho v^{2}$ is the fluid dynamic pressure, here ϱ is the air density, C_{L} is a lift coefficient (depending on the wing shape).

Wing Design Example

For illustration, let us look at the lift velocity v.
In level flight, the aircraft must generate enough lift L to equal its weight W, that is $L=W$.

The weight partially depends on the wing area:

$$
W=W_{0}+W_{S} S
$$

Here $S=b c$ is the wing area, and W_{0} is the payload weight.
The lift can be approximated using the following formula.

$$
L=q \cdot C_{L} \cdot S
$$

Where $q=\frac{1}{2} \varrho v^{2}$ is the fluid dynamic pressure, here ϱ is the air density, C_{L} is a lift coefficient (depending on the wing shape).

Thus, we may obtain the lift velocity as

$$
v=\sqrt{2 W / \varrho C_{L} S}=\sqrt{2\left(W_{0}+W_{S} b c\right) / \varrho C_{L} b c}
$$

Similarly, various physics-based arguments provide approximations of the draft D and the propulsion efficiency η.

Wing Design Example

The draft $D=D_{i}+D_{f}$ is the sum of the induced and viscous draft.

Wing Design Example

The draft $D=D_{i}+D_{f}$ is the sum of the induced and viscous draft.
The induced draft can be approximated by

$$
D_{i}=W^{2} / q \pi b^{2} e
$$

Here, e is the Oswald efficiency factor, a correction factor that represents the change in drag with the lift of a wing, as compared with an ideal wing having the same aspect ratio.

Wing Design Example

The draft $D=D_{i}+D_{f}$ is the sum of the induced and viscous draft.
The induced draft can be approximated by

$$
D_{i}=W^{2} / q \pi b^{2} e
$$

Here, e is the Oswald efficiency factor, a correction factor that represents the change in drag with the lift of a wing, as compared with an ideal wing having the same aspect ratio.

The viscous draft can be approximated by

$$
D_{f}=k C_{f} q 2.05 S
$$

Here, k is the form factor (accounts for the pressure drag), and C_{f} is the skin friction coefficient that can be approximated by

$$
C_{f}=0.074 / R e^{0.2}
$$

Where $R e$ is the Reynolds number that somewhat characterizes air flow patterns around the wing and is defined as follows:

$$
R e=\rho v c / \mu
$$

Here μ is the air dynamic viscosity.

Wing Design Example

The propulsion efficiency η can be roughly approximated by the Gaussian efficiency curve.

$$
\eta=\eta_{\max } \exp \left(\frac{-(v-\bar{v})^{2}}{2 \sigma^{2}}\right)
$$

Here, \bar{v} is the peak propulsive efficiency velocity, and σ is the std of the efficiency function.

Wing Design Example

The objective function contours:

Wing Design Example

The objective function contours:

The engineers would refuse the solution: The aspect ratio is much higher than typically seen in airplanes. It adversely affects the structural strength. Add constraints!

Wing Design Example

Added a constraint on bending stress at the root of the wing:

It looks like a reasonable wing ...

Optimization Problem Classification

Optimization Problem Classification

Optimization Problem Classification

- Continuous allows only $x_{i} \in \mathbb{R}$, discrete allows only $x_{i} \in \mathbb{Z}$, mixed allows variables of both kinds.

Optimization Problem Classification

- Continuous allows only $x_{i} \in \mathbb{R}$, discrete allows only $x_{i} \in \mathbb{Z}$, mixed allows variables of both kinds.
- Single-objective: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, Multi-objective: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Optimization Problem Classification

- Continuous allows only $x_{i} \in \mathbb{R}$, discrete allows only $x_{i} \in \mathbb{Z}$, mixed allows variables of both kinds.
- Single-objective: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, Multi-objective: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- Unconstrained: No constraints, just the objective function.

Optimization Problem Classification

Smoothness

We consider various classes of problems depending on the smoothness properties of the objective/constraint functions:

- C^{0} : Continuous function

Continuity allows us to estimate value in small neighborhoods.

- C^{1} : Continuous first derivatives

Derivatives give information about the slope. If continuous, it changes smoothly, allowing us to estimate the slope locally.

- C^{2} : Continuous second derivatives

Second derivatives inform about
curvature.

Linearity

Linear programming: Both the objective and the constraints are linear.

It is possible to solve precisely, efficiently, and in rational numbers (see the linear programming later).

Multimodality

Denote by \mathcal{F} the feasibility set.
x^{*} is a (weak) local minimiser if there is $\varepsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F} \text { satisfying }\left\|x^{*}-x\right\| \leq \varepsilon
$$

Multimodality

Denote by \mathcal{F} the feasibility set.
x^{*} is a (weak) local minimiser if there is $\varepsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F} \text { satisfying }\left\|x^{*}-x\right\| \leq \varepsilon
$$

x^{*} is a (weak) global minimiser if

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F}
$$

Multimodality

Denote by \mathcal{F} the feasibility set.
x^{*} is a (weak) local minimiser if there is $\varepsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F} \text { satisfying }\left\|x^{*}-x\right\| \leq \varepsilon
$$

x^{*} is a (weak) global minimiser if

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F}
$$

Global/local minimiser is strict if the inequality is strict.

Multimodality

Denote by \mathcal{F} the feasibility set.
x^{*} is a (weak) local minimiser if there is $\varepsilon>0$ such that

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F} \text { satisfying }\left\|x^{*}-x\right\| \leq \varepsilon
$$

x^{*} is a (weak) global minimiser if

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in \mathcal{F}
$$

Global/local minimiser is strict if the inequality is strict.

Unimodal functions have a single global minimiser in \mathcal{F}, multimodal have multiple local minimisers in \mathcal{F}.

Convexity

$S \subseteq \mathbb{R}^{n}$ is a convex set if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x \in S$ and $y \in S$, we have $\alpha x+(1-\alpha) y \in S$ for all $\alpha \in[0,1]$

Convexity

$S \subseteq \mathbb{R}^{n}$ is a convex set if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x \in S$ and $y \in S$, we have $\alpha x+(1-\alpha) y \in S$ for all $\alpha \in[0,1]$
f is a convex function if its domain is a convex set and if for any two points x and y in this domain, the graph of f lies below the straight line connecting $(x, f(x))$ to $(y, f(y))$ in the space \mathbb{R}^{n+1}. That is, we have

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \quad \text { for all } \alpha \in[0,1]
$$

Convexity

$S \subseteq \mathbb{R}^{n}$ is a convex set if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x \in S$ and $y \in S$, we have $\alpha x+(1-\alpha) y \in S$ for all $\alpha \in[0,1]$
f is a convex function if its domain is a convex set and if for any two points x and y in this domain, the graph of f lies below the straight line connecting $(x, f(x))$ to $(y, f(y))$ in the space \mathbb{R}^{n+1}. That is, we have

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y), \quad \text { for all } \alpha \in[0,1]
$$

A standard form convex optimization assumes

- convex objective f and convex inequality constraint functions g_{i}
- affine equality constraint functions h_{j}

Implications:

- Every local minimum is a global minimum.
- If the above inequality is strict for all $x \neq y$, then there is a unique minimum.

Stochasticity

Sometimes, the parameters of a model cannot be specified with certainty.

For example, in the transportation model, customer demand cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and modeled using an appropriate probability distribution.

Stochasticity

Sometimes, the parameters of a model cannot be specified with certainty.

For example, in the transportation model, customer demand cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and modeled using an appropriate probability distribution.

Stochastic optimization problem is to minimize/maximize the expectation of a statistic parametrized with the variables x :

Find x maximizing $\mathbb{E} f(x ; W)$
Here, W is a vector of random variables, and the expectation is taken using the probability distribution of these variables.

In this course, we stick with deterministic optimization.

Optimization Algorithms

Optimization Algorithm

An optimization algorithm solves the optimization problem, i.e., searches for x^{*}, which (in some sense) minimizes the objective f and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions x_{0}, x_{1}, \ldots and then identifies one resembling a solution.

Optimization Algorithm

An optimization algorithm solves the optimization problem, i.e., searches for x^{*}, which (in some sense) minimizes the objective f and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions x_{0}, x_{1}, \ldots and then identifies one resembling a solution.

The problem is to

- compute the candidate solutions, (complexity of the objective function, difficulties in selection of the candidates, etc.)
- Select the one closest to a minimum.
(hard to decide whether a given point is a minimum (even a local one))

Optimization Algorithm Properties

Typically, we are concerned with the following issues:

Optimization Algorithm Properties

Typically, we are concerned with the following issues:

- Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.

Optimization Algorithm Properties

Typically, we are concerned with the following issues:

- Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.
- Efficiency: OA should not require too much computer time or storage.

Optimization Algorithm Properties

Typically, we are concerned with the following issues:

- Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.
- Efficiency: OA should not require too much computer time or storage.
- Accuracy: OA should be able to identify a solution with precision without being overly sensitive to
- errors in the data/model
- the arithmetic rounding errors

Order and Search

Order

- Zeroth = gradient-free: no info about derivatives is used
- First = gradient-based: use info about first derivatives (e.g., gradient descent)
- Second = use info about first and second derivatives (e.g., Newton's method)

Order and Search

Order

- Zeroth = gradient-free: no info about derivatives is used
- First = gradient-based: use info about first derivatives (e.g., gradient descent)
- Second = use info about first and second derivatives (e.g., Newton's method)

Search

- Local search = start at a point and search for a solution by successively updating the current solution (e.g., gradient descent)
- Global search tries to span the whole space (e.g., grid search)

Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- Prove that the algorithm converges to an optimum/minimum.

Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- Prove that the algorithm converges to an optimum/minimum.
- Determine the rate of convergence.

Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- Prove that the algorithm converges to an optimum/minimum.
- Determine the rate of convergence.
- Decide whether we are at (or close to) an optimum/minimum.

Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- Prove that the algorithm converges to an optimum/minimum.
- Determine the rate of convergence.
- Decide whether we are at (or close to) an optimum/minimum. For example, for linear optimization problems, the simplex algorithm converges to a minimum in, at most, exponentially many steps, and we may efficiently decide whether we have reached a minimum.

Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- Prove that the algorithm converges to an optimum/minimum.
- Determine the rate of convergence.
- Decide whether we are at (or close to) an optimum/minimum. For example, for linear optimization problems, the simplex algorithm converges to a minimum in, at most, exponentially many steps, and we may efficiently decide whether we have reached a minimum.

We may prove only some or none of the properties for some algorithms.
There are (almost) infinitely many heuristic algorithms without provable convergence, often motivated by the behaviors of various animals.

Deterministic vs Stochastic and Static vs Dynamic

Stochastic optimization is based on a random selection of candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the form of random mutations).

Also, various variants of the gradient-based methods are often randomized (e.g., variants of the stochastic gradient descent).

Deterministic vs Stochastic and Static vs Dynamic

Stochastic optimization is based on a random selection of candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the form of random mutations).

Also, various variants of the gradient-based methods are often randomized (e.g., variants of the stochastic gradient descent).

In this course, we stick to static optimization problems where we solve the optimization problem only once.

In contrast, the dynamic optimization, a sequence of (usually) dependent optimization problems are solved sequentially.

For example, consider driving a car where the driver must react optimally to changing situations several times per second.

Dynamic optimization problems are usually defined using a kind of (Markov) decision process.

Single-variable Objectives

Unconstrained Single Variable Optimization Problem

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable x
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

Unconstrained Single Variable Optimization Problem

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable x
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

We consider

- f continuously differentiable
- f twice continuously differentiable

Present the following methods:

- Gradient descent
- Newton's method
- Secant method

Gradient Based Methods

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable $x \in \mathbb{R}$
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

Gradient Based Methods

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable $x \in \mathbb{R}$
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

Assume that

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { for } x \in \mathbb{R}
$$

is continuous on \mathbb{R}.
Denote by \mathcal{C}^{1} the set of all continuously differentiable functions.

Gradient Descent in Single Variable

Gradient descent algorithm for finding a local minimum of a function f, using a variable step length.

Input: Function f with first derivative f^{\prime}, initial point x_{0}, initial step length $\alpha_{0}>0$, tolerance $\epsilon>0$
Output: A point x that approximately minimizes $f(x)$
1: Set $k \leftarrow 0$
2: while $\left|f^{\prime}\left(x_{k}\right)\right|>\epsilon$ do
3: \quad Calculate the derivative: $y^{\prime} \leftarrow f^{\prime}\left(x_{k}\right)$
4: \quad Update $x_{k+1} \leftarrow x_{k}-\alpha_{k} \cdot y^{\prime}$
5: \quad Update step length α_{k} to α_{k+1} based on a certain strategy
6: Increment k
7: end while
8: return x_{k}

Convergence of Single Variable Gradient Descent

Theorem 1
Assume that f is

- continuously differentiable, i.e., that f^{\prime} exists,
- bounded below, i.e., there is $B \in \mathbb{R}$ such that $f(x) \geq B$ for all $x \in \mathbb{R}$,
- L-smooth, i.e., there is $L>0$ such that $\left|f^{\prime}(x)-f^{\prime}\left(x^{\prime}\right)\right| \leq L\left|x-x^{\prime}\right|$ for all $x, x^{\prime} \in \mathbb{R}$.
Consider a sequence x_{0}, x_{1}, \ldots computed by the gradient descent algorithm for f. Assume a constant step length $\alpha \leq \frac{1}{L}$.
Then $\lim _{k \rightarrow \infty}\left|f^{\prime}\left(x_{k}\right)\right|=0$ and, moreover,

$$
\min _{0 \leq t<T}\left|f^{\prime}\left(x_{t}\right)\right| \leq \sqrt{\frac{2 L\left(f\left(x_{0}\right)-B\right)}{T}}
$$

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Example

Consider the objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$, and that the required accuracy is $\epsilon=10^{-4}$, i.e., we stop when $\left|x_{k+1}-x_{k}\right|<\epsilon$.

Consider the step length $\alpha=1$.

Example

Consider the objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$, and that the required accuracy is $\epsilon=10^{-4}$, i.e., we stop when $\left|x_{k+1}-x_{k}\right|<\epsilon$.
Consider the step length $\alpha=1$.
We compute

$$
f^{\prime}(x)=x-\cos x
$$

Then,

$$
\begin{aligned}
x_{1} & =0.5-(0.5-\cos 0.5) \\
& =0.5-(-0.37758) \\
& =0.87758
\end{aligned}
$$

Example

Continuing in the same way:

$$
\begin{aligned}
x_{1} & =0.87758 \\
x_{2} & =0.63901 \\
x_{3} & =0.80269 \\
x_{4} & =0.69478 \\
x_{5} & =0.76820 \\
x_{6} & =0.71917 \\
x_{7} & =0.75236 \\
x_{8} & =0.73008 \\
x_{9} & =0.74512 \\
x_{10} & =0.73501 \\
x_{11} & =0.74183
\end{aligned}
$$

$$
\begin{aligned}
& x_{12}=0.73724 \\
& x_{13}=0.74033 \\
& x_{14}=0.73825 \\
& x_{15}=0.73965 \\
& x_{16}=0.73870 \\
& x_{17}=0.73934 \\
& x_{18}=0.73891 \\
& x_{19}=0.73920 \\
& x_{20}=0.73901 \\
& x_{21}=0.73914 \\
& x_{22}=0.73905
\end{aligned}
$$

Note that $\left|x_{22}-x_{21}\right|<10^{-4}$.

Example

What if we consider the step length $1 / k$? Then

$$
\begin{aligned}
x_{1} & =0.50000 \\
x_{2} & =0.87758 \\
x_{3} & =0.75830 \\
x_{4} & =0.74753 \\
x_{5} & =0.74399 \\
x_{6} & =0.74235 \\
x_{7} & =0.74144 \\
x_{8} & =0.74087 \\
x_{9} & =0.74050 \\
x_{10} & =0.74024 \\
x_{11} & =0.74004 \\
x_{12} & =0.73990 \\
x_{13} & =0.73978 \\
x_{14} & =0.73969
\end{aligned}
$$

Note that $\left|x_{14}-x_{13}\right|<10^{-4}$ but x_{14} is far from the solution which is $0.7390 \ldots$...

Frame Title

What if we consider the step length $1 / k$? Then

$$
\begin{array}{ll}
x_{1}=0.50000 & x_{115}=0.739100605 \\
x_{2}=0.87758 & x_{116}=0.739100379 \\
x_{3}=0.75830 & x_{117}=0.739100159 \\
x_{4}=0.74753 & x_{118}=0.739099944 \\
x_{5}=0.74399 & x_{119}=0.739099734 \\
x_{6}=0.74235 & x_{120}=0.739099529 \\
x_{7}=0.74144 & x_{121}=0.739099328 \\
x_{8}=0.74087 & x_{122}=0.739099132 \\
x_{9}=0.74050 & x_{123}=0.739098940 \\
x_{10}=0.74024 & x_{124}=0.739098752 \\
x_{11}=0.74004 & x_{125}=0.739098568 \\
x_{12}=0.73990 & x_{126}=0.739098388 \\
x_{13}=0.73978 & x_{127}=0.739098212 \\
x_{14}=0.73969 & x_{128}=0.739098040
\end{array}
$$

Example

Gradient descent with the step length $=1.0$:

Example

Gradient descent with the step length $=1 / k$:

Example

Gradient descent with the step length $=1 / k^{2}$:

It does not seem to converge to the same number as the previous step lengths.

Example

Gradient descent with the step length $=1.0$:

Example

Gradient descent with the step length $=1 / k$:

Properties of Gradient Descent

- The objective must be differentiable, however:
- Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
- There are methods for differentiable approximation of non-differentiable functions.

Properties of Gradient Descent

- The objective must be differentiable, however:
- Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
- There are methods for differentiable approximation of non-differentiable functions.
- GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.

Properties of Gradient Descent

- The objective must be differentiable, however:
- Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
- There are methods for differentiable approximation of non-differentiable functions.
- GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- GD is quite sensitive to the step length.

Might be very slow or too fast (even overshoot and diverge).

Properties of Gradient Descent

- The objective must be differentiable, however:
- Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
- There are methods for differentiable approximation of non-differentiable functions.
- GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- GD is quite sensitive to the step length. Might be very slow or too fast (even overshoot and diverge).
- For convex functions, the algorithm converges to a minimum (if it converges).

Properties of Gradient Descent

- The objective must be differentiable, however:
- Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
- There are methods for differentiable approximation of non-differentiable functions.
- GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- GD is quite sensitive to the step length. Might be very slow or too fast (even overshoot and diverge).
- For convex functions, the algorithm converges to a minimum (if it converges).
- Straightforward to implement if the derivatives are available.

GD is much more interesting in multiple variables, forming the basis for neural network learning (see later).

Better algorithm for unimodal functions using just derivatives?

Newton's Method

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable $x \in \mathbb{R}$
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

Newton's Method

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable $x \in \mathbb{R}$
Find x^{*} such that

$$
f\left(x^{*}\right) \leq \min _{x \in \mathbb{R}} f(x)
$$

Assume that

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \quad \text { for } x \in \mathbb{R}
$$

is continuous on \mathbb{R}.
Denote by \mathcal{C}^{2} the set of all twice continuously differentiable functions.

Taylor Series Approximation

We would need the o-notation: Given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ we write $f=o(g)$ if

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

Taylor Series Approximation

We would need the o-notation: Given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ we write $f=o(g)$ if

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$. Assume that f is twice differentiable at x_{0}. Then for all $x \in \mathbb{R}$ we have that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+o\left(\left|x-x_{0}\right|^{2}\right)
$$

Taylor Series Approximation

We would need the o-notation: Given functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ we write $f=o(g)$ if

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0
$$

Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$. Assume that f is twice differentiable at x_{0}. Then for all $x \in \mathbb{R}$ we have that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+o\left(\left|x-x_{0}\right|^{2}\right)
$$

Thus, such f can be reasonably approximated around x_{0} with a quadratic function

$$
f(x) \approx q(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

Newton's Method Idea

The method computes successive approximations $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ as the GD.

Newton's Method Idea

The method computes successive approximations $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ as the GD.

To compute x_{k+1}, a quadratic approximation

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

is considered around x_{k}.

Newton's Method Idea

The method computes successive approximations $x_{0}, x_{1}, \ldots, x_{k}, \ldots$ as the GD.

To compute x_{k+1}, a quadratic approximation

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

is considered around x_{k}.

Then x_{k+1} is set to the extreme point of $q(x)$ (i.e., $q^{\prime}\left(x_{k+1}\right)=0$).

Newton's Method Algorithm

Now note that for

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

Newton's Method Algorithm

Now note that for

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

we have

$$
q^{\prime}(x)=f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

Newton's Method Algorithm

Now note that for

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

we have

$$
q^{\prime}(x)=f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

and thus

$$
q^{\prime}(x)=0 \text { iff } x=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

Newton's Method Algorithm

Now note that for

$$
q(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}
$$

we have

$$
q^{\prime}(x)=f^{\prime}\left(x_{k}\right)+f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

and thus

$$
q^{\prime}(x)=0 \text { iff } x=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

Newton's method then sets

$$
x_{k+1}:=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

Newton's Method Algorithm

Input: A function f with derivative f^{\prime} and second derivative $f^{\prime \prime}$, initial point x_{0}, tolerance $\epsilon>0$
Output: A point x that approximately minimizes $f(x)$
1: Set $k \leftarrow 0$
2: while $\left|x_{k+1}-x_{k}\right|>\epsilon$ do
3: \quad Calculate the derivative: $y^{\prime} \leftarrow f^{\prime}\left(x_{k}\right)$
4: \quad Calculate the second derivative : $y^{\prime \prime} \leftarrow f^{\prime \prime}\left(x_{k}\right)$
5: Update the estimate: $x_{k+1} \leftarrow x_{k}-\frac{y^{\prime}}{y^{\prime \prime}}$
6: Increment k

7: end while

8: return x_{k}

Note that the method implicitly assumes that $f^{\prime \prime}\left(x_{k}\right) \neq 0$ in every iteration.

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $\left|x_{k+1}-x_{k}\right| \leq \epsilon$.

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $\left|x_{k+1}-x_{k}\right| \leq \epsilon$.

We compute

$$
f^{\prime}(x)=x-\cos x, \quad f^{\prime \prime}(x)=1+\sin x
$$

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $\left|x_{k+1}-x_{k}\right| \leq \epsilon$.

We compute

$$
f^{\prime}(x)=x-\cos x, \quad f^{\prime \prime}(x)=1+\sin x
$$

Hence,

$$
\begin{aligned}
x_{1} & =0.5-\frac{0.5-\cos 0.5}{1+\sin 0.5} \\
& =0.5-\frac{-0.3775}{1.479} \\
& =0.7552
\end{aligned}
$$

Example

Proceeding similarly, we obtain

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime \prime}\left(x_{1}\right)}=x_{1}-\frac{0.02710}{1.685}=0.7391 \\
& x_{3}=x_{2}-\frac{f^{\prime}\left(x_{2}\right)}{f^{\prime \prime}\left(x_{2}\right)}=x_{2}-\frac{9.461 \times 10^{-5}}{1.673}=0.7390851339 \\
& x_{4}=x_{3}-\frac{f^{\prime}\left(x_{3}\right)}{f^{\prime \prime}\left(x_{3}\right)}=x_{3}-\frac{1.17 \times 10^{-9}}{1.673}=0.7390851332
\end{aligned}
$$

Example

Proceeding similarly, we obtain

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime \prime}\left(x_{1}\right)}=x_{1}-\frac{0.02710}{1.685}=0.7391 \\
& x_{3}=x_{2}-\frac{f^{\prime}\left(x_{2}\right)}{f^{\prime \prime}\left(x_{2}\right)}=x_{2}-\frac{9.461 \times 10^{-5}}{1.673}=0.7390851339 \\
& x_{4}=x_{3}-\frac{f^{\prime}\left(x_{3}\right)}{f^{\prime \prime}\left(x_{3}\right)}=x_{3}-\frac{1.17 \times 10^{-9}}{1.673}=0.7390851332
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left|x_{4}-x_{3}\right|<\epsilon=10^{-5} \\
& f^{\prime}\left(x_{4}\right)=-8.6 \times 10^{-6} \approx 0 \\
& f^{\prime \prime}\left(x_{4}\right)=1.673>0
\end{aligned}
$$

So, we conclude that $x^{*} \approx x_{4}$ is a strict minimizer.
However, remember that the above does not have to be true!

Convergence

Newton's method works well if $f^{\prime \prime}(x)>0$ everywhere.
However, if $f^{\prime \prime}(x)<0$ for some x, Newton's method may fail to converge to a minimizer (converges to a point x where $f^{\prime}(x)=0$):

If the method converges to a minimizer, it does so quadratically. What does this mean?

Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each step is proportionally reduced by a constant factor:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|}=r, \quad 0<r<1
$$

Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each step is proportionally reduced by a constant factor:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|}=r, \quad 0<r<1
$$

Superlinear Convergence

Convergence is superlinear if:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|}=0
$$

This often requires an algorithm to utilize second-order information.

Quadratic Convergence of Newton's Method

Quadratic Convergence
Quadratic convergence is achieved when the number of accurate digits roughly doubles with each iteration:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=C, \quad C>0
$$

Quadratic Convergence of Newton's Method

Quadratic Convergence

Quadratic convergence is achieved when the number of accurate digits roughly doubles with each iteration:

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{2}}=C, \quad C>0
$$

Newton's method is a classic example of an algorithm with quadratic convergence.

Theorem 2 (Quadratic Convergence of Newton's Method) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f \in \mathcal{C}^{2}$ and suppose x^{*} is a minimizer of f such that $f^{\prime \prime}\left(x^{*}\right)>0$. Assume Lipschitz continuity of $f^{\prime \prime}$. If the initial guess x_{0} is sufficiently close to x^{*}, then the sequence $\left\{x_{k}\right\}$ computed by the Newton's method converges quadratically to x^{*}.

Newton's Method of Tangents

Newton's method is also a technique for finding roots of functions. In our case, this means finding a root of f^{\prime}.

Newton's Method of Tangents

Newton's method is also a technique for finding roots of functions. In our case, this means finding a root of f^{\prime}.

Denote $g=f^{\prime}$. Then Newton's approximation goes like this:

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}
$$

Secant Method

What if $f^{\prime \prime}$ is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?

Secant Method

What if $f^{\prime \prime}$ is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?
Assume $f \in \mathcal{C}^{1}$ and try to approximate $f^{\prime \prime}$ around x_{k-1} with

$$
f^{\prime \prime}(x) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x_{k-1}\right)}{x-x_{k-1}}
$$

Substituting x with x_{k}, we obtain

$$
\frac{1}{f^{\prime \prime}\left(x_{k}\right)} \approx \frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}
$$

Secant Method

What if $f^{\prime \prime}$ is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?
Assume $f \in \mathcal{C}^{1}$ and try to approximate $f^{\prime \prime}$ around x_{k-1} with

$$
f^{\prime \prime}(x) \approx \frac{f^{\prime}(x)-f^{\prime}\left(x_{k-1}\right)}{x-x_{k-1}}
$$

Substituting x with x_{k}, we obtain

$$
\frac{1}{f^{\prime \prime}\left(x_{k}\right)} \approx \frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}
$$

Then, we may try to use Newton's step with this approximation:

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)} \cdot f^{\prime}\left(x_{k}\right)
$$

Is the rate of convergence superlinear?

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$ and $x_{1}=1.0$.
Now, we need to initialize the first two values.

Example

Consider the following objective function f

$$
f(x)=\frac{1}{2} x^{2}-\sin x
$$

Assume $x_{0}=0.5$ and $x_{1}=1.0$.
Now, we need to initialize the first two values.
We have $f^{\prime}(x)=x-\cos x$
Hence,

$$
\begin{aligned}
x_{2} & =1.0-\frac{1.0-0.5}{(1.0-\cos 1.0)-(0.5-\cos 0.5)}(0.5-\cos 0.5) \\
& =0.7254
\end{aligned}
$$

Example

Continuing, we obtain:

$$
\begin{aligned}
& x_{0}=0.5 \\
& x_{1}=1.0 \\
& x_{2}=0.72548 \\
& x_{3}=0.73839 \\
& x_{4}=0.739087 \\
& x_{5}=0.739085132 \\
& x_{6}=0.739085133
\end{aligned}
$$

Example

Start the secant method with the approximation given by Newton's method:

$$
\begin{aligned}
& x_{0}=0.5 \\
& x_{1}=0.7552 \\
& x_{2}=0.7381 \\
& x_{3}=0.739081 \\
& x_{5}=0.7390851339 \\
& x_{6}=0.7390851332
\end{aligned}
$$

Compare with Newton's method:

$$
\begin{aligned}
& x_{0}=0.5 \\
& x_{1}=0.7552 \\
& x_{2}=0.7391 \\
& x_{3}=0.7390851339 \\
& x_{4}=0.73908513321516067229 \\
& x_{5}=0.73908513321516067229
\end{aligned}
$$

Superlinear Convergence of Secant Method

Theorem 3 (Superlinear Convergence of Secant Method)
Assume $f: \mathbb{R} \rightarrow \mathbb{R}$ twice continuously differentiable and x^{*} a minimizer of f. Assume $f^{\prime \prime}$ Lipschitz continuous and $f^{\prime \prime}\left(x^{*}\right)>0$. The sequence $\left\{x_{k}\right\}$ generated by the Secant method converges to x^{*} superlinearly if x_{0} and x_{1} are sufficiently close to x^{*}.

The rate of convergence p of the Secant method is given by the positive root of the equation $p^{2}-p-1=0$, which is $p=\frac{1+\sqrt{5}}{2} \approx 1.618$ (the golden ratio). Formally,

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{k+1}-x^{*}\right|}{\left|x_{k}-x^{*}\right|^{\frac{1+\sqrt{5}}{2}}}=C, \quad C>0
$$

Secant Method for Root Finding

As for Newton's method of tangents, the secant method can be seen as a method for finding a root of f^{\prime}.

Secant Method for Root Finding

As for Newton's method of tangents, the secant method can be seen as a method for finding a root of f^{\prime}.

Denote $g=f^{\prime}$. Then the secant method approximation is

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{g\left(x_{k}\right)-g\left(x_{k-1}\right)} \cdot g\left(x_{k}\right)
$$

General Form

Note that all methods have similar update formula:

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{a_{k}}
$$

Different choice of a_{k} produce different algorithm:

- $a_{k}=1$ gives the gradient descent,
- $a_{k}=f^{\prime \prime}\left(x_{k}\right)$ gives Newton's method,
- $a_{k}=\frac{f^{\prime}\left(x_{k}\right)-f^{\prime}\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$ gives the secant method,
- $a_{k}=f^{\prime \prime}\left(x_{m}\right)$ where $m=\lfloor k / p\rfloor p$ gives Shamanskii method.

Summary

- Newton's method
- Converges to an extremum under \mathcal{C}^{2} assumption (quadratic convergence)
- The choice of the initial point is critical; the method may diverge to a stationary point, which is not a minimizer. The method may also cycle.
- If the second derivative is very small, close to the minimizer, the method can be very slow (the quadratic convergence is guaranteed only if the second derivative is non-zero at the minimizer and the constants depend on the second derivative).

Summary

- Newton's method
- Converges to an extremum under \mathcal{C}^{2} assumption (quadratic convergence)
- The choice of the initial point is critical; the method may diverge to a stationary point, which is not a minimizer. The method may also cycle.
- If the second derivative is very small, close to the minimizer, the method can be very slow (the quadratic convergence is guaranteed only if the second derivative is non-zero at the minimizer and the constants depend on the second derivative).
- Secant method
- The second derivative is not needed.
- Superlinear (but not quadratic) convergence for an initial point close to a minimum.

Constrained Single Variable Optimization Problem

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable x
A constraint

$$
a_{0} \leq x \leq b_{0}
$$

Consider the following cases:

- f unimodal on [a_{0}, b_{0}]
- f continuously differentiable on [a_{0}, b_{0}]
- f twice continuously differentiable on $\left[a_{0}, b_{0}\right.$]

Unimodal Function Minimization

We assume only unimodality on $\left[a_{0}, b_{0}\right.$] where the single extremum is a minimum.

More precisely, we assume that there is x^{*} such that

- $f\left(x^{\prime}\right)>f\left(x^{\prime \prime}\right)$ for all $x^{\prime}, x^{\prime \prime} \in\left[a_{0}, x^{*}\right]$ satisfying $x^{\prime}<x^{\prime \prime}$
- $f\left(x^{\prime}\right)<f\left(x^{\prime \prime}\right)$ for all $x^{\prime}, x^{\prime \prime} \in\left[x^{*}, b_{0}\right]$ satisfying $x^{\prime}<x^{\prime \prime}$

Assume that even a single evaluation of f is costly.
Minimize the number of evaluations searching for the minimum.

Simple Algorithm

Select u, v such that $a_{0}<u<v<b_{0}$.

Simple Algorithm

Select u, v such that $a_{0}<u<v<b_{0}$.

Observe that

- If $f(u)<f(v)$, then the minimizer must lie in $\left[a_{0}, v\right]$.
- If $f(u) \geq f(v)$, then the minimizer must lie in $\left[u, b_{0}\right]$.

Continue the search in the resulting interval.

The Algorithm

An abstract search algorithm:
1: Initialize $a_{0}<b_{0}$
2: for $k=0$ to $K-1$ do
3: Choose u_{k}, v_{k} such that $a_{k}<u_{k}<v_{k}<b_{k}$
4: if $f\left(u_{k}\right)<f\left(v_{k}\right)$ then
5: $\quad a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow v_{k}$
6: else
7: $\quad a_{k+1} \leftarrow u_{k}$ and $b_{k+1} \leftarrow b_{k}$
8: end if
9: end for

The Algorithm

An abstract search algorithm:
1: Initialize $a_{0}<b_{0}$
2: for $k=0$ to $K-1$ do
3: \quad Choose u_{k}, v_{k} such that $a_{k}<u_{k}<v_{k}<b_{k}$
4: if $f\left(u_{k}\right)<f\left(v_{k}\right)$ then
5: $\quad a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow v_{k}$
6: else
7: $\quad a_{k+1} \leftarrow u_{k}$ and $b_{k+1} \leftarrow b_{k}$
8: end if
9: end for
The algorithm produces a sequence of intervals:

$$
\left[a_{0}, b_{0}\right] \supset\left[a_{1}, b_{1}\right] \supset\left[a_{2}, b_{2}\right] \supset \cdots \supset\left[a_{K}, b_{K}\right]
$$

where $\left[a_{K}, b_{K}\right]$ contains the minimizer of f.
The algorithm evaluates f twice in every iteration.
Is it necessary?

Intermediate Points

Choose u_{k}, v_{k} symmetrically in the following sense:

$$
u_{k}-a_{k}=b_{k}-v_{k}=\varrho\left(b_{k}-a_{k}\right)
$$

for some $\varrho \in(0,1)$.

Intermediate Points

Choose u_{k}, v_{k} symmetrically in the following sense:

$$
u_{k}-a_{k}=b_{k}-v_{k}=\varrho\left(b_{k}-a_{k}\right)
$$

for some $\varrho \in(0,1)$. The algorithm will then look as follows:
1: Initialize $a_{0}<b_{0}$
2: for $k=0$ to $K-1$ do
3: $\quad u_{k} \leftarrow a_{k}+\rho\left(b_{k}-a_{k}\right)$
4: $\quad v_{k} \leftarrow b_{k}-\rho\left(b_{k}-a_{k}\right)$
5: if $f\left(u_{k}\right)<f\left(v_{k}\right)$ then
6: $\quad a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow v_{k}$
7: else
8: $\quad a_{k+1} \leftarrow u_{k}$ and $b_{k+1} \leftarrow b_{k}$
9: end if
10: end for

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.

We are computing u_{1}, v_{1} and need to get $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$.
Note that we have already computed $f\left(u_{0}\right)$. So let us set ϱ so that v_{1} coincides with u_{0}.

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.

We are computing u_{1}, v_{1} and need to get $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$.
Note that we have already computed $f\left(u_{0}\right)$. So let us set ϱ so that v_{1} coincides with u_{0}.

$$
\text { As } v_{1}=b_{1}-\rho\left(b_{1}-a_{1}\right)=b_{1}-\rho\left(b_{1}-a_{0}\right)
$$

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.

We are computing u_{1}, v_{1} and need to get $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$.
Note that we have already computed $f\left(u_{0}\right)$. So let us set ϱ so that v_{1} coincides with u_{0}.

As $v_{1}=b_{1}-\rho\left(b_{1}-a_{1}\right)=b_{1}-\rho\left(b_{1}-a_{0}\right)$, demanding $v_{1}=u_{0}$ implies

$$
u_{0}=b_{1}-\rho\left(b_{1}-a_{0}\right) \quad \Rightarrow \quad \varrho\left(b_{1}-a_{0}\right)=b_{1}-u_{0}
$$

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.
We are computing u_{1}, v_{1} and need to get $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$.
Note that we have already computed $f\left(u_{0}\right)$. So let us set ϱ so that v_{1} coincides with u_{0}.

As $v_{1}=b_{1}-\rho\left(b_{1}-a_{1}\right)=b_{1}-\rho\left(b_{1}-a_{0}\right)$, demanding $v_{1}=u_{0}$ implies

$$
u_{0}=b_{1}-\rho\left(b_{1}-a_{0}\right) \quad \Rightarrow \quad \varrho\left(b_{1}-a_{0}\right)=b_{1}-u_{0}
$$

Since $b_{1}-a_{0}=1-\varrho$ and $b_{1}-u_{0}=1-2 \varrho$ we have

$$
\varrho(1-\varrho)=1-2 \varrho \quad \Leftrightarrow \quad \varrho^{2}-3 \varrho+1=0
$$

Intermediate Points

Assume $a_{0}=0$ and $b_{0}=1$.
Suppose that we have just computed a_{1} and b_{1} and that, e.g., the minimizer lies in $\left[a_{0}, v_{0}\right]$, i.e., $a_{1}=a_{0}, b_{1}=v_{0}$, and $u_{0} \in\left[a_{0}, b_{1}\right]$.
We are computing u_{1}, v_{1} and need to get $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$.
Note that we have already computed $f\left(u_{0}\right)$. So let us set ϱ so that v_{1} coincides with u_{0}.

As $v_{1}=b_{1}-\rho\left(b_{1}-a_{1}\right)=b_{1}-\rho\left(b_{1}-a_{0}\right)$, demanding $v_{1}=u_{0}$ implies

$$
u_{0}=b_{1}-\rho\left(b_{1}-a_{0}\right) \quad \Rightarrow \quad \varrho\left(b_{1}-a_{0}\right)=b_{1}-u_{0}
$$

Since $b_{1}-a_{0}=1-\varrho$ and $b_{1}-u_{0}=1-2 \varrho$ we have

$$
\varrho(1-\varrho)=1-2 \varrho \quad \Leftrightarrow \quad \varrho^{2}-3 \varrho+1=0
$$

Solving to $\rho_{1}=\frac{3+\sqrt{5}}{2}, \quad \rho_{2}=\frac{3-\sqrt{5}}{2}$, we consider $\varrho=\frac{3-\sqrt{5}}{2}$

Golden Section Search

Choosing $u_{k}=a_{k}+\rho\left(b_{k}-a_{k}\right)$ and $v_{k}=b_{k}-\rho\left(b_{k}-a_{k}\right)$ allows us to reuse one of the values of $f\left(u_{k-1}\right)$ and $f\left(v_{k-1}\right)$.

1: Initialize $a_{0}<b_{0}$
2: for $k=0$ to $K-1$ do
3: $\quad u_{k} \leftarrow a_{k}+\rho\left(b_{k}-a_{k}\right)$
4: $\quad v_{k} \leftarrow b_{k}-\rho\left(b_{k}-a_{k}\right)$
5: if $u_{k}=v_{k-1}$ then
6: $\quad f u_{k} \leftarrow f v_{k-1}$ and $f u_{k} \leftarrow f\left(v_{k}\right)$
7: else
8: $\quad f u_{k} \leftarrow f\left(u_{k}\right)$ and set $f v_{k}=f u_{k-1}$
9: end if
10: if $f u_{k}<f v_{k}$ then
11:
12: else
13: $\quad a_{k+1} \leftarrow u_{k}$ and $b_{k+1} \leftarrow b_{k}$
14: end if
15: end for

Golden Section Search

Note that

$$
\rho=\frac{3-\sqrt{5}}{2} \approx 0.61803
$$

and thus

$$
b_{k}-a_{k} \approx 0.61803 \cdot\left(b_{k-1}-a_{k-1}\right)
$$

which for $a_{0}=0$ and $b_{0}=1$ means

$$
b_{k}-a_{k}=(1-\varrho)^{k} \approx(0.61803)^{k}
$$

Example

Consider f defined by

$$
f(x)=x^{4}-14 x^{3}+60 x^{2}-70 x
$$

on the interval $[0,2]$.

Example

Consider f defined by

$$
f(x)=x^{4}-14 x^{3}+60 x^{2}-70 x
$$

on the interval $[0,2]$.
By definition, $a_{0}=0$ and $b_{0}=2$.

$$
\begin{aligned}
& u_{0}=a_{0}+\rho\left(b_{0}-a_{0}\right)=0.7639 \\
& v_{0}=a_{0}+(1-\rho)\left(b_{0}-a_{0}\right)=1.236
\end{aligned}
$$

Here $\rho=(3-\sqrt{5}) / 2$.

Example

Consider f defined by

$$
f(x)=x^{4}-14 x^{3}+60 x^{2}-70 x
$$

on the interval $[0,2]$.
By definition, $a_{0}=0$ and $b_{0}=2$.

$$
\begin{aligned}
& u_{0}=a_{0}+\rho\left(b_{0}-a_{0}\right)=0.7639 \\
& v_{0}=a_{0}+(1-\rho)\left(b_{0}-a_{0}\right)=1.236
\end{aligned}
$$

Here $\rho=(3-\sqrt{5}) / 2$.
In the first step, we have to compute both $f u_{0}$ and $f v_{0}$:

$$
\begin{aligned}
& f u_{0}=f\left(u_{0}\right)=-24.36 \\
& f v_{0}=f\left(v_{0}\right)=-18.96
\end{aligned}
$$

$f u_{0}<f v_{0}$ and thus $a_{1}=a_{0}=0$ and $b_{1}=v_{0}=1.236$.

Example

We have $a_{1}=a_{0}=0$ and $b_{1}=v_{0}=1.236$.

Example

We have $a_{1}=a_{0}=0$ and $b_{1}=v_{0}=1.236$.
Now compute u_{1} and v_{1} as follows

$$
\begin{aligned}
& u_{1}=a_{1}+\rho\left(b_{1}-a_{1}\right)=0.4721 \\
& v_{1}=a_{1}+(1-\rho)\left(b_{1}-a_{1}\right)=0.7639
\end{aligned}
$$

Note that v_{1} coincides with u_{0} as expected.

Example

We have $a_{1}=a_{0}=0$ and $b_{1}=v_{0}=1.236$.
Now compute u_{1} and v_{1} as follows

$$
\begin{aligned}
& u_{1}=a_{1}+\rho\left(b_{1}-a_{1}\right)=0.4721 \\
& v_{1}=a_{1}+(1-\rho)\left(b_{1}-a_{1}\right)=0.7639
\end{aligned}
$$

Note that v_{1} coincides with u_{0} as expected.
So we only have to compute

$$
f u_{1}=f\left(u_{1}\right)=-21.1
$$

and put $f v_{1}=f u_{0}$.
As $f v_{1}<f u_{1}$ we obtain $a_{2}=0.4721$ and $b_{2}=1.236$.
... and so on.

Summary of Golden Search

A method for solving constrained problems where the objective is unimodal.

Straightforward method with guaranteed convergence, which in every step evaluates the objective only once.

The implementation in Scipy:
https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.golden.html

Constrained Gradient Descent and Newton's Method

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable x
A constraints

$$
a_{0} \leq x \leq b_{0}
$$

(find your c functions and the constraints)

Constrained Gradient Descent and Newton's Method

An objective function $f: \mathbb{R} \rightarrow \mathbb{R}$
A variable x
A constraints

$$
a_{0} \leq x \leq b_{0}
$$

(find your c functions and the constraints)
Consider the following cases:

- f unimodal on [a a_{0}, b_{0}]
- f continuously differentiable on [a_{0}, b_{0}]
- f twice continuously differentiable on [a_{0}, b_{0}]

Homework: Modify the gradient descent and Newton's method to work on the bounded interval (the above definitions guarantee continuous differentiability at a_{0} and b_{0}).

Unconstrained Optimization Overview

Notation

In what follows, we will work with vectors in \mathbb{R}^{n}.
The vectors will be (usually) denoted by $x \in \mathbb{R}^{n}$.
We often consider sequences of vectors, $x_{0}, x_{1}, \ldots, x_{k}, \ldots$.
The index k will usually indicate that x_{k} is the k-the vector in a sequence.
When we talk (relatively rarely) about components of vectors, we use i as an index, i.e., x_{i} will be the i-th component of $x \in \mathbb{R}^{n}$.
We denote by $\|x\|$ the Euclidean norm of x.
We denote by $\|x\|_{\infty}$ the \mathcal{L}^{∞} norm giving the maximum of absolute values of components of x.

We ocasionally use the matrix morn $\|A\|$, consistent with the Euclidean norm, defined by

$$
\|A\|=\sup _{\|x\|=1}\|A x\|=\sqrt{\lambda_{1}}
$$

Here λ_{1} is the largest eigenvalue of $A^{\top} A$.

How to Recognize (Local) Minimum

How do we verify that $x^{*} \in \mathbb{R}^{n}$ is a minimizer of f ?

How to Recognize (Local) Minimum

How do we verify that $x^{*} \in \mathbb{R}^{n}$ is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity if one has a smaller value (impractical).

Assuming the smoothness of f, we may benefit from the "stable" behavior of f around x^{*}.

Derivatives and Gradients

The gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denoted by $\nabla f(x)$, is a column vector of first-order partial derivatives of the function concerning each variable:

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]^{\top}
$$

Where each partial derivative is defined as the following limit:

$$
\frac{\partial f}{\partial x_{i}}=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+\varepsilon, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{\varepsilon}
$$

Gradient

The gradient is a vector pointing in the direction of the most significant function increase from the current point.

Gradient

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{1} x_{2}^{2}-x_{2}^{3}-20 x_{1} .
$$

$$
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
3 x_{1}^{2}+2 x_{2}^{2}-20 \\
4 x_{1} x_{2}-3 x_{2}^{2}
\end{array}\right]
$$

Directional Derivatives vs Gradient

The rate of change in a direction p is quantified by a directional derivative, defined as

$$
\nabla_{p} f(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon p)-f(x)}{\varepsilon}
$$

We can find this derivative by projecting the gradient onto the desired direction p using the dot product $\nabla_{p} f(x)=(\nabla f(x))^{\top} p$

(Here, we assume continuous partial derivatives.)

Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$
\nabla_{p} f(x)=(\nabla f(x))^{\top} p=\|\nabla f\|\|p\| \cos \theta
$$

Here θ is the angle between ∇f and p.

Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$
\nabla_{p} f(x)=(\nabla f(x))^{\top} p=\|\nabla f\|\|p\| \cos \theta
$$

Here θ is the angle between ∇f and p.
The directional derivative is maximized by $\theta=0$, i.e. when ∇f and p point in the same direction.

Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$
\nabla^{2} f(x)=H(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^{n}$ and gives a $n \times n$-matrix of second derivatives of f.

Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$
\nabla^{2} f(x)=H(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{f} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^{n}$ and gives a $n \times n$-matrix of second derivatives of f.

We have

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

If f has continuous second partial derivatives, then H is symmetric,
i.e., $H_{i j}=H_{j i}$.

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
g^{\prime}(t)=f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i}
\end{aligned}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i} \\
g^{\prime \prime}(t) & =\sum_{i=1}^{n} h_{i}^{\prime}(t) p_{i}=\sum_{i=1}^{n}[H(x+t p) p]_{i} p_{i}=p^{\top} H(x+t p) p
\end{aligned}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i} \\
g^{\prime \prime}(t) & =\sum_{i=1}^{n} h_{i}^{\prime}(t) p_{i}=\sum_{i=1}^{n}[H(x+t p) p]_{i} p_{i}=p^{\top} H(x+t p) p
\end{aligned}
$$

Thus,

$$
g^{\prime \prime}(0)=p^{\top} H(x) p .
$$

Principal Curvature Directions

Fix x and consider $H=H(x)$. Consider unit eigenvectors \hat{v}_{k} of H :

$$
H \hat{v}_{k}=\kappa_{k} \hat{v}_{k}
$$

For symmetric H, the unit eigenvectors form an orthonormal basis,

Principal Curvature Directions

Fix x and consider $H=H(x)$. Consider unit eigenvectors \hat{v}_{k} of H :

$$
H \hat{v}_{k}=\kappa_{k} \hat{v}_{k}
$$

For symmetric H, the unit eigenvectors form an orthonormal basis, and there is a rotation matrix R such that

$$
H=R D R^{-1}=R D R^{\top}
$$

Here D is diagonal with $\kappa_{1}, \ldots, \kappa_{n}$ on the diagonal.

If $\kappa_{1} \geq \cdots \geq \kappa_{n}$, the direction of \hat{v}_{1} is the maximum curvature direction of f at x.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{cc}
4 / 3 & 0 \\
0 & 1
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=4 / 3 \quad \kappa_{2}=1
$$

Their corresponding eigenvectors are $(1,0)^{\top}$ and $(0,1)^{\top}$.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{cc}
4 / 3 & 0 \\
0 & 1
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=4 / 3 \quad \kappa_{2}=1
$$

Their corresponding eigenvectors are $(1,0)^{\top}$ and $(0,1)^{\top}$.

Note that

$$
f(x)=\kappa_{1} x_{1}^{2}+\kappa_{2} x_{2}^{2}
$$

Considering a direction vector p we get

$$
g(t)=f(0+t p)=t^{2}\left(\kappa_{1} p_{1}^{2}+\kappa_{2} p_{2}^{2}\right)
$$

which is a parabola with $g^{\prime \prime}=2\left(\kappa_{1} p_{1}^{2}+\kappa_{2} p_{2}^{2}\right)$.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=\frac{1}{6}(7+\sqrt{5}) \quad \kappa_{2}=\frac{1}{6}(7-\sqrt{5})
$$

Their corresponding eigenvectors are

$$
\hat{v}_{1}=\left(\frac{1}{2}(1+\sqrt{5}), 1\right) \quad \hat{v}_{2}=\left(\frac{1}{2}(1-\sqrt{5}), 1\right)
$$

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=\frac{1}{6}(7+\sqrt{5}) \quad \kappa_{2}=\frac{1}{6}(7-\sqrt{5})
$$

Their corresponding eigenvectors are

$$
\hat{v}_{1}=\left(\frac{1}{2}(1+\sqrt{5}), 1\right) \quad \hat{v}_{2}=\left(\frac{1}{2}(1-\sqrt{5}), 1\right)
$$

Note that

$$
H=\left(\hat{v}_{1} \hat{v}_{2}\right)\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)\left(\begin{array}{ll}
\hat{v}_{1} & \hat{v}_{2}
\end{array}\right)^{\top}
$$

Here $\left(\hat{v}_{1} \hat{v}_{2}\right)$ is a 2×2 matrix whose columns are \hat{v}_{1}, \hat{v}_{2}.

Hessian Visualization Example

Consider

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{1} x_{2}^{2}-x_{2}^{3}-20 x_{1} .
$$

And it's Hessian.

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
6 x_{1} & 4 x_{2} \\
4 x_{2} & 4 x_{1}-6 x_{2}
\end{array}\right] .
$$

Taylor's Theorem

Theorem 4 (Taylor)
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable and that $p \in \mathbb{R}^{n}$. Then, we have

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} H(x) p+o\left(\|p\|^{2}\right) .
$$

Here $H=\nabla^{2} f$ is the Hessian of f.

First-Order Necessary Conditions

Theorem 5
If x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

All comes down to the definiteness of $H:=H\left(x^{*}\right)$.

- H is positive definite if $p^{\top} H p>0$ for all p iff all eigenvalues of H are positive
- H is positive semi-definite if $p^{\top} H p \geq 0$ for all p
iff all eigenvalues of H are nonnegative
- H is negative semi-definite if $p^{\top} H p \leq 0$ for all p
iff all eigenvalues of H are nonpositive
- H is negative definite if $p^{\top} H p<0$ for all p
iff all eigenvalues of H are negative
- H is indefinite if it is not definite in the above sense iff H has at least one positive and one negative eigenvalue.

Definiteness

Positive definite

Indefinite

Positive semidefinite

Second-Order Necessary Condition

Theorem 6 (Second-Order Necessary Conditions) If x^{*} is a local minimizer of f and $\nabla^{2} f$ is continuous in a neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

Theorem 7 (Second-Order Sufficient Conditions)
Suppose that $\nabla^{2} f$ is continuous in a neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.

Positive definite

Positive semidefinite

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From the second equation, we have that $x_{2}=x_{1}$. Substituting this into the first equation yields

$$
x_{1}\left(2 x_{1}^{2}+6 x_{1}+1\right)=0 .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From the second equation, we have that $x_{2}=x_{1}$. Substituting this into the first equation yields

$$
x_{1}\left(2 x_{1}^{2}+6 x_{1}+1\right)=0 .
$$

The solution of this equation yields three points:

$$
x_{A}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad x_{B}=\left[\begin{array}{l}
-\frac{3}{2}-\frac{\sqrt{7}}{2} \\
-\frac{3}{2}-\frac{\sqrt{7}}{2}
\end{array}\right], \quad x_{C}=\left[\begin{array}{c}
\frac{\sqrt{7}}{2}-\frac{3}{2} \\
\frac{\sqrt{7}}{2}-\frac{3}{2}
\end{array}\right] .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

The Hessian, at the first point, is

$$
H\left(x_{A}\right)=\left[\begin{array}{cc}
3 & -2 \\
-2 & 2
\end{array}\right]
$$

whose eigenvalues are $\kappa_{1} \approx 0.438$ and $\kappa_{2} \approx 4.561$. Because both eigenvalues are positive, this point is a local minimum.

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

For the second point,

$$
H\left(x_{B}\right)=\left[\begin{array}{cc}
3(3+\sqrt{7}) & -2 \\
-2 & 2
\end{array}\right]
$$

The eigenvalues are $\kappa_{1} \approx 1.737$ and $\kappa_{2} \approx 17.200$, so this point is another local minimum.

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right]
$$

For the third point,

$$
H\left(x_{C}\right)=\left[\begin{array}{cc}
9-3 \sqrt{7} & -2 \\
-2 & 2
\end{array}\right]
$$

The eigenvalues for this Hessian are $\kappa_{1} \approx-0.523$ and $\kappa_{2} \approx 3.586$, so this point is a saddle point.

Example

Proofs of Some Theorems
 Optional

Taylor's Theorem

To prove the theorems characterizing minima/maxima, we need the following form of Taylor's theorem:

Theorem 8 (Taylor)
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^{n}$. Then we have that.

$$
f(x+p)=f(x)+\nabla f(x+t p)^{T} p
$$

for some $t \in(0,1)$. Moreover, if f is twice continuously differentiable, we have that

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x+t p) p
$$

for some $t \in(0,1)$.

Proof of Theorem 5 (Optional)

We prove that if x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Suppose for contradiction that $\nabla f\left(x^{*}\right) \neq 0$. Define the vector $p=-\nabla f\left(x^{*}\right)$ and note that $p^{T} \nabla f\left(x^{*}\right)=-\left\|\nabla f\left(x^{*}\right)\right\|^{2}<0$. Because ∇f is continuous near x^{*}, there is a scalar $T>0$ such that

$$
p^{T} \nabla f\left(x^{*}+t p\right)<0, \quad \text { for all } t \in[0, T]
$$

For any $\bar{t} \in(0, T]$, we have by Taylor's theorem that

$$
f\left(x^{*}+\bar{t} p\right)=f\left(x^{*}\right)+\bar{t} p^{T} \nabla f\left(x^{*}+t p\right), \quad \text { for some } t \in(0, \bar{t}) .
$$

Therefore, $f\left(x^{*}+\bar{t} p\right)<f\left(x^{*}\right)$ for all $\bar{t} \in(0, T]$. We have found a direction leading away from x^{*} along which f decreases, so x^{*} is not a local minimizer, and we have a contradiction.

Proof of Theorem 6 (Optional)

We prove that if x^{*} is a local minimizer of f and $\nabla^{2} f$ is continuous in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

We know that $\nabla f\left(x^{*}\right)=0$. For contradiction, assume that $\nabla^{2} f\left(x^{*}\right)$ is not positive semidefinite.
Then we can choose a vector p such that $p^{T} \nabla^{2} f\left(x^{*}\right) p<0$.
As $\nabla^{2} f$ is continuous near $x^{*}, p^{T} \nabla^{2} f\left(x^{*}+t p\right) p<0$ for all $t \in[0, T]$ where $T>0$.
By Taylor we have for all $\bar{t} \in(0, T]$ and some $t \in(0, \bar{t})$
$f\left(x^{*}+\bar{t} p\right)=f\left(x^{*}\right)+\bar{t} p^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} \bar{t}^{2} p^{T} \nabla^{2} f\left(x^{*}+t p\right) p<f\left(x^{*}\right)$.
Thus, x^{*} is not a local minimizer.

Proof of Theorem 7 (Optional)

We prove the following: Suppose that $\nabla^{2} f$ is continuous in an open neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.
Because the Hessian is continuous and positive definite at x^{*}, we can choose a radius $r>0$ so that $\nabla^{2} f(x)$ remains positive definite for all x in the open ball $\mathcal{D}=\left\{z \mid\left\|z-x^{*}\right\|<r\right\}$. Taking any nonzero vector p with $\|p\|<r$, we have $x^{*}+p \in \mathcal{D}$ and so

$$
\begin{aligned}
f\left(x^{*}+p\right) & =f\left(x^{*}\right)+p^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} p^{T} \nabla^{2} f(z) p \\
& =f\left(x^{*}\right)+\frac{1}{2} p^{T} \nabla^{2} f(z) p
\end{aligned}
$$

where $z=x^{*}+t p$ for some $t \in(0,1)$. Since $z \in \mathcal{D}$, we have $p^{T} \nabla^{2} f(z) p>0$, and therefore $f\left(x^{*}+p\right)>f\left(x^{*}\right)$, giving the result.

Unconstrained Optimization Algorithms

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

The monotone algorithms satisfy $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

The monotone algorithms satisfy $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

There are two overall strategies:

- Line search
- Trust region

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

The vector p_{k} should be a descent direction, i.e., a direction in which f decreases locally.

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

The vector p_{k} should be a descent direction, i.e., a direction in which f decreases locally.
α_{k} is selected to approximately solve

$$
\min _{\alpha>0} f\left(x_{k}+\alpha p_{k}\right)
$$

However, typically, an exact solution is expensive and unnecessary. Instead, line search algorithms inspect a limited number of trial step lengths and find one that decreases f appropriately (see later).

A descent direction does not have to be followed to the minimum.

Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius. and finds x_{k+1} solving

```
min}\mp@subsup{m}{k}{}(x
x\inR
```


Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius.
and finds x_{k+1} solving

$$
\min _{x \in R} m_{k}(x)
$$

If the solution does not sufficiently decrease f, we shrink the trust region and re-solve.

Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius.
and finds x_{k+1} solving

$$
\min _{x \in R} m_{k}(x)
$$

If the solution does not sufficiently decrease f, we shrink the trust region and re-solve.

The model m_{k} is usually derived from the Taylor's theorem.

$$
m_{k}\left(x_{k}+p\right)=f_{k}+p^{T} \nabla f_{k}+\frac{1}{2} p^{T} B_{k} p
$$

Where B_{k} approximates the Hessian of f at x_{k}.

Line Search Methods

Line Search

For setting the step size, we consider

- Armijo condition and backtracking algorithm
- strong Wolfe conditions and bracketing \& zooming

Line Search

For setting the step size, we consider

- Armijo condition and backtracking algorithm
- strong Wolfe conditions and bracketing \& zooming

For setting the direction, we consider

- Gradient descent
- Newton's method
- quasi-Newton methods (BFGS)
- (Conjugate gradients)

We start with the step size.

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Define

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Define

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

We know that

$$
\phi^{\prime}(\alpha)=\nabla f\left(x_{k}+\alpha p_{k}\right)^{\top} p_{k} \quad \text { which means } \quad \phi^{\prime}(0)=\nabla f_{k}^{\top} p_{k}
$$

Note that $\phi^{\prime}(0)$ must be negative as p_{k} is a descent direction.

Armijo Condition

The sufficient decrease condition (aka Armijo condition)

$$
\phi(\alpha) \leq \phi(0)+\alpha\left(\mu_{1} \phi^{\prime}(0)\right)
$$

where μ_{1} is a constant such that $0<\mu_{1} \leq 1$

In practice, μ_{1} is several orders smaller than 1 , typically $\mu_{1}=10^{-4}$.

Backtracking Line Search Algorithm

Algorithm 1 Backtracking Line Search
Input: $\alpha_{\text {init }}>0,0<\mu_{1}<1,0<\rho<1$
Output: α^{*} satisfying sufficient decrease condition
1: $\alpha \leftarrow \alpha_{\text {init }}$
2: while $\phi(\alpha)>\phi(0)+\alpha \mu_{1} \phi^{\prime}(0)$ do
3: $\quad \alpha \leftarrow \rho \alpha$
4: end while

The parameter ρ is typically set to 0.5 . It can also be a variable set by a more sophisticated method (interpolation).
The $\alpha_{\text {init }}$ depends on the method for setting the descent direction p_{k}. For Newton and quasi-Newton, it is 1.0, but for other methods, it might be different.

Issues with Backtracking

There are two scenarios where the method does not perform well:

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.
- The guess for the initial step immediately satisfies sufficient decrease. However, the function's slope is still highly negative, and we could have decreased the function value by much more if we had taken a more significant step. In this case, our guess for the initial step is far too small.

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.
- The guess for the initial step immediately satisfies sufficient decrease. However, the function's slope is still highly negative, and we could have decreased the function value by much more if we had taken a more significant step. In this case, our guess for the initial step is far too small.
Even if our original step size is not too far from an acceptable one, the basic backtracking algorithm ignores any information we have about the function values and gradients. It blindly takes a reduced step based on a preselected ratio ρ.

Backtracking Example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& \quad 0.1 x_{1}^{6}-1.5 x_{1}^{4}+5 x_{1}^{2} \\
& \quad+0.1 x_{2}^{4}+3 x_{2}^{2}-9 x_{2}+0.5 x_{1} x_{2} \\
& \mu_{1}= \\
& \\
& \\
& 0^{-4} \text { and } \rho=0.7 .
\end{aligned}
$$

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Typical values of μ_{2} range from 0.1 to 0.9 , depending on the direction setting method.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Typical values of μ_{2} range from 0.1 to 0.9 , depending on the direction setting method.

As μ_{2} tends to 0 , the condition enforces $\phi^{\prime}(\alpha)=0$, which would yield an exact line search.

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

- Sufficient decrease condition

$$
\phi(\alpha) \leq \phi(0)+\mu_{1} \alpha \phi^{\prime}(0)
$$

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

- Sufficient decrease condition

$$
\phi(\alpha) \leq \phi(0)+\mu_{1} \alpha \phi^{\prime}(0)
$$

- Sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

Satisfiability of Strong Wolfe Conditions

Theorem 9
Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable. Let p_{k} be a descent direction at x_{k}, and assume that f is bounded below along the ray $\left\{x_{k}+\alpha p_{k} \mid \alpha>0\right\}$. Then, if $0<\mu_{1}<\mu_{2}<1$, step length intervals exist that satisfy the strong Wolfe conditions.

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Theorem 10 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below, continuously differentiable, and L-smooth. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

1. The bracketing phase finds an interval within which we are certain to find a point that satisfies the strong Wolfe conditions.

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

1. The bracketing phase finds an interval within which we are certain to find a point that satisfies the strong Wolfe conditions.
2. The zooming phase finds a point that satisfies the strong Wolfe conditions within the interval provided by the bracketing phase.

Algorithm 2 Bracketing
Input: $\alpha_{1}>0$ and $\alpha_{\text {max }}$
1: Set $\alpha_{0} \leftarrow 0$
2: $i \leftarrow 1$
3: repeat
4: \quad Evaluate $\phi\left(\alpha_{i}\right)$
5: \quad if $\phi\left(\alpha_{i}\right)>\phi(0)+\alpha_{i} \mu_{1} \phi^{\prime}(0)$ or $\left[\phi\left(\alpha_{i}\right) \geq \phi\left(\alpha_{i-1}\right)\right.$ and $\left.i>1\right]$ then
6: $\quad \alpha^{*} \leftarrow \operatorname{zoom}\left(\alpha_{i-1}, \alpha_{i}\right)$ and stop
7: end if
8: \quad Evaluate $\phi^{\prime}\left(\alpha_{i}\right)$
9: \quad if $\left|\phi^{\prime}\left(\alpha_{i}\right)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|$ then
10: \quad set $\alpha^{*} \leftarrow \alpha_{i}$ and stop
11: else if $\phi^{\prime}\left(\alpha_{i}\right) \geq 0$ then
12: \quad set $\alpha^{*} \leftarrow \operatorname{zoom}\left(\alpha_{i}, \alpha_{i-1}\right)$ and stop
13: end if
14: \quad Choose $\alpha_{i+1} \in\left(\alpha_{i}, \alpha_{\max }\right)$
15: $\quad i \leftarrow i+1$
16: until a condition is met

Explanation of Bracketing

Note that the sequence of trial steps α_{i} is monotonically increasing.

Explanation of Bracketing

Note that the sequence of trial steps α_{i} is monotonically increasing.

Note that zoom is called when one of the following conditions is satisfied:

- α_{i} violates the sufficient decrease condition (lines 5 and 6)
- $\phi\left(\alpha_{i}\right) \geq \phi\left(\alpha_{i-1}\right)$ (also lines 5 and 6)
- $\phi^{\prime}\left(\alpha_{i}\right) \geq 0$ (lines 11 and 12)

The last step increases the α_{i}. May use, e.g., a constant multiple.

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{\mathrm{lo}} \leq \alpha_{\mathrm{hi}}$

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{\mathrm{lo}} \leq \alpha_{\mathrm{hi}}$
- α_{lo} is, among all step lengths generated so far and satisfying the sufficient decrease condition, the one giving the smallest value of ϕ,

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{10} \leq \alpha_{\mathrm{hi}}$
- α_{lo} is, among all step lengths generated so far and satisfying the sufficient decrease condition, the one giving the smallest value of ϕ,
- α_{hi} is chosen so that $\phi^{\prime}\left(\alpha_{\mathrm{lo}}\right)\left(\alpha_{\mathrm{hi}}-\alpha_{\mathrm{lo}}\right)<0$.

That is, ϕ always slopes down from α_{lo} to α_{h}.

```
1: function \(\operatorname{zOOM}\left(\alpha_{\mathrm{lo}}, \alpha_{\text {hi }}\right)\)
2: repeat
3: \(\quad\) Set \(\alpha\) between \(\alpha_{\text {lo }}\) and \(\alpha_{\text {hi }}\) using interpolation
(bisection, quadratic, etc.)
4: \(\quad\) Evaluate \(\phi(\alpha)\)
5 :
if \(\phi(\alpha)>\phi(0)+\alpha \mu_{1} \phi^{\prime}(0)\) or \(\phi(\alpha) \geq \phi\left(\alpha_{10}\right)\) then
    \(\alpha_{\text {hi }} \leftarrow \alpha\)
    else
    Evaluate \(\phi^{\prime}(\alpha)\)
    if \(\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|\) then
        Set \(\alpha^{*} \leftarrow \alpha\) and stop
        end if
        if \(\phi^{\prime}(\alpha)\left(\alpha_{\mathrm{hi}}-\alpha_{\mathrm{lo}}\right) \geq 0\) then
        \(\alpha_{\text {hi }} \leftarrow \alpha_{\text {lo }}\)
        end if
    \(\alpha_{\text {lo }} \leftarrow \alpha\)
    end if
17: until a condition is met
18: end function
```


Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing is achieved in the first iteration by using a significant initial step of $\alpha_{\text {init }}=1.2$ (left). Then, zooming finds an improved point through interpolation.

Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing is achieved in the first iteration by using a significant initial step of $\alpha_{\text {init }}=1.2$ (left). Then, zooming finds an improved point through interpolation.
The small initial step of $\alpha_{\text {init }}=0.05$ (right) does not satisfy the strong Wolfe conditions, and the bracketing phase moves forward toward a flatter part of the function.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.
- Some procedures also stop if the relative change in x is close to machine accuracy or some user-specified threshold.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.
- Some procedures also stop if the relative change in x is close to machine accuracy or some user-specified threshold.
- The presented algorithm is implemented in https://docs.scipy.org/doc/scipy/reference/ generated/scipy.optimize.line_search.html

Unconstrained Optimization Algorithms

Descent Direction

First-Order Methods

Gradient Descent

Consider the gradient descent (aka gradient descent) method where

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\nabla f\left(x_{k}\right)
$$

Gradient Descent

Consider the gradient descent (aka gradient descent) method where

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\nabla f\left(x_{k}\right)
$$

Unfortunately, the gradient does not possess much information about the step size.

So usually, a normalized gradient is used to obtain the direction, and then a line search is performed:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}
$$

The line search is exact if α_{k} minimizes $f\left(x_{k}+\alpha_{k} p_{k}\right)$. Not practical, we usually find α_{k} satisfying the strong Wolfe conditions.

Gradient Descent Algorithm with Line Search

```
Algorithm 3 Gradient Descent with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: while \(\|\nabla f\|_{\infty}>\varepsilon\) do
    3: \(\quad p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\)
    4: \(\quad\) Set \(\alpha_{\text {init }}\) for line search
    5: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    6: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    7: \(\quad k \leftarrow k+1\)
    8: end while
```


Gradient Descent Algorithm with Line Search

Algorithm 4 Gradient Descent with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$

$$
\begin{array}{ll}
\text { 2: } & \text { while }\|\nabla f\|_{\infty}>\varepsilon \text { do } \\
\text { 3: } & p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \\
\text { 4: } & \text { Set } \alpha_{\text {init for fine search }} \\
\text { 5: } & \alpha_{k} \leftarrow \text { linesearch }\left(p_{k}, \alpha_{\text {init }}\right) \\
\text { 6: } & x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
\text { 7: } & k \leftarrow k+1
\end{array}
$$

8: end while

Here $\alpha_{\text {init }}$ can be estimated from the previous step size α_{k-1} by demanding similar decrease in the objective:

$$
\alpha_{\text {init }} p_{k}^{\top} \nabla f_{k} \approx \alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1} \quad \Rightarrow \quad \alpha_{\text {init }}=\alpha_{k-1} \frac{p_{k-1}^{\top} \nabla f_{k-1}}{p_{k}^{\top} \nabla f_{k}}
$$

Gradient Descent Algorithm with Line Search

```
Algorithm 5 Gradient Descent with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: while \(\|\nabla f\|_{\infty}>\varepsilon\) do
    3: \(\quad p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\)
    4: \(\quad\) Set \(\alpha_{\text {init }}\) for line search
    5: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    6: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    7: \(\quad k \leftarrow k+1\)
    8: end while
```


Gradient Descent Algorithm with Line Search

Algorithm 6 Gradient Descent with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$

$$
\begin{array}{ll}
\text { 2: } & \text { while }\|\nabla f\|_{\infty}>\varepsilon \text { do } \\
\text { 3: } & p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \\
\text { 4: } & \text { Set } \alpha_{\text {init for fine search }} \\
\text { 5: } & \alpha_{k} \leftarrow \text { linesearch }\left(p_{k}, \alpha_{\text {init }}\right) \\
\text { 6: } & x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
\text { 7: } & k \leftarrow k+1
\end{array}
$$

8: end while

Here $\alpha_{\text {init }}$ can be estimated from the previous step size α_{k-1} by demanding similar decrease in the objective:

$$
\alpha_{i n i t} p_{k}^{\top} \nabla f_{k}^{\top} \approx \alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top} \quad \Rightarrow \quad \alpha_{i n i t}=\alpha_{k-1} \frac{\alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top}}{\nabla p_{k}^{\top} f_{k}^{\top}}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+\beta x_{2}^{2}
$$

Consider $\beta=1,5,15$ and exact line search

Note that p_{k+1} and p_{k} are always orthogonal.

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

The gradient descent can be prolonged.

Global Convergence with Line Search

Recall the Zoutendijk's theorem.
Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth on a set \mathcal{N} for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathcal{N}
$$

Theorem 11 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below in \mathbb{R}^{n} and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$. Assume also that f is L-smooth on \mathcal{N}. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.
Note that the angle θ_{k} between $p_{k}=-\nabla f_{k}$ and the negative gradient $-\nabla f_{k}$ equals 0 . Hence, $\cos \theta_{k}=1$.

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.
Note that the angle θ_{k} between $p_{k}=-\nabla f_{k}$ and the negative gradient $-\nabla f_{k}$ equals 0 . Hence, $\cos \theta_{k}=1$.

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=\sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Local Linear Convergence of Gradient Descent

Theorem 12
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable, that the line search is exact, and that the descent converges to x^{*} where $\nabla f\left(x^{*}\right)=0$ and the Hessian matrix $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then

$$
f\left(x_{k+1}\right)-f\left(x^{*}\right) \leq\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right]
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of $\nabla^{2} f\left(x^{*}\right)$.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - Gradient Descent

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Rosenbrock Function - Gradient Descent

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.
- Susceptible to scaling of variables (see the paraboloid example).

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.
- Susceptible to scaling of variables (see the paraboloid example).
- THE basis for algorithms training neural networks - a huge amount of specific adjustments are developed for working with huge numbers of variables in neural networks (trillions of weights).

Unconstrained Optimization Algorithms

Descent Direction

Second-Order Methods

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$. We obtain:

$$
H_{k} s=-\nabla f_{k}
$$

Denote by s_{k} the solution, and set $x_{k+1}=x_{k}+s_{k}$.

Newton's Method

```
Algorithm 7 Newton's Method
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: while \(\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon\) do
    3: \(\quad\) Compute \(\nabla f_{k}=\nabla f\left(x_{k}\right)\)
    4: \(\quad\) Solve \(H_{k} p_{k}=-\nabla f_{k}\) for \(p_{k}\)
    5: \(\quad x_{k+1} \leftarrow x_{k}+p_{k}\)
    6: \(\quad k \leftarrow k+1\)
    7: end while
```


Newton's Method - Example

Newton's method finds the minimum of a quadratic function in a single step.

Note that the Newton's method is scale-invariant!

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Convergence Issues

Negative curvature

Also, the computation of the Hessian is costly.

Local Quadratic Convergence of Newton's Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Local Quadratic Convergence of Newton's Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

Local Quadratic Convergence of Newton's Method

Theorem 13

Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically
to x_{*}.
Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

Local Quadratic Convergence of Newton's Method

Theorem 13

Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

However, what happens if we start far away from a minimizer?

Newton's Method with Line Search

```
Algorithm 8 Newton's Method with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: \(\alpha_{\text {init }} \leftarrow 1\)
    3: while \(\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon\) do
    4: \(\quad\) Compute \(\nabla f_{k}=\nabla f\left(x_{k}\right)\)
    5: \(\quad\) Solve \(H_{k} p_{k}=-\nabla f_{k}\) for \(p_{k}\)
    6: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    7: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    8: \(\quad k \leftarrow k+1\)
    9: end while
```


$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - Newton's Method

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 32 iterations of gradient descent.

Rosenbrock Function - Newton's Method

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 10,662 iterations of gradient descent.

Global Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Theorem 14 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below, continuously differentiable, and L-smooth. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.
What if H_{k} is not positive definite or is (nearly) singular?

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Two questions are in order:

- What is a reasonably large δ ?
- How to modify H_{k} so the minimum is large enough?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(-1 / 10,1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(-1 / 10,1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.
Even though f decreases along p_{k}, it is far from the minimum of the quadratic approximation of f.
Note that the original Newton's direction is
$-\operatorname{diag}(1 / 10,1 / 3,-1)(1,-3,2)^{\top}=(-1 / 10,1,2)$ which is completely different.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?
Various methods for computing ΔH_{k} have been devised in literature. Typically, it is based on some computationally cheaper decomposition than spectral decomposition (e.g., Cholesky).

Modified Newton's Method

Algorithm 9 Newton's Method with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$
2: while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
3: $\quad H_{k} \leftarrow \nabla^{2} f\left(x_{k}\right)$
4: \quad if H_{k} is not sufficiently positive definite then
5: $\quad H_{k} \leftarrow H_{k}+\Delta H_{k}$ so that H_{k} is sufficiently pos. definite
6: \quad end if
7: \quad Compute $\nabla f_{k}=\nabla f\left(x_{k}\right)$
8: \quad Solve $H_{k} p_{k}=-\nabla f_{k}$ for p_{k}
9: \quad Set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, here α_{k} sat. the Wolfe cond.
10: $\quad k \leftarrow k+1$
11: end while

Convergence of Modified Newton's Method

Comments on Newton's Method

- Newton's method is scale invariant.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.
In a sense, Newton's method is an impractical "ideal" with which other methods are compared.

The efficiency issues (and the necessity of second-order derivatives) will be mitigated by using quasi-Newton methods.

Quasi-Newton Methods

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Can we find a compromise?

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Can we find a compromise?
Quasi-Newton methods use first derivatives to approximate the Hessian H_{k} in Newton's method with a matrix \tilde{H}_{k}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.

Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

First, it should be symmetric positive definite.
To always yield decrease direction.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

First, it should be symmetric positive definite.

To always yield decrease direction.

Second, extrapolating from the single variable secant method, we demand

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

This is the secant condition.

Secant Condition

Consider the secant condition:

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

The notation is usually simplified by

$$
s_{k}=x_{k+1}-x_{k} \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
$$

So that the secant condition becomes

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Secant Condition

Consider the secant condition:

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

The notation is usually simplified by

$$
s_{k}=x_{k+1}-x_{k} \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
$$

So that the secant condition becomes

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Does it have a symmetric positive definite solution?

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

- The condition $s_{k}^{\top} y_{k}>0$ is satisfied if the line search satisfies the strong Wolfe conditions.

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

- The condition $s_{k}^{\top} y_{k}>0$ is satisfied if the line search satisfies the strong Wolfe conditions.

As a corollary, we obtain the following:
Theorem 15
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

has a symmetric positive definite solution \tilde{H}_{k+1}.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.
We also want \tilde{H}_{k+1} to be symmetric positive definite.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.
We also want \tilde{H}_{k+1} to be symmetric positive definite.

We strive to choose \tilde{H}_{k+1} "close" to \tilde{H}_{k}.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Now, the secant condition is satisfied:

$$
\tilde{H}_{k+1} s_{k}=\tilde{H}_{k} s_{k}+\frac{u u^{\top} s_{k}}{u^{\top} s_{k}}=\tilde{H}_{k} s_{k}+u=\tilde{H}_{k} s_{k}+\left(y_{k}-\tilde{H}_{k} s_{k}\right)=y_{k}
$$

By the way, the matrix $\frac{u u^{\top}}{u^{\top} s_{k}}$ is of rank one and is a unique symmetric rank one matrix which makes \tilde{H}_{k+1} satisfy the secant condition.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Now, the secant condition is satisfied:

$$
\tilde{H}_{k+1} s_{k}=\tilde{H}_{k} s_{k}+\frac{u u^{\top} s_{k}}{u^{\top} s_{k}}=\tilde{H}_{k} s_{k}+u=\tilde{H}_{k} s_{k}+\left(y_{k}-\tilde{H}_{k} s_{k}\right)=y_{k}
$$

By the way, the matrix $\frac{u u^{\top}}{u^{\top} s_{k}}$ is of rank one and is a unique symmetric rank one matrix which makes \tilde{H}_{k+1} satisfy the secant condition.
To obtain a quasi-Newton method, it suffices to initialize \tilde{H}_{0}, typically to the identity I, and use \tilde{H}_{k} instead of the Hessian $H_{k}=\nabla^{2} f_{k}$ in Newton's method.

Symmetric Rank One Update

Algorithm 10 SR1

Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point

$$
k \leftarrow 0, \alpha_{\text {init }} \leftarrow 1, \tilde{H}_{0} \leftarrow I
$$

while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
Compute $\nabla f_{k}=\nabla f\left(x_{k}\right)$
Solve for p_{k} in $\tilde{H}_{k} p_{k}=-\nabla f_{k}$
$\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
$x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
$s \leftarrow x_{k+1}-x_{k}$
$y \leftarrow \nabla f_{k+1}-\nabla f_{k}$
$u \leftarrow y-\tilde{H}_{k} s$
$\tilde{H}_{k+1} \leftarrow \tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s}$
$k \leftarrow k+1$
end while
Note that the denominator $u^{\top} s_{k}$ can be 0 , in which case the update is impossible. The usual strategy is to skip the update and set $\tilde{H}_{k+1}=\tilde{H}_{k}$.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.
At the initial point, $\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=\|-c\|_{\infty}=9$, so this point is not optimal.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.
At the initial point, $\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=\|-c\|_{\infty}=9$, so this point is not optimal.The first search direction is

$$
p_{0}=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

The exact line search gives $\alpha_{0}=0.3333$.

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{c}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

and

$$
\tilde{H}_{1}=I+\frac{\left(y_{0}-I s_{0}\right)\left(y_{0}-I s_{0}\right)^{\top}}{\left(y_{0}-I s_{0}\right)^{\top} s_{0}}=\left(\begin{array}{lll}
1.1531 & 0.3445 & 0.4593 \\
0.3445 & 1.7751 & 1.0335 \\
0.4593 & 1.0335 & 2.3780
\end{array}\right)
$$

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{c}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

and

$$
\tilde{H}_{1}=I+\frac{\left(y_{0}-I s_{0}\right)\left(y_{0}-I s_{0}\right)^{\top}}{\left(y_{0}-I s_{0}\right)^{\top} s_{0}}=\left(\begin{array}{lll}
1.1531 & 0.3445 & 0.4593 \\
0.3445 & 1.7751 & 1.0335 \\
0.4593 & 1.0335 & 2.3780
\end{array}\right)
$$

At this new point $\left\|\nabla f\left(x_{1}\right)\right\|_{\infty}=2.66$ so we keep going, obtaining the search direction

$$
p_{1}=\left(\begin{array}{c}
-2.9137 \\
-0.5557 \\
1.9257
\end{array}\right)
$$

and the step length $\alpha_{1}=0.3942$.

Example

This gives the new estimates:

$$
x_{2}=\left(\begin{array}{l}
-3.81 \\
-3.21 \\
-1.90
\end{array}\right), \quad \nabla f_{2}=\left(\begin{array}{c}
0.36 \\
-0.65 \\
0.36
\end{array}\right), \quad s_{1}=\left(\begin{array}{c}
-1.14 \\
-0.21 \\
0.75
\end{array}\right), \quad y_{1}=\left(\begin{array}{c}
-2.29 \\
-0.65 \\
3.03
\end{array}\right)
$$

and

$$
\tilde{H}_{2}=\left(\begin{array}{ccc}
1.6568 & 0.6102 & -0.3432 \\
0.6102 & 1.9153 & 0.6102 \\
-0.3432 & 0.6102 & 3.6568
\end{array}\right)
$$

At the point $x_{2},\left\|\nabla f\left(x_{2}\right)\right\|_{\infty}=0.65$ so we keep going, with

$$
p_{2}=\left(\begin{array}{c}
-0.4851 \\
0.5749 \\
-0.2426
\end{array}\right)
$$

and $\alpha=0.3810$.

Example

This gives

$$
x_{3}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right), \quad \nabla f_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad s_{2}=\left(\begin{array}{c}
-0.18 \\
0.21 \\
-0.09
\end{array}\right), \quad y_{2}=\left(\begin{array}{c}
-0.36 \\
0.65 \\
-0.36
\end{array}\right),
$$

and $\tilde{H}_{3}=Q$. Now $\left\|\nabla f\left(x_{3}\right)\right\|_{\infty}=0$, so we stop.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.
Still, the symmetric rank one approximation is used in practice, especially in trust region methods.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.
Still, the symmetric rank one approximation is used in practice, especially in trust region methods.

However, for line search, let us try a bit "richer" solution to the secant condition.

Symmetric Rank Two Update

Consider

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

Once again, verifying $\tilde{H}_{k+1} s_{k}=y_{k}$ is not difficult.
Lemma 1
Assume that \tilde{H}_{k} is symmetric positive definite.
Then \tilde{H}_{k+1} is symmetric positive definite iff $y_{k}^{\top} s_{k}>0$.
We know that line search satisfying the strong Wolfe conditions preserves $y_{k}^{\top} s_{k}>0$.
Thus, starting with a symmetric positive definite \tilde{H}_{0} (e.g., a scalar multiple of I), every \tilde{H}_{k} is symmetric positive definite and satisfies the secant condition.

BFGS

Algorithm 11 BFGS v1
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
$k \leftarrow 0, \alpha_{\text {init }} \leftarrow 1, \tilde{H}_{0} \leftarrow I$
while $\left\|\nabla f_{k}\right\|_{\infty}>\tau$ do
Compute $\nabla f_{k}=\nabla f\left(x_{k}\right)$
Solve for p_{k} in $\tilde{H}_{k} p_{k}=-\nabla f_{k}$
$\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
$x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
$s \leftarrow x_{k+1}-x_{k}$
$y \leftarrow \nabla f_{k+1}-\nabla f_{k}$
$\tilde{H}_{k+1} \leftarrow \tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s\right)\left(\tilde{H}_{k} s\right)^{\top}}{s^{\top} \tilde{H}_{k} s}+\frac{y y^{\top}}{y^{\top} s}$
$k \leftarrow k+1$
end while

Note that we still have to solve a linear system for p_{k}.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.
At iteration $0,\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=9$, so this point is not optimal.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.
At iteration $0,\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=9$, so this point is not optimal.
The search direction is

$$
p_{0}=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

and $\alpha_{0}=0.3333$.

Example

The new estimate of the solution and the new Hessian approximation are

$$
x_{1}=\left(\begin{array}{l}
-2.6667 \\
-3.0000 \\
-2.6667
\end{array}\right) \quad \text { and } \quad \tilde{H}_{1}=\left(\begin{array}{lll}
1.1021 & 0.3445 & 0.5104 \\
0.3445 & 1.7751 & 1.0335 \\
0.5104 & 1.0335 & 2.3270
\end{array}\right)
$$

Example

The new estimate of the solution and the new Hessian approximation are
$x_{1}=\left(\begin{array}{l}-2.6667 \\ -3.0000 \\ -2.6667\end{array}\right) \quad$ and $\quad \tilde{H}_{1}=\left(\begin{array}{lll}1.1021 & 0.3445 & 0.5104 \\ 0.3445 & 1.7751 & 1.0335 \\ 0.5104 & 1.0335 & 2.3270\end{array}\right)$.
At iteration $1,\left\|\nabla f\left(x_{1}\right)\right\|_{\infty}=2.6667$, so we continue. The next search direction is

$$
p_{1}=\left(\begin{array}{r}
-3.2111 \\
-0.6124 \\
2.1223
\end{array}\right)
$$

and $\alpha_{1}=0.3577$.

Example

This gives the estimates.
$x_{2}=\left(\begin{array}{l}-3.8152 \\ -3.2191 \\ -1.9076\end{array}\right) \quad$ and $\quad \tilde{H}_{2}=\left(\begin{array}{rrr}1.6393 & 0.6412 & -0.3607 \\ 0.6412 & 1.8600 & 0.6412 \\ -0.3607 & 0.6412 & 3.6393\end{array}\right)$.
At iteration 2, $\left\|\nabla f\left(x_{2}\right)\right\|_{\infty}=0.6572$, so we continue, computing

$$
p_{2}=\left(\begin{array}{r}
-0.5289 \\
0.6268 \\
-0.2644
\end{array}\right)
$$

and $\alpha_{2}=0.3495$. This gives

$$
x_{3}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right) \quad \text { and } \quad \tilde{H}_{3}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Now $\left\|\nabla f\left(x_{3}\right)\right\|_{\infty}=0$, so we stop.
Notice that we got the same x_{1}, x_{2}, x_{3} as for SR1. This follows from using the exact line search and the quadratic problem. It does not hold in general.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - BFGS

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$. Compare this with 32 iterations of gradient descent and 12 iterations of Newton's method.

Rosenbrock Function - BFGS

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare with 10,662 iterations of gradient descent and 24 iterations of Newton's method.

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.
Ideally, we would like to compute \tilde{H}_{k}^{-1} iteratively along the optimization, i.e.,

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\text { something }
$$

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.
Ideally, we would like to compute \tilde{H}_{k}^{-1} iteratively along the optimization, i.e.,

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\text { something }
$$

To get such a "something" we use the following Sherman-Morrison-Woodbury (SMW) formula:

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

Here A is a $(n \times n)$-matrix, U, V are $(n \times m)$-matrices with $m \leq n$.

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top} y_{k}}
$$

Yes, only y and s swapped places.

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top} y_{k}}
$$

Yes, only y and s swapped places.
This allows us to avoid solving $\tilde{H}_{k} p_{k}=-\nabla f_{k}$ for p_{k} in every iteration.

Rank One Update V2

Algorithm 12 Rank 1 update v1

Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0, \alpha_{\text {init }} \leftarrow 1, \tilde{H}_{0} \leftarrow I$
2: while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
3: \quad Compute $\nabla f_{k}=\nabla f\left(x_{k}\right)$
4: $\quad p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k}$
5: $\quad \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
6: $\quad x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
7: $\quad s \leftarrow x_{k+1}-x_{k}$
8: $\quad y \leftarrow \nabla f_{k+1}-\nabla f_{k}$
9: $\quad \tilde{H}_{k+1}^{-1} \leftarrow \tilde{H}_{k}^{-1}+\frac{\left(s-\tilde{H}_{k}^{-1} y\right)\left(s-\tilde{H}_{k}^{-1} y\right)^{\top}}{\left(s-\tilde{H}_{k}^{-1} y\right)^{\top} y}$
10: $\quad k \leftarrow k+1$

11: end while

BFGS

Applying SMW to the BFGS Hessian update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

BFGS

Applying SMW to the BFGS Hessian update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\left(1-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) \tilde{H}_{k}^{-1}\left(1-\frac{y_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

We avoid solving the linear system for p_{k}.

BFGS V2

Algorithm 13 BFGS v2
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0, \alpha_{\text {init }} \leftarrow 1, \tilde{H}_{0} \leftarrow I$
2: while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
3: \quad Compute $\nabla f_{k}=\nabla f\left(x_{k}\right)$
4: $\quad p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k}$
5: $\quad \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
6: $\quad x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
7: $\quad s \leftarrow x_{k+1}-x_{k}$
8: $\quad y \leftarrow \nabla f_{k+1}-\nabla f_{k}$
9: $\quad \tilde{H}_{k+1}^{-1} \leftarrow\left(I-\frac{s y^{\top}}{s^{\top} y}\right) \tilde{H}_{k}^{-1}\left(I-\frac{y s^{\top}}{s^{\top} y}\right)+\frac{s s^{\top}}{s^{\top} y}$
10: $\quad k \leftarrow k+1$

11: end while

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=I$.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=I$.
This is the basic idea behind limited-memory BFGS which stores only the running window s_{k-m}, \ldots, s_{k} and y_{k-m}, \ldots, y_{k} and computes $\tilde{H}_{k}^{-1} \nabla f_{k}$ using these values.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=l$.
This is the basic idea behind limited-memory BFGS which stores only the running window s_{k-m}, \ldots, s_{k} and y_{k-m}, \ldots, y_{k} and computes $\tilde{H}_{k}^{-1} \nabla f_{k}$ using these values.
The space complexity becomes $n m$, which is beneficial when n is large.

Another View on BFGS (Optional)

We search for \tilde{H}_{k+1}^{-1} where \tilde{H}_{k+1} satisfies $\tilde{H}_{k+1} s_{k}=y_{k}$. Search for a solution \tilde{V} for $\tilde{V}_{y_{k}}=s_{k}$.
The idea is to use \tilde{V} close to \tilde{H}_{k}^{-1} (in some sense):

$$
\min _{\tilde{H}}\left\|\tilde{V}-\tilde{H}_{k}^{-1}\right\|
$$

subject to $\quad \tilde{V}=\tilde{V}^{\top}, \quad \tilde{V}_{y_{k}}=s_{k}$
Here the norm is weighted Frobenius norm:

$$
\|A\| \equiv\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F},
$$

where $\|\cdot\|_{F}$ is defined by $\|C\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{2}$. The weight W can be chosen as any matrix satisfying the relation $W_{y_{k}}=s_{k}$.
BFGS is obtained with $W=\bar{G}_{k}^{-1}$ where \bar{G}_{k} is the average Hessian defined by $\bar{G}_{k}=\left[\int_{0}^{1} \nabla^{2} f\left(x_{k}+\tau \alpha_{k} p_{k}\right) d \tau\right]$
Solving this gives precisely the BFGS formula for \tilde{H}_{k+1}^{-1}.

Global Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Theorem 16 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below, continuously differentiable, and L-smooth. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-\tilde{H}_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-\tilde{H}_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Behavior of BFGS

- It may happen that \tilde{H}_{k} becomes a poor approximation of the Hessian H_{k}. If, e.g., y_{k}^{\top} is tiny, then \tilde{H}_{k+1} will be huge.
However, it has been proven experimentally that if \tilde{H}_{k} wrongly estimates the curvature of f and this estimate slows down the iteration, then the approximation will tend to correct the bad Hessian approximations.
The above self-correction works only if an appropriate line search is performed (strong Wolfe conditions).

Behavior of BFGS

- It may happen that \tilde{H}_{k} becomes a poor approximation of the Hessian H_{k}. If, e.g., y_{k}^{\top} is tiny, then \tilde{H}_{k+1} will be huge.
However, it has been proven experimentally that if \tilde{H}_{k} wrongly estimates the curvature of f and this estimate slows down the iteration, then the approximation will tend to correct the bad Hessian approximations.
The above self-correction works only if an appropriate line search is performed (strong Wolfe conditions).
- There are more sophisticated ways of setting the initial Hessian approximation H_{0}.
See Numerical Optimization, Nocedal \& Wright, page 201.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.
- Compared with Newton's method, no second derivatives are computed.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.
- Compared with Newton's method, no second derivatives are computed.
- Local superlinear convergence can be proved under specific conditions.
Compare with local quadratic convergence of Newton's method and linear convergence of gradient descent.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Steepest descent

Quasi-Newton

Newton

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Steepest descent

Quasi-Newton

Newton

Rosenbrock:

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}
$$

Computational Complexity

> Algorithm
> Steepest Descent
> Newton's Method $O\left(n^{3}\right)$ to compute Hessian and solve system BFGS $\quad O\left(n^{2}\right)$ to update Hessian approximation

Table: Summary of the computational complexity for each optimization algorithm.

- Steepest Descent: Simple but often slow, requiring many iterations.
- Newton's Method: Fast convergence but expensive per iteration.
- BFGS: Quasi-Newton, no Hessian needed, good speed and iteration count balance.

Constrained Optimization

Constrained Optimization Problem

Recall that the constrained optimization problem is

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

x^{*} is now a constrained minimizer if

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } \quad x \in \mathcal{F}
$$

where \mathcal{F} is the feasibility region

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, i=1, \ldots, n_{g}, j=1, \ldots, n_{h}\right\}
$$

Thus, to find a constrained minimizer, we have to inspect unconstrained minima of f inside of \mathcal{F} and points along the boundary of \mathcal{F}.

COP - Example

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}-\frac{1}{2} x_{1}-x_{2}-2 \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1}+x_{2}+1 \leq 0 \\
& g_{2}\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1}-4 \leq 0
\end{array}
$$

Equality Constraints

Let us restrict our problem only to the equality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Assume that f and h_{j} have continuous second derivatives.
Now, we try to imitate the theory from the unconstrained case and characterize minima using gradients.
This time, we must consider the gradient of f and h_{j}.

Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Note that if x^{*} is an unconstrained minimizer of f, then

$$
f\left(x^{*}+p\right) \geq f\left(x^{*}\right)
$$

for all p small enough.

Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Note that if x^{*} is an unconstrained minimizer of f, then

$$
f\left(x^{*}+p\right) \geq f\left(x^{*}\right)
$$

for all p small enough.
Together with the Taylor approximation, we obtain

$$
f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top} p \geq f\left(x^{*}\right)
$$

and hence

$$
\nabla f\left(x^{*}\right)^{\top} p \geq 0
$$

The hyperplane defined by $\nabla f^{\top} p=0$ contains directions p of zero variation in f.

In the unconstrained case, x^{*} is minimizer only if $\nabla f\left(x^{*}\right)=0$ because otherwise there would be a direction p satisfying $\nabla f\left(x^{*}\right) p<0$, a decrease direction.

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
l.e., point into the feasible region.

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Assuming $x \in \mathcal{F}$, we have $h_{j}(x)=0$ for all j and thus

$$
h_{j}(x+p) \approx \nabla h_{j}(x)^{\top} p
$$

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Assuming $x \in \mathcal{F}$, we have $h_{j}(x)=0$ for all j and thus

$$
h_{j}(x+p) \approx \nabla h_{j}(x)^{\top} p
$$

As p is a feasible direction iff $h_{j}(x+p)=0$, we obtain that p is a feasible direction iff $\nabla h_{j}(x)^{\top} p=0$ for all j

Feasible Points and Directions

Feasible point

Here, the only feasible direction at x is $p=0$.

Feasible Points and Directions

Here the feasible directions at x^{*} point along the red line, i.e.,

$$
\nabla h_{1}\left(x^{*}\right) p=0 \quad \nabla h_{2}\left(x^{*}\right) p=0
$$

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.
Note that if p is a feasible direction, then $-p$ is also, and thus $\nabla f\left(x^{*}\right)^{\top}(-p) \geq 0$. So finally,

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.
Note that if p is a feasible direction, then $-p$ is also, and thus $\nabla f\left(x^{*}\right)^{\top}(-p) \geq 0$. So finally,
If x^{*} is a constrained minimizer, then

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.
Observe that at an optimum, ∇f lies in the space spanned by the gradients of constraint functions.

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.
Observe that at an optimum, ∇f lies in the space spanned by the gradients of constraint functions.

There are Lagrange multipliers λ_{1}, λ_{2} satisfying

$$
\nabla f\left(x^{*}\right)=-\left(\lambda_{1} \nabla h_{1}+\lambda_{2} \nabla h_{2}\right)
$$

The minus sign is arbitrary for equality constraints but will be significant when dealing with inequality constraints.

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

But then, from the geometry of the problem, we obtain
Theorem 17
Consider the COP with only equality constraints and f and all h_{j} twice continuously differentiable.
Assume that x^{*} is a constrained minimizer and that x^{*} is regular, which means that $\nabla h_{j}\left(x^{*}\right)$ are linearly independent.
Then there are $\lambda_{1}, \ldots, \lambda_{n_{h}} \in \mathbb{R}$ satisfying

$$
\nabla f\left(x^{*}\right)=-\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}\left(x^{*}\right)
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{n_{h}}$ are called Lagrange multipliers.

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Note that the stationary point of \mathcal{L} gives us the Lagrange multipliers:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\nabla f(x)+\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x) \\
& \nabla_{\lambda} \mathcal{L}=h(x)
\end{aligned}
$$

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Note that the stationary point of \mathcal{L} gives us the Lagrange multipliers:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\nabla f(x)+\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x) \\
& \nabla_{\lambda} \mathcal{L}=h(x)
\end{aligned}
$$

Now putting $\nabla \mathcal{L}(x)=0$, we obtain precisely the above properties of the constrained minimizer:

$$
h(x)=0 \quad \text { and } \quad \nabla f(x)=-\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x)
$$

So we can now use methods for searching stationary points. This will lead to the Lagrange-Newton method.
$\underset{x_{1}}{\operatorname{minimize}} f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

$\underset{x_{1}, x_{2}}{\operatorname{minimize}} \quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

$\underset{x_{1}, x_{2}}{\operatorname{minimize}} \quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $\quad h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

Solving these three equations for the three unknowns $\left(x_{1}, x_{2}, \lambda\right)$, we obtain two possible solutions:

$$
\begin{aligned}
& x_{A}=\left(x_{1}, x_{2}\right)=(-\sqrt{2},-\sqrt{2} / 2), \quad \lambda_{A}=\sqrt{2} \\
& x_{B}=\left(x_{1}, x_{2}\right)=(\sqrt{2}, \sqrt{2} / 2), \quad \lambda_{A}=-\sqrt{2}
\end{aligned}
$$

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).
Consider Lagrangian Hessian:

$$
H(x, \lambda)=H_{f}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} H_{h_{j}}(x)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}. Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).
Consider Lagrangian Hessian:

$$
H(x, \lambda)=H_{f}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} H_{h_{j}}(x)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}.
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!
The second-order sufficient conditions are as follows: Assume x^{*} is regular and feasible. Also, assume that there is λ^{*} s.t.

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}}-\lambda_{j}^{*} \nabla h_{j}\left(x^{*}\right)
$$

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).
Consider Lagrangian Hessian:

$$
H(x, \lambda)=H_{f}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} H_{h_{j}}(x)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}.
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!
The second-order sufficient conditions are as follows: Assume x^{*} is regular and feasible. Also, assume that there is λ^{*} s.t.

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}}-\lambda_{j}^{*} \nabla h_{j}\left(x^{*}\right)
$$

and that

$$
p^{\top} H\left(x^{*}, \lambda^{*}\right) p>0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Then, x^{*} is a constrained minimizer of f.

Inequality Constraints

Recall that the constrained optimization problem is

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Inequality Constraints

Recall that the constrained optimization problem is

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Lagrange multipliers and the Lagrangian function can be extended to deal with inequality constraints.

The resulting necessary conditions for constrained minima are called Karush-Tucker-Kuhn (KKT) conditions.
In this course, Lagrange methods are considered only for equality-constrained problems. So, we omit further discussion of KKT.

Constrained Optimization

Sequential Quadratic Programming

Quadratic Programming

The quadratic optimization problem with equality constraints is to minimize $\frac{1}{2} x^{\top} Q x+q^{\top} x$
by varying $\quad x$
subject to $A x+b=0$

Quadratic Programming

The quadratic optimization problem with equality constraints is to

$$
\text { minimize } \frac{1}{2} x^{\top} Q x+q^{\top} x
$$

by varying x
subject to $A x+b=0$
Here

- Q is a $n \times n$ symmetric matrix. For simplicity assume positive definite.
- A is a $m \times n$ matrix. Assume full rank.

Quadratic Programming

How to solve the quadratic program?

Quadratic Programming

How to solve the quadratic program?
Consider the Lagrangian function

$$
L(x, \lambda)=\frac{1}{2} x^{\top} Q x+q^{\top} x+\lambda^{\top}(A x+b)
$$

Quadratic Programming

How to solve the quadratic program?
Consider the Lagrangian function

$$
L(x, \lambda)=\frac{1}{2} x^{\top} Q x+q^{\top} x+\lambda^{\top}(A x+b)
$$

and its partial derivatives:

$$
\begin{aligned}
& \nabla_{x} L(x)=Q x+q+A^{\top} \lambda=0 \\
& \nabla_{\lambda} L(x)=A x+b=0
\end{aligned}
$$

Quadratic Programming

How to solve the quadratic program?
Consider the Lagrangian function

$$
L(x, \lambda)=\frac{1}{2} x^{\top} Q x+q^{\top} x+\lambda^{\top}(A x+b)
$$

and its partial derivatives:

$$
\begin{aligned}
& \nabla_{x} L(x)=Q x+q+A^{\top} \lambda=0 \\
& \nabla_{\lambda} L(x)=A x+b=0
\end{aligned}
$$

For Q positive definite, we know that a solution to the above system is a minimizer.
So in order to solve the quadratic program, it suffices to solve the system of linear equations.

Lagrange-Newton

Now consider an arbitrary $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and arbitrary constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Consider the Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Lagrange-Newton

Now consider an arbitrary $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and arbitrary constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Consider the Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

We search for the stationary point of \mathcal{L}, that is $\left(x^{*}, \lambda^{*}\right)$ satisfying

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{j=1}^{n_{h}} \lambda_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 \\
& \nabla_{\lambda} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=h\left(x^{*}\right)=0
\end{aligned}
$$

These are $n+n_{h}$ equations in unknowns $\left(x^{*}, \lambda^{*}\right)$.

Lagrange-Newton

Now consider an arbitrary $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and arbitrary constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Consider the Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

We search for the stationary point of \mathcal{L}, that is $\left(x^{*}, \lambda^{*}\right)$ satisfying

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{j=1}^{n_{h}} \lambda_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 \\
& \nabla_{\lambda} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=h\left(x^{*}\right)=0
\end{aligned}
$$

These are $n+n_{h}$ equations in unknowns $\left(x^{*}, \lambda^{*}\right)$.
From Lagrange theorem: If x^{*} is regular and solves the COP, then there exists λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ solves the system of equations.

Lagrange-Newton

Now consider an arbitrary $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and arbitrary constraint functions $h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Consider the Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+\lambda^{\top} h(x) \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

We search for the stationary point of \mathcal{L}, that is $\left(x^{*}, \lambda^{*}\right)$ satisfying

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{j=1}^{n_{h}} \lambda_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0 \\
& \nabla_{\lambda} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=h\left(x^{*}\right)=0
\end{aligned}
$$

These are $n+n_{h}$ equations in unknowns $\left(x^{*}, \lambda^{*}\right)$.
From Lagrange theorem: If x^{*} is regular and solves the COP, then there exists λ^{*} such that $\left(x^{*}, \lambda^{*}\right)$ solves the system of equations.

We use Newton's method to solve the system of equations.

Lagrange-Newton

Start with some $\left(x_{0}, \lambda_{0}\right)$ and compute $\left(x_{1}, \lambda_{1}\right), \ldots,\left(x_{k}, \lambda_{k}\right), \ldots$

Lagrange-Newton

Start with some (x_{0}, λ_{0}) and compute (x_{1}, λ_{1}), $\ldots,\left(x_{k}, \lambda_{k}\right), \ldots$ In every step we compute $\left(x_{k+1}, \lambda_{k+1}\right)$ from (x_{k}, λ_{k}) using Newton's step.

Lagrange-Newton

Start with some (x_{0}, λ_{0}) and compute (x_{1}, λ_{1}), $\ldots,\left(x_{k}, \lambda_{k}\right), \ldots$
In every step we compute $\left(x_{k+1}, \lambda_{k+1}\right)$ from (x_{k}, λ_{k}) using
Newton's step.
Consider the gradient of the Lagrangian:

$$
\begin{aligned}
\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right) & =\left(\nabla_{x} \mathcal{L}\left(x_{k}, \lambda_{k}\right), \nabla_{\lambda} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right)^{\top} \\
& =\left(\nabla f\left(x_{k}\right)+\sum_{j=1}^{n_{h}} \lambda_{k j} \nabla h_{j}\left(x_{k}\right), \quad h\left(x_{k}\right)\right)^{\top} \in \mathbb{R}^{n+n_{h}}
\end{aligned}
$$

Lagrange-Newton

Start with some (x_{0}, λ_{0}) and compute $\left(x_{1}, \lambda_{1}\right), \ldots,\left(x_{k}, \lambda_{k}\right), \ldots$
In every step we compute $\left(x_{k+1}, \lambda_{k+1}\right)$ from (x_{k}, λ_{k}) using
Newton's step.
Consider the gradient of the Lagrangian:

$$
\begin{aligned}
\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right) & =\left(\nabla_{x} \mathcal{L}\left(x_{k}, \lambda_{k}\right), \nabla_{\lambda} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right)^{\top} \\
& =\left(\nabla f\left(x_{k}\right)+\sum_{j=1}^{n_{h}} \lambda_{k j} \nabla h_{j}\left(x_{k}\right), \quad h\left(x_{k}\right)\right)^{\top} \in \mathbb{R}^{n+n_{h}}
\end{aligned}
$$

and the Hessian matrix of the (complete) Lagrangian

$$
\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) \in \mathbb{R}^{n+n_{h}} \times \mathbb{R}^{n+n_{h}}
$$

We compute this Hessian in the next slide.

Lagrange-Newton

Start with some (x_{0}, λ_{0}) and compute $\left(x_{1}, \lambda_{1}\right), \ldots,\left(x_{k}, \lambda_{k}\right), \ldots$
In every step we compute $\left(x_{k+1}, \lambda_{k+1}\right)$ from (x_{k}, λ_{k}) using
Newton's step.
Consider the gradient of the Lagrangian:

$$
\begin{aligned}
\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right) & =\left(\nabla_{x} \mathcal{L}\left(x_{k}, \lambda_{k}\right), \nabla_{\lambda} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right)^{\top} \\
& =\left(\nabla f\left(x_{k}\right)+\sum_{j=1}^{n_{h}} \lambda_{k j} \nabla h_{j}\left(x_{k}\right), \quad h\left(x_{k}\right)\right)^{\top} \in \mathbb{R}^{n+n_{h}}
\end{aligned}
$$

and the Hessian matrix of the (complete) Lagrangian

$$
\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) \in \mathbb{R}^{n+n_{h}} \times \mathbb{R}^{n+n_{h}}
$$

We compute this Hessian in the next slide.
The Newton's step is then computed by

$$
\begin{aligned}
& x_{k+1}=x_{k}+p_{k} \quad \lambda_{k+1}=\lambda_{k}+\mu_{k} \\
& \left(p_{k}, \mu_{k}\right)=-\left(\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right)^{-1} \nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right)
\end{aligned}
$$

Hessian of Lagrangian

Note that

$$
\begin{aligned}
\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right) & =\left(\begin{array}{cc}
\nabla_{x x} \mathcal{L}\left(x_{k}, \lambda_{k}\right) & \nabla_{x \lambda} \mathcal{L}\left(x_{k}, \lambda_{k}\right) \\
\nabla_{\lambda x} \mathcal{L}\left(x_{k}, \lambda_{k}\right) & \nabla_{\lambda \lambda} \mathcal{L}\left(x_{k}, \lambda_{k}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
H\left(x_{k}, \lambda_{k}\right) & \nabla h\left(x_{k}\right) \\
\nabla h\left(x_{k}\right)^{\top} & 0
\end{array}\right)
\end{aligned}
$$

Here H is the Lagrangian-Hessian:

$$
H\left(x_{k}, \lambda_{k}\right)=H_{f}\left(x_{k}\right)+\sum_{j=1}^{n_{h}} \lambda_{k j} H_{h_{j}}\left(x_{k}\right)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}.

$$
\nabla h\left(x_{k}\right)=\left(\nabla h_{1}\left(x_{k}\right) \cdots \nabla h_{n_{h}}\left(x_{k}\right)\right)
$$

is the matrix of columns $\nabla h_{j}\left(x_{k}\right)$ for $j=1, \ldots, n_{h}$.

Lagrange-Newton for Equality Constraints

```
Algorithm 14 Lagrange-Newton
    1: Choose starting point \(x_{0}\)
    2: \(k \leftarrow 0\)
    3: repeat
    4: \(\quad\) Compute \(\nabla f\left(x_{k}\right), \nabla h\left(x_{k}\right), h\left(x_{k}\right)\)
    5: \(\quad\) Compute \(\nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right)\)
    6: \(\quad\) Compute Hessians \(H_{f}\left(x_{k}\right), H_{h_{j}}\left(x_{k}\right)\) for \(j=1, \ldots, n_{h}\)
    7: Compute Lagrangian-Hessian \(H\left(x_{k}, \lambda_{k}\right)\)
    8: \(\quad\) Compute \(\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\)
    9: \(\quad\) Compute \(\left(p_{k}, \mu_{k}\right)^{\top}=-\left(\nabla^{2} \mathcal{L}\left(x_{k}, \lambda_{k}\right)\right)^{-1} \nabla \mathcal{L}\left(x_{k}, \lambda_{k}\right)\)
10: \(\quad x_{k+1} \leftarrow x_{k}+p_{k}\)
11: \(\quad \lambda_{k+1} \leftarrow \lambda_{k}+\mu_{k}\)
12: \(\quad k \leftarrow k+1\)
13: until convergence
```


Sequential Quadratic Programming for Inequality Constraints

Introducing inequality constraints brings serious problems.
The main problem is caused by the fact that active constraints behave differently from inactive ones.

Sequential Quadratic Programming for Inequality Constraints

Introducing inequality constraints brings serious problems.
The main problem is caused by the fact that active constraints behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through possible combinations of active/inactive constraints and solve for each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game theory.

Sequential Quadratic Programming for Inequality Constraints

Introducing inequality constraints brings serious problems.
The main problem is caused by the fact that active constraints behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through possible combinations of active/inactive constraints and solve for each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game theory.

We will consider this type of algorithm only for linear programming (the simplex algorithm).

Summary of Differentiable Optimization

We have considered optimization for differentiable f and h_{j} 's.
We have considered both constrained and unconstrained optimization problems.

Primarily line-search methods: Local search, in every step set a direction and a step length.
The step length should satisfy the strong Wolfe conditions.

Summary of Unconstrained Methods

Consider only f without constraints.
For setting direction we used several methods

- Gradient descent

Go downhill. Only first-order derivatives needed. Zig-zags.

- Newton's method

Always minimize the local quadratic approximation of f. Second-order derivatives needed. Better behavior than GD, computationally heavy.

- quasi-Newton (SR1, BFGS, L-BFGS)

Approximate the quadratic approximation of f. Only first-order derivatives needed. Behaves similarly to Newton's method. Much more computationally efficient.

Summary of Constrained Optimization

Penalty methods, both exterior and interior.
Penalize minimizer approximations out of the feasible region (exterior), or close to the border (interior).

- Exterior

Penalize minimizer approximations out of the feasible region.
Quadratic penalty, both for equality and inequality constraints.

- Interior

Penalize minimizer approximations close to the border (interior). Inverse barrier, logarithmic barrier, only for inequality constraints.

Finally, we have considered the Lagrange-Newton method for equality constraints.

Linear Programming

Linear Optimization Problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \in \mathbb{R}^{n} \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

We assume that

- f is linear, i.e.,

$$
f(x)=c^{\top} x \quad \text { here } c \in \mathbb{R}^{n}
$$

- each g_{i} is linear,
- each h_{j} is linear.

For convenience, in what follows, we also allow constraints of the form $g_{i}(x) \geq 0$.

Example

$$
\begin{array}{rr}
\text { minimize } & z=-x_{1}-2 x_{2} \\
\text { subject to } & -2 x_{1}+x_{2}-2 \leq 0 \\
& -x_{1}+x_{2}-3 \leq 0 \\
& x_{1}-3 \leq 0 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

Example

The lines define the boundaries of the feasible region

$$
\begin{array}{r}
-2 x_{1}+x_{2}=2 \\
-x_{1}+x_{2}=3 \\
x_{1}=3
\end{array}
$$

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=0
\end{aligned}
$$

Standard Form

The standard form linear program

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Here

- $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$
- $c=\left(c_{1}, \ldots, c_{n}\right)^{\top} \in \mathbb{R}^{n}$
- A is an $m \times n$ matrix of elements $a_{i j}$ where $m<n$ and $\operatorname{rank}(A)=m$
That is, all rows of A are linearly independent.
- $b=\left(b_{1}, \ldots, b_{m}\right)^{\top} \geq 0$
$b \geq 0$ means $b_{i} \geq 0$ for all i.

Standard Form

The standard form linear program

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Here

- $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$
- $c=\left(c_{1}, \ldots, c_{n}\right)^{\top} \in \mathbb{R}^{n}$
- A is an $m \times n$ matrix of elements $a_{i j}$ where $m<n$ and $\operatorname{rank}(A)=m$
That is, all rows of A are linearly independent.
- $b=\left(b_{1}, \ldots, b_{m}\right)^{\top} \geq 0$
$b \geq 0$ means $b_{i} \geq 0$ for all i.
Every linear optimization problem can be transformed into a standard linear program such that there is a one-to-one correspondence between solutions of the constraints preserving values of the objective.

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.
2. Transform every $g_{i}(x) \leq 0$ to $g_{i}(x)+s_{i}=0, s_{i} \geq 0$. Here s_{i} are new variables (slack variables).

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.
2. Transform every $g_{i}(x) \leq 0$ to $g_{i}(x)+s_{i}=0, s_{i} \geq 0$. Here s_{i} are new variables (slack variables).
3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form $A x=b, x \geq 0$.

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.
2. Transform every $g_{i}(x) \leq 0$ to $g_{i}(x)+s_{i}=0, s_{i} \geq 0$. Here s_{i} are new variables (slack variables).
3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form $A x=b, x \geq 0$.
4. Remove linearly dependent equations from $A x=b$.

This step does not alter the set of solutions.

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.
2. Transform every $g_{i}(x) \leq 0$ to $g_{i}(x)+s_{i}=0, s_{i} \geq 0$. Here s_{i} are new variables (slack variables).
3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form $A x=b, x \geq 0$.
4. Remove linearly dependent equations from $A x=b$.

This step does not alter the set of solutions.
5. If $m \geq n$, the constraints either have a unique or no solution. Neither of the cases is interesting for optimization. Hence, $m<n$.

Transformation to Standard Form

1. For every variable x_{i} introduce new variables $x_{i}^{\prime}, x_{i}^{\prime \prime}$, replace every occurrence of x_{i} with $x_{i}^{\prime}-x_{i}^{\prime \prime}$, and introduce constraints $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. Note that if a constraint is in the form $x_{i}+\zeta \geq 0$ we may simply replace x_{i} with $x_{i}^{\prime}-\zeta$ and introduce $x_{i}^{\prime} \geq 0$.
2. Transform every $g_{i}(x) \leq 0$ to $g_{i}(x)+s_{i}=0, s_{i} \geq 0$. Here s_{i} are new variables (slack variables).
3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form $A x=b, x \geq 0$.
4. Remove linearly dependent equations from $A x=b$.

This step does not alter the set of solutions.
5. If $m \geq n$, the constraints either have a unique or no solution. Neither of the cases is interesting for optimization. Hence, $m<n$.
6. Multiplying equations with $b_{i}<0$ by -1 gives $b \geq 0$

Transformation Example

$$
\begin{array}{cl}
\text { maximize } & z=-5 x_{1}-3 x_{2} \\
\text { subject to } & 3 x_{1}-5 x_{2}-5 \leq 0 \\
& -4 x_{1}-9 x_{2}+4 \leq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\text { maximize } & z=-5 x_{1}-3 x_{2} \\
\text { subject to } & 3 x_{1}-5 x_{2}-5 \leq 0 \\
& -4 x_{1}-9 x_{2}+4 \leq 0
\end{array}
$$

Introduce the bounded variables:

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}-5 \leq 0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+4 \leq 0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}-3 x_{2} \\
\text { subject to } & 3 x_{1}-5 x_{2}-5 \leq 0 \\
& -4 x_{1}-9 x_{2}+4 \leq 0
\end{array}
$$

Introduce the bounded variables:

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}-5 \leq 0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+4 \leq 0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime} \geq 0
\end{array}
$$

Introduce the slack variables:

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}-5=0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}+4=0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}-5=0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}+4=0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}-5=0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}+4=0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Move constants to the right:

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}=5 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}=-4 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}-5=0 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}+4=0 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Move constants to the right:

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}=5 \\
& -4 x_{1}^{\prime}+4 x_{1}^{\prime \prime}-9 x_{2}^{\prime}+9 x_{2}^{\prime \prime}+s_{2}=-4 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Check if all equations are linearly independent.
Multiply the last one with -1 :

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}=5 \\
& 4 x_{1}^{\prime}-4 x_{1}^{\prime \prime}+9 x_{2}^{\prime}-9 x_{2}^{\prime \prime}-s_{2}=4 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

Transformation Example

$$
\begin{array}{cl}
\operatorname{maximize} & z=-5 x_{1}^{\prime}+5 x_{1}^{\prime \prime}-3 x_{2}^{\prime}+3 x_{2}^{\prime \prime} \\
\text { subject to } & 3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}-5 x_{2}^{\prime}+5 x_{2}^{\prime \prime}+s_{1}=5 \\
& 4 x_{1}^{\prime}-4 x_{1}^{\prime \prime}+9 x_{2}^{\prime}-9 x_{2}^{\prime \prime}-s_{2}=4 \\
& x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}^{\prime}, x_{2}^{\prime \prime}, s_{1}, s_{2} \geq 0
\end{array}
$$

In the standard form:

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
3 & -3 & -5 & 5 & 1 & 0 \\
4 & -4 & 9 & -9 & 0 & -1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)^{\top}
\end{aligned}
$$

Note that we have renamed the variables.

$$
\begin{aligned}
& b=(5,4)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& c=(-5,5,-3,3)^{\top}
\end{aligned}
$$

Example

$$
\begin{array}{rr}
\text { minimize } & z=-x_{1}-2 x_{2} \\
\text { subject to } & -2 x_{1}+x_{2}-2 \leq 0 \\
& -x_{1}+x_{2}-3 \leq 0 \\
& x_{1}-3 \leq 0 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Example

Transform to

$$
\begin{array}{cr}
\text { minimize } & z=-x_{1}-2 x_{2} \\
\text { subject to } & -2 x_{1}+x_{2}+s_{1}=2 \\
-x_{1}+x_{2}+s_{2}=3 \\
x_{1}+s_{3}=3 \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0
\end{array}
$$

Example

The standard form:

$$
\begin{array}{ll}
A=\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) & b=(2,3,3)^{\top} \\
& A x=b \\
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} & c=(-1,-2,0,0,0)^{\top}
\end{array}
$$

Assumptions

Consider a linear programming problem in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Assumptions

Consider a linear programming problem in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

In what follows, we will use the following shorthand: Given two column vectors x, x^{\prime}, we write $\left[x, x^{\prime}\right]$ to denote the vector resulting from stacking x on top of x^{\prime}.

Solutions

There are (typically) infinitely many solutions to the constraints.
Are there some distinguished ones? How do you find minimizers?

Here, the blue lines are contours of $-x_{1}-x_{2}$.

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.
Denote by N the set of indices of columns not in B.
Given $x \in \mathbb{R}^{n}$, we let

- $x_{B} \in \mathbb{R}^{m}$ consist of components of x with indices in B
- $x_{N} \in \mathbb{R}^{n-m}$ consist of components of x with indices in N

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.
Given $x \in \mathbb{R}^{n}$, we let

- $x_{B} \in \mathbb{R}^{m}$ consist of components of x with indices in B
- $x_{N} \in \mathbb{R}^{n-m}$ consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A consisting of columns with indices in B and N, resp.

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.
Given $x \in \mathbb{R}^{n}$, we let

- $x_{B} \in \mathbb{R}^{m}$ consist of components of x with indices in B
- $x_{N} \in \mathbb{R}^{n-m}$ consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A consisting of columns with indices in B and N, resp.

Basic Solutions

Assume that the matrix A has full row rank (w.l.o.g).
Let B be a set of m indices of columns of A for a linearly independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.
Given $x \in \mathbb{R}^{n}$, we let

- $x_{B} \in \mathbb{R}^{m}$ consist of components of x with indices in B
- $x_{N} \in \mathbb{R}^{n-m}$ consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A consisting of columns with indices in B and N, resp.

Definition

Consider $x \in \mathbb{R}^{n}$ and a basis B, and consider the decomposition of x into $x_{B} \in \mathbb{R}^{m}$ and $x_{N} \in \mathbb{R}^{n-m}$.
Then x is a basic solution w.r.t. the basis B if $A x=b$ and $x_{N}=0$.
Components of x_{B} are basic variables.
A basic solution x is feasible if $x \geq 0$.

Example (Whiteboard)

Add slack variables x_{3}, x_{4} :

$$
\begin{aligned}
& x_{1}+x_{2} \leq 2 \\
& x_{1} \leq 1 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}+x_{2}+x_{3}=2 \\
& x_{1}+x_{4}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \\
& b=(2,1)^{\top} \\
& A x=b \text { where } x \geq 0
\end{aligned}
$$

For now let us ignore the objective function and play with the polyhedron defined by the above inequalities.

$$
\begin{aligned}
-2 x_{1}+x_{2}+x_{3} & =2 \\
-x_{1}+x_{2}+x_{4} & =3 \\
x_{1}+x_{5} & =3 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
-2 x_{1}+x_{2}+x_{3} & =2 \\
-x_{1}+x_{2}+x_{4} & =3 \\
x_{1}+x_{5} & =3 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq 0
\end{aligned}
$$

$$
A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right)=\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
-2 x_{1}+x_{2}+x_{3} & =2 \\
-x_{1}+x_{2}+x_{4} & =3 \\
x_{1}+x_{5} & =3 \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right)=\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
-2 x_{1}+x_{2}+x_{3}=2 \\
-x_{1}+x_{2}+x_{4}=3 \\
x_{1}+x_{5}=3
\end{aligned} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
-2 x_{1}+x_{2}+x_{3}=2 \\
-x_{1}+x_{2}+x_{4}=3 \\
x_{1}+x_{5}=3
\end{aligned} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
\end{aligned}
$$

$A x=b$ where $x \geq 0$

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right) \\
& =\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1 \\
0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{3}, x_{4}, x_{5}\right\}$ with

$$
B=\left(u_{3} u_{4} u_{5}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b$?

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right) \\
& =\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{3}, x_{4}, x_{5}\right\}$ with

$$
B=\left(u_{3} u_{4} u_{5}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b ? \quad x_{B}=\left(x_{3}, x_{4}, x_{5}\right)^{\top}=(2,3,3)^{\top}$.
The corresponding basic solution is

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top}=(0,0,2,3,3)^{\top}=x_{a} \quad \text { Feasible! }
$$

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right) \\
& =\left(\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1 \\
0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{2}, x_{3}, x_{5}\right\}$ with

$$
B=\left(\begin{array}{lll}
a_{2} & a_{3} & a_{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b$?

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right) \\
& =\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{2}, x_{3}, x_{5}\right\}$ with

$$
B=\left(\begin{array}{lll}
a_{2} & a_{3} & a_{5}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b$? $x_{B}=\left(x_{2}, x_{3}, x_{5}\right)^{\top}=(3,-1,3)^{\top}$.
The corresponding basic solution is

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top}=(0,3,-1,0,3)^{\top}=x_{f} \quad \text { Not feasible! }
$$

$$
\begin{aligned}
& A=\left(\begin{array}{lllll}
u_{1} & u_{2} & u_{3} & u_{4} & u_{5}
\end{array}\right) \\
& =\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ with

$$
B=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b$?

$$
\begin{aligned}
& A=\left(u_{1} u_{2} u_{3} u_{4} u_{5}\right) \\
& =\left(\begin{array}{ccccc}
-2 & 1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& b=(2,3,3)^{\top}
\end{aligned}
$$

Consider a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ with

$$
B=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

What is x_{B} satisfying $B x_{B}=b$? $x_{B}=\left(x_{1}, x_{2}, x_{3}\right)^{\top}=(3,6,2)^{\top}$.
The corresponding basic solution is

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{\top}=(3,6,2,0,0)^{\top}=x_{d} \quad \text { Feasible! }
$$

Existence of Basic Feasible Solutions

Theorem 18 (Fundamental Theorem of LP)
Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution exists.
2. If an optimal feasible solution exists, then an optimal basic feasible solution exists.

Existence of Basic Feasible Solutions

Theorem 18 (Fundamental Theorem of LP)
Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution exists.
2. If an optimal feasible solution exists, then an optimal basic feasible solution exists.

Note that the theorem reduces solving a linear programming problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

Existence of Basic Feasible Solutions

Theorem 18 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution exists.
2. If an optimal feasible solution exists, then an optimal basic feasible solution exists.

Note that the theorem reduces solving a linear programming problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability. However, the enumeration of all basic feasible solutions would be impractical; the number of basic feasible solutions is potentially

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

For $n=100$ and $m=10$, we get $535,983,370,403,809,682,970$.

Extreme Points

Note that the set Θ of points x satisfying $A x=b, x \geq 0$ is convex polyhedron.
By definition, a convex hull of a finite set of points.

Extreme Points

Note that the set Θ of points x satisfying $A x=b, x \geq 0$ is convex polyhedron.
By definition, a convex hull of a finite set of points.
A point $x \in \Theta$ is an extreme point of Θ if there are no two points x^{\prime} and $x^{\prime \prime}$ in Θ such that $x=\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ for some $\alpha \in(0,1)$.

Extreme Points

Note that the set Θ of points x satisfying $A x=b, x \geq 0$ is convex polyhedron.
By definition, a convex hull of a finite set of points.
A point $x \in \Theta$ is an extreme point of Θ if there are no two points x^{\prime} and $x^{\prime \prime}$ in Θ such that $x=\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ for some $\alpha \in(0,1)$.
Theorem 19
Let Θ be the convex set consisting of all feasible solutions that is, all $x \in \mathbb{R}^{n}$ satisfying:

$$
A x=b, \quad x \geq 0
$$

where $A \in \mathbb{R}^{m \times n}, m<n, \operatorname{rank}(A)=m$.
Then, x is an extreme point of Θ if and only if x is a basic feasible solution to $A x=b, x \geq 0$.

Extreme Points

Note that the set Θ of points x satisfying $A x=b, x \geq 0$ is convex polyhedron.
By definition, a convex hull of a finite set of points.
A point $x \in \Theta$ is an extreme point of Θ if there are no two points x^{\prime} and $x^{\prime \prime}$ in Θ such that $x=\alpha x^{\prime}+(1-\alpha) x^{\prime \prime}$ for some $\alpha \in(0,1)$.
Theorem 19
Let Θ be the convex set consisting of all feasible solutions that is, all $x \in \mathbb{R}^{n}$ satisfying:

$$
A x=b, \quad x \geq 0
$$

where $A \in \mathbb{R}^{m \times n}, m<n, \operatorname{rank}(A)=m$.
Then, x is an extreme point of Θ if and only if x is a basic feasible solution to $A x=b, x \geq 0$.

Thus, as a corollary, we obtain that to find an optimal solution to the linear optimization problem, we need to consider only extreme points of the feasibility region.

Optimal Solutions

Here, the blue lines are contours of $-x_{1}-x_{2}$. The minimizer is x_{d}.

Degenerate Basic Solutions

A basic solution $x=\left[x_{B}, x_{N}\right] \in \mathbb{R}^{n}$ is degenerate if at least one component of x_{B} is 0 .

Degenerate Basic Solutions

A basic solution $x=\left[x_{B}, x_{N}\right] \in \mathbb{R}^{n}$ is degenerate if at least one component of x_{B} is 0 .

Two different bases can correspond to the same point. To see this, consider the constraints defined by

$$
A x=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
6 \\
13 \\
12
\end{array}\right)=b
$$

Degenerate Basic Solutions

A basic solution $x=\left[x_{B}, x_{N}\right] \in \mathbb{R}^{n}$ is degenerate if at least one component of x_{B} is 0 .

Two different bases can correspond to the same point. To see this, consider the constraints defined by

$$
A x=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{r}
6 \\
13 \\
12
\end{array}\right)=b
$$

There are two bases
$\left\{x_{1}, x_{2}, x_{3}\right\}$ giving

$$
B=\left(\begin{array}{lll}
2 & 1 & 0 \\
3 & 0 & 1 \\
4 & 0 & 0
\end{array}\right)
$$

$\left\{x_{1}, x_{3}, x_{4}\right\}$ giving

$$
B^{\prime}=\left(\begin{array}{lll}
2 & 0 & 0 \\
3 & 1 & 0 \\
4 & 0 & 1
\end{array}\right)
$$

Each gives the same degenerate basic solution $x=(3,0,4,0)^{\top}$.

Simplex Algorithm

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.
- Move to each of the neighboring vertices and check whether it is better from the point of view of the objective.

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.
- Move to each of the neighboring vertices and check whether it is better from the point of view of the objective.
- If yes, move to such a neighbor (there may be more than one better than the current one; choose one of them).

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.
- Move to each of the neighboring vertices and check whether it is better from the point of view of the objective.
- If yes, move to such a neighbor (there may be more than one better than the current one; choose one of them).
- If there is no better neighbor, the algorithm stops.

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.
- Move to each of the neighboring vertices and check whether it is better from the point of view of the objective.
- If yes, move to such a neighbor (there may be more than one better than the current one; choose one of them).
- If there is no better neighbor, the algorithm stops.
- (It may happen that the polyhedron is unbounded if the algorithm finds out that the objective may be infinitely improved.)

Intuition

The algorithm proceeds as follows:

- Start in a vertex of the polyhedron defined by the constraints.
- Move to each of the neighboring vertices and check whether it is better from the point of view of the objective.
- If yes, move to such a neighbor (there may be more than one better than the current one; choose one of them).
- If there is no better neighbor, the algorithm stops.
- (It may happen that the polyhedron is unbounded if the algorithm finds out that the objective may be infinitely improved.)
Now, how do you move from one vertex to another one algebraically?

First, we consider LP problems where each basic solution is non-degenerate.
Later we drop this assumption.

Changing Basis (Non-Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.

Changing Basis (Non-Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots x_{m} u_{m}=b
$$

For a non-degenerate case, we have $x_{j}>0$ for all $j=1, \ldots, m$.

Changing Basis (Non-Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots x_{m} u_{m}=b
$$

For a non-degenerate case, we have $x_{j}>0$ for all $j=1, \ldots, m$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$.

Changing Basis (Non-Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots x_{m} u_{m}=b
$$

For a non-degenerate case, we have $x_{j}>0$ for all $j=1, \ldots, m$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$. Then

$$
\begin{aligned}
b & =x_{1} u_{1}+\cdots x_{m} u_{m} \\
& =x_{1} u_{1}+\cdots x_{m} u_{m}-\alpha u_{i}+\alpha u_{i} \\
& =x_{1} u_{1}+\cdots x_{m} u_{m}-\alpha\left(y_{1} u_{1}+\cdots+y_{m} u_{m}\right)+\alpha u_{i} \\
& =\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
\end{aligned}
$$

Changing Basis (Non-Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots x_{m} u_{m}=b
$$

For a non-degenerate case, we have $x_{j}>0$ for all $j=1, \ldots, m$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$. Then

$$
\begin{aligned}
b & =x_{1} u_{1}+\cdots x_{m} u_{m} \\
& =x_{1} u_{1}+\cdots x_{m} u_{m}-\alpha u_{i}+\alpha u_{i} \\
& =x_{1} u_{1}+\cdots x_{m} u_{m}-\alpha\left(y_{1} u_{1}+\cdots+y_{m} u_{m}\right)+\alpha u_{i} \\
& =\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
\end{aligned}
$$

Now consider maximum $\alpha>0$ such that $x_{j}-\alpha y_{j} \geq 0$ for all j.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}>0
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}>0
$$

There would be a unique $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$. The uniqueness follows from non-degeneracy because otherwise, we would move to a basis giving a degenerate solution.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}>0
$$

There would be a unique $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$. The uniqueness follows from non-degeneracy because otherwise, we would move to a basis giving a degenerate solution.

Note that such j can be computed using:

$$
j=\operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}>0
$$

There would be a unique $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$. The uniqueness follows from non-degeneracy because otherwise, we would move to a basis giving a degenerate solution.

Note that such j can be computed using:

$$
j=\operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Obtain a basis $B_{j \rightarrow i}=B \backslash\{j\} \cup\{i\}$ and a basic feasible solution

$$
x_{j \rightarrow i}=\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, 0, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top}
$$

Here $x_{k}^{\prime}=x_{k}-\alpha y_{k}$ for each $k \in\{1, \ldots, j-1, j+1, \ldots, m\}$.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}>0
$$

There would be a unique $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$. The uniqueness follows from non-degeneracy because otherwise, we would move to a basis giving a degenerate solution.

Note that such j can be computed using:

$$
j=\operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Obtain a basis $B_{j \rightarrow i}=B \backslash\{j\} \cup\{i\}$ and a basic feasible solution

$$
x_{j \rightarrow i}=\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, 0, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top}
$$

Here $x_{k}^{\prime}=x_{k}-\alpha y_{k}$ for each $k \in\{1, \ldots, j-1, j+1, \ldots, m\}$. We say that we pivot about (j, i).

Algorithm 15 Simplex - Non-degenerate

1: Choose a starting basis $B=\left(u_{1} \ldots u_{m}\right)$ (here $A=(B N)$)
repeat
3: \quad Compute the basic solution x for the basis B
4: \quad for $i \in\{m+1, \ldots, n\}$ do
5: \quad Solve $B\left(y_{1}, \ldots, y_{m}\right)^{\top}=u_{i}$
6:
7:
8: \quad end if
9:
10:
11: end for
12: \quad if $c^{\top}\left(x_{j \rightarrow i}-x\right) \geq 0$ for all $i \in\{m+1, \ldots, n\}$ then
Stop, we have an optimal solution.
end if
Select $i \in\{m+1, \ldots, n\}$ such that $c^{\top}\left(x_{j \rightarrow i}-x\right)<0$ $B \leftarrow B_{j \rightarrow i}$
17: until convergence

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
u_{4}
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \\
x & =\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \\
b & =(4,4)^{\top} \\
c & =(-1,-1,0,0)^{\top}
\end{aligned}
$$

minimize $c^{\top} x$ subject to $A x=b$ where $x \geq 0$

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
u_{4}
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \\
x & =\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \\
b & =(4,4)^{\top} \\
c & =(-1,-1,0,0)^{\top}
\end{aligned}
$$

minimize $c^{\top} x$ subject to $A x=b$ where $x \geq 0$
Consider a basis

$$
B=\left(a_{3} a_{4}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The basic solution is $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,0,4,4)^{\top}$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Now $x_{4} / y_{4}=4 / 2<4 / 1=x_{3} / y_{3}$, pivot about $(4,1)$ and $\alpha=x_{4} / y_{4}=2$.

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Now $x_{4} / y_{4}=4 / 2<4 / 1=x_{3} / y_{3}$, pivot about $(4,1)$ and $\alpha=x_{4} / y_{4}=2$.

$$
x_{4 \rightarrow 1}=\left(\alpha, 0,\left(x_{3}-\alpha y_{3}\right),\left(x_{4}-\alpha y_{4}\right)\right)=(2,0,2,0)
$$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Now $x_{4} / y_{4}=4 / 2<4 / 1=x_{3} / y_{3}$, pivot about $(4,1)$ and $\alpha=x_{4} / y_{4}=2$.

$$
x_{4 \rightarrow 1}=\left(\alpha, 0,\left(x_{3}-\alpha y_{3}\right),\left(x_{4}-\alpha y_{4}\right)\right)=(2,0,2,0)
$$

As a result we get the basis $\left\{x_{1}, x_{3}\right\}$ and the basic solution ($2,0,2,0$).

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Now $x_{4} / y_{4}=4 / 2<4 / 1=x_{3} / y_{3}$, pivot about $(4,1)$ and $\alpha=x_{4} / y_{4}=2$.

$$
x_{4 \rightarrow 1}=\left(\alpha, 0,\left(x_{3}-\alpha y_{3}\right),\left(x_{4}-\alpha y_{4}\right)\right)=(2,0,2,0)
$$

As a result we get the basis $\left\{x_{1}, x_{3}\right\}$ and the basic solution ($2,0,2,0$).
Similarly, we may also put x_{2} into the basis instead of x_{3} and obtain the basis $\left\{x_{2}, x_{4}\right\}$ and the basic solution ($0,2,0,2$).

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ giving $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,0,4,4)$.

Consider x_{1} as a candidate to the basis, i.e., consider the first column u_{1} of A expressed in the basis B :

$$
u_{1}=(1,2)^{\top}=B(1,2)^{\top} \text { thus } y=\left(y_{3}, y_{4}\right)=(1,2)
$$

Now $x_{4} / y_{4}=4 / 2<4 / 1=x_{3} / y_{3}$, pivot about $(4,1)$ and $\alpha=x_{4} / y_{4}=2$.

$$
x_{4 \rightarrow 1}=\left(\alpha, 0,\left(x_{3}-\alpha y_{3}\right),\left(x_{4}-\alpha y_{4}\right)\right)=(2,0,2,0)
$$

As a result we get the basis $\left\{x_{1}, x_{3}\right\}$ and the basic solution ($2,0,2,0$).
Similarly, we may also put x_{2} into the basis instead of x_{3} and obtain the basis $\left\{x_{2}, x_{4}\right\}$ and the basic solution ($0,2,0,2$).
We have $c^{\top}\left(x_{4 \rightarrow 1}-x\right)=-2<0$
So let us move to the basis $\left\{x_{1}, x_{3}\right\}$.

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Consider the basis $\left\{x_{1}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,2,0)$.

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Consider the basis $\left\{x_{1}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,2,0)$.

Consider x_{2} as a candidate for the basis, i.e., consider the second column u_{2} of A expressed in the basis B :

$$
u_{2}=(2,1)^{\top}=B(1 / 2,3 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{3}\right)=(1 / 2,3 / 2)
$$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Consider the basis $\left\{x_{1}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,2,0)$.

Consider x_{2} as a candidate for the basis, i.e., consider the second column u_{2} of A expressed in the basis B :

$$
u_{2}=(2,1)^{\top}=B(1 / 2,3 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{3}\right)=(1 / 2,3 / 2)
$$

Now $\alpha=x_{3} / y_{3}=4 / 3<2 /(1 / 2)=4=x_{1} / y_{1}$, pivot about $(3,2)$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Consider the basis $\left\{x_{1}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,2,0)$.

Consider x_{2} as a candidate for the basis, i.e., consider the second column u_{2} of A expressed in the basis B :

$$
u_{2}=(2,1)^{\top}=B(1 / 2,3 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{3}\right)=(1 / 2,3 / 2)
$$

Now $\alpha=x_{3} / y_{3}=4 / 3<2 /(1 / 2)=4=x_{1} / y_{1}$, pivot about $(3,2)$

$$
x_{3 \rightarrow 2}=\left(\left(x_{1}-\alpha y_{1}\right), \alpha,\left(x_{3}-\alpha y_{3}\right), 0\right)=(4 / 3,4 / 3,0,0)
$$

Non-Degenerate Example

$$
c=(-1,-1,0,0) \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{4}{4}
$$

Consider the basis $\left\{x_{1}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,0,2,0)$.

Consider x_{2} as a candidate for the basis, i.e., consider the second column u_{2} of A expressed in the basis B :

$$
u_{2}=(2,1)^{\top}=B(1 / 2,3 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{3}\right)=(1 / 2,3 / 2)
$$

Now $\alpha=x_{3} / y_{3}=4 / 3<2 /(1 / 2)=4=x_{1} / y_{1}$, pivot about $(3,2)$

$$
\begin{aligned}
& x_{3 \rightarrow 2}=\left(\left(x_{1}-\alpha y_{1}\right), \alpha,\left(x_{3}-\alpha y_{3}\right), 0\right)=(4 / 3,4 / 3,0,0) \\
& c^{\top}\left(x_{3 \rightarrow 2}-x\right)=c(-2 / 3,4 / 3)^{\top}=-2 / 3<0
\end{aligned}
$$

We have reached a minimizer. All changes would lead to a higher objective value. We may exchange x_{1} with x_{4}, but this would give us the initial basis with a higher objective value.

Non-Degenerate Case Convergence

Theorem 20
Suppose that the simplex method is applied to a linear program and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either terminates at an optimal basic feasible solution or determines that the problem is unbounded.

Non-Degenerate Case Convergence

Theorem 20
Suppose that the simplex method is applied to a linear program and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either terminates at an optimal basic feasible solution or determines that the problem is unbounded.
However, what happens if we meet a degenerate solution?

Non-Degenerate Case Convergence

Theorem 20
Suppose that the simplex method is applied to a linear program and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either terminates at an optimal basic feasible solution or determines that the problem is unbounded.
However, what happens if we meet a degenerate solution?
So, let us drop the non-degeneracy assumption.

Changing Basis (Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.

Changing Basis (Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots+x_{m} u_{m}=b
$$

For a degenerate case, we have $x_{j} \geq 0$ for all $j \in\{1, \ldots, m\}$, and may have $x_{i}=0$ for some $j \in\{1, \ldots, m\}$.

Changing Basis (Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots+x_{m} u_{m}=b
$$

For a degenerate case, we have $x_{j} \geq 0$ for all $j \in\{1, \ldots, m\}$, and may have $x_{i}=0$ for some $j \in\{1, \ldots, m\}$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$.

Changing Basis (Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots+x_{m} u_{m}=b
$$

For a degenerate case, we have $x_{j} \geq 0$ for all $j \in\{1, \ldots, m\}$, and may have $x_{i}=0$ for some $j \in\{1, \ldots, m\}$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$. Then

$$
\begin{aligned}
b & =x_{1} u_{1}+\cdots+x_{m} u_{m} \\
& =x_{1} u_{1}+\cdots+x_{m} u_{m}-\alpha u_{i}+\alpha u_{i} \\
& =x_{1} u_{1}+\cdots+x_{m} u_{m}-\alpha\left(y_{1} u_{1}+\cdots+y_{m} u_{m}\right)+\alpha u_{i} \\
& =\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
\end{aligned}
$$

Changing Basis (Degenerate Case)

Consider a basis B and write $A=(B N)=\left(u_{1} \ldots u_{m} u_{m+1} \ldots u_{n}\right)$ where $B=\left(u_{1} \ldots u_{m}\right)$ and $N=\left(u_{m+1} \ldots u_{n}\right)$.
Note that each u_{i} is a column vector of dimension m.
Consider a basic feasible solution $x=\left[x_{B} x_{N}\right]$ where $x_{N}=0$. Then

$$
x_{1} u_{1}+\cdots+x_{m} u_{m}=b
$$

For a degenerate case, we have $x_{j} \geq 0$ for all $j \in\{1, \ldots, m\}$, and may have $x_{i}=0$ for some $j \in\{1, \ldots, m\}$.
Now as B is a basis, we have that for each $i \in\{m+1, \ldots, n\}$ there are coefficients y_{1}, \ldots, y_{m} such that $y_{1} u_{1}+\cdots+y_{m} u_{m}=u_{i}$. Then

$$
\begin{aligned}
b & =x_{1} u_{1}+\cdots+x_{m} u_{m} \\
& =x_{1} u_{1}+\cdots+x_{m} u_{m}-\alpha u_{i}+\alpha u_{i} \\
& =x_{1} u_{1}+\cdots+x_{m} u_{m}-\alpha\left(y_{1} u_{1}+\cdots+y_{m} u_{m}\right)+\alpha u_{i} \\
& =\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
\end{aligned}
$$

Now consider maximum $\alpha \geq 0$ such that $x_{j}-\alpha y_{j} \geq 0$ for all j.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Otherwise, there exists $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$.
j DOES NOT have to be unique in a degenerate case.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Otherwise, there exists $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$.
j DOES NOT have to be unique in a degenerate case.
Note that such j can be computed using:

$$
j \in \operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Otherwise, there exists $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$.
j DOES NOT have to be unique in a degenerate case.
Note that such j can be computed using:

$$
j \in \operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Obtain a basis $B_{j \rightarrow i}=B \backslash\{j\} \cup\{i\}$ and a basic feasible solution

$$
x_{j \rightarrow i}=\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, 0, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top}
$$

Here $x_{k}^{\prime}=x_{k}-\alpha y_{k}$ for each $k \in\{1, \ldots, j-1, j+1, \ldots, m\}$.
Note that if $\alpha=0$, the solution does not change. The basis, however, changes.

$$
b=\left(x_{1}-\alpha y_{1}\right) u_{1}+\cdots+\left(x_{m}-\alpha y_{m}\right) u_{m}+\alpha u_{i}
$$

If all $y_{j} \leq 0$, the problem is unbounded because one component grows indefinitely and others do not decrease with $\alpha \rightarrow \infty$.

Otherwise, we put

$$
\alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Otherwise, there exists $j \in\{1, \ldots, m\}$ such that $x_{j}-\alpha y_{j}=0$.
j DOES NOT have to be unique in a degenerate case.
Note that such j can be computed using:

$$
j \in \operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
$$

Obtain a basis $B_{j \rightarrow i}=B \backslash\{j\} \cup\{i\}$ and a basic feasible solution

$$
x_{j \rightarrow i}=\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, 0, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top}
$$

Here $x_{k}^{\prime}=x_{k}-\alpha y_{k}$ for each $k \in\{1, \ldots, j-1, j+1, \ldots, m\}$.
Note that if $\alpha=0$, the solution does not change. The basis, however, changes.
We say that we pivot about (j, i).

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=1$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=1$

$$
x_{2 \rightarrow 4}=\left(0,\left(x_{2}-\alpha y_{2}\right),\left(x_{3}-\alpha y_{3}\right), \alpha\right)^{\top}=(0,0,1,1)^{\top}
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=1$

$$
x_{2 \rightarrow 4}=\left(0,\left(x_{2}-\alpha y_{2}\right),\left(x_{3}-\alpha y_{3}\right), \alpha\right)^{\top}=(0,0,1,1)^{\top}
$$

Note that $c^{\top} x_{2 \rightarrow 4}=0$.
Thus no effect on the objective value!

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Pivot about (3,1), that is x_{3} exchanges with x_{1} and $\alpha=x_{3} / y_{3}=0$.

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Pivot about $(3,1)$, that is x_{3} exchanges with x_{1} and $\alpha=x_{3} / y_{3}=0$.

$$
x_{3 \rightarrow 1}=\left(\alpha,\left(x_{2}-\alpha y_{2}\right),\left(x_{3}-\alpha y_{3}\right), 0\right)^{\top}=(0,1,0,0)^{\top}
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Pivot about $(3,1)$, that is x_{3} exchanges with x_{1} and $\alpha=x_{3} / y_{3}=0$.

$$
x_{3 \rightarrow 1}=\left(\alpha,\left(x_{2}-\alpha y_{2}\right),\left(x_{3}-\alpha y_{3}\right), 0\right)^{\top}=(0,1,0,0)^{\top}
$$

No change in the basic solution, and thus $c^{\top} x_{3 \rightarrow 1}=c^{\top} x=0$.
Thus no effect on the objective value either!

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top}=(0,1,0,0)^{\top}$ with $c^{\top} x=0$.

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Pivot about $(3,1)$, that is x_{3} exchanges with x_{1} and $\alpha=x_{3} / y_{3}=0$.

$$
x_{3 \rightarrow 1}=\left(\alpha,\left(x_{2}-\alpha y_{2}\right),\left(x_{3}-\alpha y_{3}\right), 0\right)^{\top}=(0,1,0,0)^{\top}
$$

No change in the basic solution, and thus $c^{\top} x_{3 \rightarrow 1}=c^{\top} x=0$.
Thus no effect on the objective value either!
Which variable should go to the basis?!

Reduced Cost

Given a basis B, we denote by c_{B} the vector of components of C that correspond to the variables of B.

Reduced Cost

Given a basis B, we denote by c_{B} the vector of components of C that correspond to the variables of B.

One can prove that for every $i \in\{m+1, \ldots, n\}$ we have

$$
c^{\top} x_{j \rightarrow i}-c^{\top} x=\left(c_{i}-c_{B}^{\top} y\right) \alpha
$$

Here $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$ where $B y=u_{i}$.

Reduced Cost

Given a basis B, we denote by c_{B} the vector of components of C that correspond to the variables of B.

One can prove that for every $i \in\{m+1, \ldots, n\}$ we have

$$
c^{\top} x_{j \rightarrow i}-c^{\top} x=\left(c_{i}-c_{B}^{\top} y\right) \alpha
$$

Here $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$ where $B y=u_{i}$.
For non-degenerate case, we have $\alpha>0$ and thus

$$
c^{\top} x_{j \rightarrow i}<c^{\top} x \quad \text { iff } \quad c_{i}-c_{B}^{\top} y<0
$$

For the degenerate case, we may have $\alpha=0$ and $c_{i}-c_{B} y<0$.

Reduced Cost

Given a basis B, we denote by c_{B} the vector of components of C that correspond to the variables of B.

One can prove that for every $i \in\{m+1, \ldots, n\}$ we have

$$
c^{\top} x_{j \rightarrow i}-c^{\top} x=\left(c_{i}-c_{B}^{\top} y\right) \alpha
$$

Here $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$ where $B y=u_{i}$.
For non-degenerate case, we have $\alpha>0$ and thus

$$
c^{\top} x_{j \rightarrow i}<c^{\top} x \quad \text { iff } \quad c_{i}-c_{B}^{\top} y<0
$$

For the degenerate case, we may have $\alpha=0$ and $c_{i}-c_{B} y<0$.
Define the reduced cost by

$$
r_{i}=c_{i}-c_{B}^{\top} y
$$

Intuitively, c_{i} is the cost of x_{i} in the new basis and $c_{B}^{\top} y$ in the old one.

Derivation of Reduced Cost

$$
\begin{aligned}
c^{\top} x_{j \rightarrow i} & =c^{\top}\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, 0, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top} \\
& =c^{\top}\left(x_{1}^{\prime}, \ldots, x_{j-1}^{\prime}, x_{j}^{\prime}, x_{j+1}^{\prime}, \ldots, x_{m}^{\prime}, 0, \ldots, 0, \alpha, 0, \ldots, 0\right)^{\top} \\
& =c_{1} x_{1}^{\prime}+\cdots+c_{m} x_{m}^{\prime}+c_{i} \alpha \\
& =c_{1}\left(x_{1}-\alpha y_{1}\right)+\cdots c_{m}\left(x_{m}-\alpha y_{m}\right)+c_{i} \alpha \\
& =\left(c_{1} x_{1}+\cdots+c_{m} x_{m}\right)-\left(c_{1} y_{1}+\cdots+c_{m} y_{m}-c_{i}\right) \alpha \\
& =c^{\top} x-\left(-c_{i}+c_{B} y\right) \alpha
\end{aligned}
$$

Here we use the fact that $x_{k}^{\prime}=x_{k}-\alpha y_{k}$ for each
$k \in\{1, \ldots, j-1, j+1, \ldots, m\}$ and that $x_{j}-\alpha y_{j}=0$.
Then clearly

$$
\begin{aligned}
& c^{\top} x_{j \rightarrow i}-c^{\top} x=\left(c_{i}-c_{B} y\right) \alpha \\
& \alpha=\min \left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}
\end{aligned}
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.
Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.
Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

The reduced cost is:

$$
r_{4}=c_{4}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=0-(0 \cdot 1+0 \cdot(-1))=0
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.
Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

The reduced cost is:

$$
r_{4}=c_{4}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=0-(0 \cdot 1+0 \cdot(-1))=0
$$

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.
Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

The reduced cost is:

$$
r_{4}=c_{4}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=0-(0 \cdot 1+0 \cdot(-1))=0
$$

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

The reduced cost is

$$
r_{1}=c_{1}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=-1-(0 \cdot(-1)+0 \cdot 2)=-1<0
$$

Degenerate Example

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Start with the basis $\left\{x_{2}, x_{3}\right\}$ giving $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c x=0$.
Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(1,-1)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(1,-1)
$$

The reduced cost is:

$$
r_{4}=c_{4}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=0-(0 \cdot 1+0 \cdot(-1))=0
$$

Consider x_{1} as a candidate for the basis:

$$
u_{1}=(1,-1)^{\top}=B(-1,2)^{\top} \text { thus } y=\left(y_{2}, y_{3}\right)=(-1,2)
$$

The reduced cost is

$$
r_{1}=c_{1}-\left(c_{2} y_{2}+c_{3} y_{3}\right)=-1-(0 \cdot(-1)+0 \cdot 2)=-1<0
$$

So we should put x_{1} into the basis (the reduced cost gets smaller).

1: Choose a starting basis $B=\left(u_{1} \ldots u_{m}\right)$ (here $\left.A=(B N)\right)$
repeat
3: \quad Compute the basic solution x for the basis B
4: \quad for $i \in\{m+1, \ldots, n\}$ do
5: \quad Solve $B\left(y_{1}, \ldots, y_{m}\right)^{\top}=u_{i}$
6:

7:
8: \quad end if
9:
11: end for
12: \quad if $r_{i} \geq 0$ for all $i \in\{m+1, \ldots, n\}$ then

17: until convergence
end if
Select $i \in\{m+1, \ldots, n\}$ such that $r_{i}<0$
$B \leftarrow B_{j \rightarrow i}$
Select $j \in \operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right\}$
Compute $r_{i}=c_{i}-c_{B}^{\top} y$ where $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$
Select $j \in \operatorname{argmin}\left\{x_{k} / y_{k} \mid y_{k}>0 \wedge k=1, \ldots, m\right.$
Compute $r_{i}=c_{i}-c_{B}^{\top} y$ where $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$

Stop, we have an optimal solution.
Stop, unbounded problem.

whe
if $y_{k} \leq 0$ for all $k \in\{1, \ldots, m\}$ then

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(-1 / 2,1 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{2}\right)=(-1 / 2,1 / 2)
$$

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(-1 / 2,1 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{2}\right)=(-1 / 2,1 / 2)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=2$

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(-1 / 2,1 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{2}\right)=(-1 / 2,1 / 2)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=2$

$$
x_{2 \rightarrow 4}=\left(\left(x_{1}-\alpha y_{1}\right),\left(x_{2}-\alpha y_{2}\right), 0, \alpha\right)=(1,0,0,2)
$$

This is the minimizer!

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(-1 / 2,1 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{2}\right)=(-1 / 2,1 / 2)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=2$

$$
x_{2 \rightarrow 4}=\left(\left(x_{1}-\alpha y_{1}\right),\left(x_{2}-\alpha y_{2}\right), 0, \alpha\right)=(1,0,0,2)
$$

This is the minimizer!
Does this always work?

Degenerate Example (Cont.)

$$
c=(-1,0,0,0)^{\top} \quad A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right) \quad b=\binom{1}{1}
$$

After following the reduced cost from the basis $\left\{x_{2}, x_{3}\right\}$, we end up in the basis $\left\{x_{1}, x_{2}\right\}$ giving $B=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and the basic solution $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,0)$ with $c^{\top} x=0$.

Consider x_{4} as a candidate for the basis:

$$
u_{4}=(0,1)^{\top}=B(-1 / 2,1 / 2)^{\top} \text { thus } y=\left(y_{1}, y_{2}\right)=(-1 / 2,1 / 2)
$$

Pivot about $(2,4)$, that is x_{2} exchanges with x_{4} and $\alpha=x_{2} / y_{2}=2$

$$
x_{2 \rightarrow 4}=\left(\left(x_{1}-\alpha y_{1}\right),\left(x_{2}-\alpha y_{2}\right), 0, \alpha\right)=(1,0,0,2)
$$

This is the minimizer!
Does this always work? Unfortunately, NO!

Degenerate Case - Looping

Consider the following linear program:

$$
\begin{array}{cl}
\operatorname{minimize} & z=-\frac{3}{4} x_{1}+150 x_{2}-\frac{1}{50} x_{3}+6 x_{4} \\
\text { subject to } & \frac{1}{4} x_{1}-60 x_{2}-\frac{1}{25} x_{3}+9 x_{4}+x_{5}=0 \\
& \frac{1}{2} x_{1}-90 x_{2}-\frac{1}{50} x_{3}+3 x_{4}+x_{6}=0 \\
& x_{3}+x_{7}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{array}
$$

Executing the simplex method on this program starting with the basis $\left\{x_{5}, x_{6}, x_{7}\right\}$ and always choosing i minimizing the reduced cost at line 15 , eventually ends up back in the basis $\left\{x_{5}, x_{6}, x_{7}\right\}$. In other words, even though the reduced cost is always negative, the overall effect on the objective is 0 .

Convergence of Simplex Method

A solution is to use Bland's rule:

- Select the smallest index j at line 9.
- Select the smallest index i at line 15 .

Theorem 21
If the simplex method is implemented using Bland's rule to select the entering and leaving variables, then the simplex method is guaranteed to terminate.

Simplex Convergence Summary

In a non-degenerate case:

- There is always a unique j to be selected at line 9 .
- The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in a non-degenerate case.

Simplex Convergence Summary

In a non-degenerate case:

- There is always a unique j to be selected at line 9 .
- The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in a non-degenerate case.

In a degenerate case:

- We may have several j from which to select at line 9 .
- Even though the reduced cost is negative, the basic solution may remain the same.

The simplex algorithm may cycle!
Using Bland's rule, the simplex method always converges to a minimizer or detects an unbounded LP.

Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution. How do we obtain such a solution? Given a standard form LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.
How do we obtain such a solution? Given a standard form LP

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

We construct an artificial LP problem.

$$
\begin{aligned}
\operatorname{minimize} & y_{1}+y_{2}+\cdots+y_{m} \\
\text { subject to } & \left(A I_{m}\right)\binom{x}{y}=b \\
& \binom{x}{y} \geq 0
\end{aligned}
$$

Here $y=\left(y_{1}, \ldots, y_{m}\right)^{\top}$ is a vector of artificial variables, I_{m} is the identity matrix of dimensions $m \times m$.

Two-Phase Simplex Algorithm

Solve the artificial LP problem:

$$
\begin{aligned}
\operatorname{minimize} & y_{1}+y_{2}+\cdots+y_{m} \\
\text { subject to } & {\left[A I_{m}\right]\binom{x}{y}=b } \\
& \binom{x}{y} \geq 0
\end{aligned}
$$

Proposition 1

The original LP problem has a basic feasible solution iff the associated artificial LP problem has an optimal feasible solution with the objective function 0 .

If we solve the artificial problem with $y=0$, we obtain x such that $A x=b, x \geq 0$ is a basic feasible solution for the original problem.

If there is no such a solution to the artificial problem, there is no basic feasible solution, and hence no feasible solution, to the original problem.

Linear Programming
 Properties

LP Complexity

Iterations of the simplex algorithm can be implemented to compute the first step using $\mathcal{O}\left(m^{2} n\right)$ arithmetic operations and each next step $\mathcal{O}(m n)$.

LP Complexity

Iterations of the simplex algorithm can be implemented to compute the first step using $\mathcal{O}\left(m^{2} n\right)$ arithmetic operations and each next step $\mathcal{O}(m n)$.
There are as many as ($\left.\begin{array}{l}n \\ m\end{array}\right)$ basic solutions (many of them likely infeasible). How large are these numbers?

m	$\binom{2 m}{m}$
1	2
5	252
10	184756
20	1×10^{11}
50	1×10^{29}
100	9×10^{58}
200	1×10^{119}
300	1×10^{179}
400	2×10^{239}
500	3×10^{299}

The number of iterations may be proportional to $\binom{n}{m}$ that is EXPTIME.

Linear Programming Complexity

Complexity of the simplex algorithm:

- In the worst case, the time complexity of the simplex algorithm is exponential. This holds for any deterministic pivoting rule. For details, see "How good is the simplex algorithm?" by Klee, Victor, and Minty, George J. Inequalities 1972.

Linear Programming Complexity

Complexity of the simplex algorithm:

- In the worst case, the time complexity of the simplex algorithm is exponential. This holds for any deterministic pivoting rule. For details, see "How good is the simplex algorithm?" by Klee, Victor, and Minty, George J. Inequalities 1972.
- There is a theory that shows that examples with exponential complexity are rare. More precisely (but still very imprecisely)

Linear Programming Complexity

Complexity of the simplex algorithm:

- In the worst case, the time complexity of the simplex algorithm is exponential. This holds for any deterministic pivoting rule. For details, see "How good is the simplex algorithm?" by Klee, Victor, and Minty, George J. Inequalities 1972.
- There is a theory that shows that examples with exponential complexity are rare. More precisely (but still very imprecisely)
- Consider small random perturbations of the coefficients in the LP (use Gaussian noise with a small variance)

Linear Programming Complexity

Complexity of the simplex algorithm:

- In the worst case, the time complexity of the simplex algorithm is exponential. This holds for any deterministic pivoting rule. For details, see "How good is the simplex algorithm?" by Klee, Victor, and Minty, George J. Inequalities 1972.
- There is a theory that shows that examples with exponential complexity are rare. More precisely (but still very imprecisely)
- Consider small random perturbations of the coefficients in the LP (use Gaussian noise with a small variance)
- Then, the expected computation time for the resulting instances of LP is polynomial.
For details, see "Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time" by Daniel A. Spielman and Shang-Hua Teng in JACM 2004.

Linear Programming Complexity

Complexity of the simplex algorithm:

- In the worst case, the time complexity of the simplex algorithm is exponential. This holds for any deterministic pivoting rule. For details, see "How good is the simplex algorithm?" by Klee, Victor, and Minty, George J. Inequalities 1972.
- There is a theory that shows that examples with exponential complexity are rare. More precisely (but still very imprecisely)
- Consider small random perturbations of the coefficients in the LP (use Gaussian noise with a small variance)
- Then, the expected computation time for the resulting instances of LP is polynomial.
For details, see "Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time" by Daniel A. Spielman and Shang-Hua Teng in JACM 2004.
Is there a deterministic polynomial time algorithm for solving LP?

Linear Programming Complexity

We assume that all coefficients are encoded in binary (more precisely, as fractions of two integers encoded in binary).

Linear Programming Complexity

We assume that all coefficients are encoded in binary (more precisely, as fractions of two integers encoded in binary).
Theorem 22 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)
There is an algorithm that, for any linear program, computes an optimal solution in polynomial time.
The algorithm uses so-called ellipsoid method.

Linear Programming Complexity

We assume that all coefficients are encoded in binary (more precisely, as fractions of two integers encoded in binary).
Theorem 22 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)
There is an algorithm that, for any linear program, computes an optimal solution in polynomial time.
The algorithm uses so-called ellipsoid method.
In practice, the Khachiyan's is not used.

Linear Programming Complexity

We assume that all coefficients are encoded in binary (more precisely, as fractions of two integers encoded in binary).
Theorem 22 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)
There is an algorithm that, for any linear program, computes an optimal solution in polynomial time.
The algorithm uses so-called ellipsoid method.
In practice, the Khachiyan's is not used.
There is also a polynomial time algorithm (by Karmarkar) that has lower complexity upper bounds than the Khachiyan's and sometimes works even better than the simplex.

Linear Programming in Practice

Heavily used tools for solving practical problems.
Several advanced linear programming solvers (usually parts of larger optimization packages) implement various heuristics for solving large-scale problems, such as sensitivity analysis.

See an overview of tools here:
http://en.wikipedia.org/wiki/Linear_programming\#Solvers_and_scripting_.28programming.29_languages
For example, the well-known Gurobi solver uses the simplex algorithm to solve LP problems.

Linear Programming - Tableaus

Tableau

Consider a linear program in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

Tableau

Consider a linear program in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

We have considered the simplex algorithm, which searches for the minimum by moving around the vertices of the feasible region.

Tableau

Consider a linear program in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

We have considered the simplex algorithm, which searches for the minimum by moving around the vertices of the feasible region.

The algorithm is relatively straightforward but, in its original form, not so suitable for computations by hand.

Tableau

Consider a linear program in the standard form:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{aligned}
$$

We have considered the simplex algorithm, which searches for the minimum by moving around the vertices of the feasible region.

The algorithm is relatively straightforward but, in its original form, not so suitable for computations by hand.

Tableaus provide all information about the current state of the simplex algorithm and can be used to streamline the process. Keep in mind that we are not developing a new algorithm. Tableau just provides another view of the same simplex algorithm as presented before.

Tableau (Matrix Form)

Consider LP with a matrix A and vectors b, c. Assume $A=(B N)$ where B consists of basic columns and N of the non-basic ones.

Tableau (Matrix Form)

Consider LP with a matrix A and vectors b, c. Assume $A=(B N)$ where B consists of basic columns and N of the non-basic ones.

Consider the following matrix (the initial tableau):

$$
\left(\begin{array}{cc}
A & b \\
c^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

Tableau (Matrix Form)

Consider LP with a matrix A and vectors b, c. Assume $A=(B N)$ where B consists of basic columns and N of the non-basic ones.

Consider the following matrix (the initial tableau):

$$
\left(\begin{array}{cc}
A & b \\
c^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

Apply elementary row operations so that the matrix B is turned into I_{m} (preserving the last row for now). That is, multiply with

$$
\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

The result is

$$
\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

Tableau (Matrix Form)

We have

$$
\left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

Tableau (Matrix Form)

We have

$$
\left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

We apply row operations to the last row to eliminate the c_{B}^{\top}. This corresponds to multiplying the matrix with

$$
\left(\begin{array}{cc}
I_{m} & 0 \\
-c_{B}^{\top} & 1
\end{array}\right)
$$

Tableau (Matrix Form)

We have

$$
\left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)
$$

We apply row operations to the last row to eliminate the c_{B}^{\top}. This corresponds to multiplying the matrix with

$$
\left(\begin{array}{cc}
I_{m} & 0 \\
-C_{B}^{\top} & 1
\end{array}\right)
$$

We obtain

$$
\begin{aligned}
\left(\begin{array}{cc}
I_{m} & 0 \\
-c_{B}^{\top} & 1
\end{array}\right) & \left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
I_{m} & B^{-1} N & B^{-1} b \\
0 & c_{N}^{\top}-c_{B}^{\top} B^{-1} N & -c_{B}^{\top} B^{-1} b
\end{array}\right)
\end{aligned}
$$

This is the canonical form tableau for the basis B.

Tableau (Components)

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{m}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.
Assume $u_{k}=\left(u_{1 k}, \ldots, u_{n k}\right)$. Then the initial tableau is

$$
\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccccccc}
u_{11} & \cdots & u_{1 m} & u_{1(m+1)} & \cdots & u_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
u_{m 1} & \cdots & u_{m m} & u_{m(m+1)} & \cdots & u_{m n} & b_{m} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Tableau (Components)

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{m}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.
Assume $u_{k}=\left(u_{1 k}, \ldots, u_{n k}\right)$. Then the initial tableau is

$$
\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccccccc}
u_{11} & \cdots & u_{1 m} & u_{1(m+1)} & \cdots & u_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
u_{m 1} & \cdots & u_{m m} & u_{m(m+1)} & \cdots & u_{m n} & b_{m} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Now transform all columns of the upper part of the matrix (except the last row) to the basis B :

$$
u_{k}=B\left(y_{1 k}, \ldots, y_{m k}\right)^{\top} \text { for } k=1, \ldots, n \text { and } b^{\prime}=B^{-1} b
$$

Tableau (Components)

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{m}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.
Assume $u_{k}=\left(u_{1 k}, \ldots, u_{n k}\right)$. Then the initial tableau is

$$
\left(\begin{array}{ccc}
B & N & b \\
c_{B}^{\top} & c_{N}^{\top} & 0
\end{array}\right)=\left(\begin{array}{ccccccc}
u_{11} & \cdots & u_{1 m} & u_{1(m+1)} & \cdots & u_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
u_{m 1} & \cdots & u_{m m} & u_{m(m+1)} & \cdots & u_{m n} & b_{m} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Now transform all columns of the upper part of the matrix (except the last row) to the basis B :

$$
u_{k}=B\left(y_{1 k}, \ldots, y_{m k}\right)^{\top} \text { for } k=1, \ldots, n \text { and } b^{\prime}=B^{-1} b
$$

and obtain $u_{k}=y_{1 k} u_{1}+\cdots+y_{m k} u_{m}$ for $k=m+1, \ldots, n$ and thus

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Tableau (Components)

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Tableau (Components)

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
c_{1} & \cdots & c_{m} & c_{m+1} & \cdots & c_{n} & 0
\end{array}\right)
$$

Use row operations to eliminate c_{1}, \ldots, c_{m}. This is equivalent to multiplying the above matrix with

$$
\left(\begin{array}{cc}
I_{m} & 0 \\
-c_{B}^{\top} & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0 \\
-c_{1} & \cdots & -c_{m} & 1
\end{array}\right)
$$

from the left. We obtain ...

Tableau (Components)

... the canonical form for the basis $\left\{x_{1}, \ldots, x_{m}\right\}$:

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
0 & \cdots & 0 & c_{m+1}^{\prime} & \cdots & c_{n}^{\prime} & -z
\end{array}\right)
$$

Tableau (Components)

... the canonical form for the basis $\left\{x_{1}, \ldots, x_{m}\right\}$:

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
0 & \cdots & 0 & c_{m+1}^{\prime} & \cdots & c_{n}^{\prime} & -z
\end{array}\right)
$$

Here, $\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)^{\top}=B^{-1} b$ is the vector b transformed to the basis B, and for $k=m+1, \ldots, n$ we have

$$
c_{k}^{\prime}=c_{k}-\left(y_{1 k} c_{1}+\cdots+y_{m k} c_{m}\right)
$$

the reduced cost for the k-th column (non-basic).

Tableau (Components)

\ldots the canonical form for the basis $\left\{x_{1}, \ldots, x_{m}\right\}$:

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
0 & \cdots & 0 & c_{m+1}^{\prime} & \cdots & c_{n}^{\prime} & -z
\end{array}\right)
$$

Here, $\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)^{\top}=B^{-1} b$ is the vector b transformed to the basis B, and for $k=m+1, \ldots, n$ we have

$$
c_{k}^{\prime}=c_{k}-\left(y_{1 k} c_{1}+\cdots+y_{m k} c_{m}\right)
$$

the reduced cost for the k-th column (non-basic). Also, note that the basic solution is $x=\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}, 0, \ldots, 0\right)$, and hence

$$
-z=\left(-c_{1}\right) b_{1}^{\prime}+\cdots+\left(-c_{m}\right) b_{m}^{\prime}
$$

is the negative of the value of the objective for the basic solution corresponding to the basis $\left\{x_{1}, \ldots, x_{m}\right\}$.
Recall that, by definition, the basic solution x satisfies $x_{m+1}=\cdots=x_{n}=0$.

Tableau Simplex

Assume that for a basis B we have obtained the canonical tableau:

$$
\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime} \\
0 & \cdots & 0 & c_{m+1}^{\prime} & \cdots & c_{n}^{\prime} & -z
\end{array}\right)
$$

The simplex algorithm then proceeds as follows:

1. Choose $i \in\{m+1, \ldots, n\}$ such that $c_{i}^{\prime}<0$.
2. Choose $j \in\{1, \ldots, m\}$ minimizing $b_{j}^{\prime} / y_{j i}$ over all j satisfying $y_{j i}>0$.
Note that $b_{j}^{\prime}=x_{j}$ for the basic solution \times w.r.t. B.
3. Move the i-the column into the basis and the j-th column out of the basis.
4. Use elementary row operations to transform the tableau into the canonical form for the new basis.
5. Repeat until $b_{1}^{\prime}, \ldots, b_{m}^{\prime} \geq 0$,

Example

Add slack variables x_{3}, x_{4} :

$$
\begin{aligned}
& \begin{aligned}
x_{1}+x_{2} \leq 2 \\
x_{1} \leq 1 \\
x_{1}, x_{2} \geq 0
\end{aligned} \\
& A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \\
& b=(2,1)^{\top} \\
& A x=b \text { where } x \geq 0 \\
& c=(-3,-2,0,0)^{\top}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{1}+x_{4} & =1 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Example

Add slack variables x_{3}, x_{4} :

$$
\begin{array}{r}
x_{1}+x_{2} \leq 2 \\
x_{1} \leq 1 \\
x_{1}, x_{2} \geq 0 \\
A=\left(u_{1} u_{2} u_{3} u_{4}\right)= \\
x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\top} \\
b=(2,1)^{\top} \\
A x=b \text { where } x \geq 0 \\
c=(-3,-2,0,0)^{\top}
\end{array}
$$

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=2 \\
x_{1}+x_{4}=1 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

$$
A=\left(u_{1} u_{2} u_{3} u_{4}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

Tableau for the basis $\left\{x_{3}, x_{4}\right\}$:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

is already in the canonical form.
Note that the last row of the tableau corresponds to writing the objective as $-z+c^{\top} x=0$ where z is a new variable and x is the basic solution for $\left\{x_{3}, x_{4}\right\}$.

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2).

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2). Now $b_{1} / y_{31}=2 / 1>1 / 1=b_{2} / y_{41}$. Thus, remove x_{4} from the basis.

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2). Now $b_{1} / y_{31}=2 / 1>1 / 1=b_{2} / y_{41}$.
Thus, remove x_{4} from the basis. We move to the basis $\left\{x_{1}, x_{3}\right\}$ and transform the tableau into the canonical form for this basis:

$$
\left[\begin{array}{c|cccc|c}
x_{1} & 1 & y_{12} & 0 & y_{14} & b_{1}^{\prime} \\
x_{3} & 0 & y_{32} & 1 & y_{34} & b_{2}^{\prime} \\
\hline-z & c_{1}^{\prime} & c_{2}^{\prime} & c_{3}^{\prime} & c_{4}^{\prime} & 3
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{1} & 1 & 0 & 0 & 1 & 1 \\
x_{3} & 0 & 1 & 1 & -1 & 1 \\
\hline-z & 0 & -2 & 0 & 3 & 3
\end{array}\right]
$$

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2). Now $b_{1} / y_{31}=2 / 1>1 / 1=b_{2} / y_{41}$.
Thus, remove x_{4} from the basis. We move to the basis $\left\{x_{1}, x_{3}\right\}$ and transform the tableau into the canonical form for this basis:

$$
\left[\begin{array}{c|cccc|c}
x_{1} & 1 & y_{12} & 0 & y_{14} & b_{1}^{\prime} \\
x_{3} & 0 & y_{32} & 1 & y_{34} & b_{2}^{\prime} \\
\hline-z & c_{1}^{\prime} & c_{2}^{\prime} & c_{3}^{\prime} & c_{4}^{\prime} & 3
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{1} & 1 & 0 & 0 & 1 & 1 \\
x_{3} & 0 & 1 & 1 & -1 & 1 \\
\hline-z & 0 & -2 & 0 & 3 & 3
\end{array}\right]
$$

Here, the reduced cost of x_{2} is -2 , and of x_{4} is 3 . Thus, x_{2} enters the basis.

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2). Now $b_{1} / y_{31}=2 / 1>1 / 1=b_{2} / y_{41}$.
Thus, remove x_{4} from the basis. We move to the basis $\left\{x_{1}, x_{3}\right\}$ and transform the tableau into the canonical form for this basis:

$$
\left[\begin{array}{c|cccc|c}
x_{1} & 1 & y_{12} & 0 & y_{14} & b_{1}^{\prime} \\
x_{3} & 0 & y_{32} & 1 & y_{34} & b_{2}^{\prime} \\
\hline-z & c_{1}^{\prime} & c_{2}^{\prime} & c_{3}^{\prime} & c_{4}^{\prime} & 3
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{1} & 1 & 0 & 0 & 1 & 1 \\
x_{3} & 0 & 1 & 1 & -1 & 1 \\
\hline-z & 0 & -2 & 0 & 3 & 3
\end{array}\right]
$$

Here, the reduced cost of x_{2} is -2 , and of x_{4} is 3 . Thus, x_{2} enters the basis. Now x_{3} leaves the basis because $y_{12}=0$ but $y_{32}>0$.

Start with the basis $\left\{x_{3}, x_{4}\right\}$ and consider the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{3} & y_{31} & y_{32} & 1 & 0 & b_{1} \\
x_{4} & y_{41} & y_{42} & 0 & 1 & b_{2} \\
\hline-z & c_{1} & c_{2} & c_{3} & c_{4} & 0
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{3} & 1 & 1 & 1 & 0 & 2 \\
x_{4} & 1 & 0 & 0 & 1 & 1 \\
\hline-z & -3 & -2 & 0 & 0 & 0
\end{array}\right]
$$

Choose x_{1} to enter the basis (x_{1} has the reduced cost -3 and x_{2} has the reduced costs -2). Now $b_{1} / y_{31}=2 / 1>1 / 1=b_{2} / y_{41}$.
Thus, remove x_{4} from the basis. We move to the basis $\left\{x_{1}, x_{3}\right\}$ and transform the tableau into the canonical form for this basis:

$$
\left[\begin{array}{c|cccc|c}
x_{1} & 1 & y_{12} & 0 & y_{14} & b_{1}^{\prime} \\
x_{3} & 0 & y_{32} & 1 & y_{34} & b_{2}^{\prime} \\
\hline-z & c_{1}^{\prime} & c_{2}^{\prime} & c_{3}^{\prime} & c_{4}^{\prime} & 3
\end{array}\right]=\left[\begin{array}{c|cccc|c}
x_{1} & 1 & 0 & 0 & 1 & 1 \\
x_{3} & 0 & 1 & 1 & -1 & 1 \\
\hline-z & 0 & -2 & 0 & 3 & 3
\end{array}\right]
$$

Here, the reduced cost of x_{2} is -2 , and of x_{4} is 3 . Thus, x_{2} enters the basis. Now x_{3} leaves the basis because $y_{12}=0$ but $y_{32}>0$. We move to the basis $\left\{x_{1}, x_{2}\right\}$ and transform the tableau into the canonical form:

$$
\left[\begin{array}{c|cccc|c}
x_{1} & 1 & 0 & 0 & 1 & 1 \\
x_{2} & 0 & 1 & 1 & -1 & 1 \\
\hline-z & 0 & 0 & 2 & 1 & 5
\end{array}\right]
$$

Integer Linear Programming

Integer Linear Programming

ILP $=\mathrm{LP}+$ variables constrained to integer values

Integer Linear Programming

We consider several variants of integer programming:

- 0-1 integer linear programming
- Mixed 0-1 integer linear programming
- Integer linear programming
- Mixed integer linear programming

Integer Linear Programming

We consider several variants of integer programming:

- 0-1 integer linear programming
- Mixed 0-1 integer linear programming
- Integer linear programming
- Mixed integer linear programming

We consider the basic branch and bound algorithm.

Integer Linear Programming

We consider several variants of integer programming:

- 0-1 integer linear programming
- Mixed 0-1 integer linear programming
- Integer linear programming
- Mixed integer linear programming

We consider the basic branch and bound algorithm.
We also consider a cutting-plane method for integer programming.

Integer Linear Programming

We consider several variants of integer programming:

- 0-1 integer linear programming
- Mixed 0-1 integer linear programming
- Integer linear programming
- Mixed integer linear programming

We consider the basic branch and bound algorithm.
We also consider a cutting-plane method for integer programming.
Integer linear programming is a huge subject; we shall only scratch its surface slightly.

0-1 Integer Linear Programming

Let us start with a special case where variables are constrained to values from $\{0,1\}$.
$0-1$ integer linear program (0-1 ILP) is

0-1 Integer Linear Programming

Consider the following example:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a^{\top} x \leq b \\
& x \geq 0 \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Here $c, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
Do you recognize the problem?

0-1 Integer Linear Programming

Consider the following example:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a^{\top} x \leq b \\
& x \geq 0 \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Here $c, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
Do you recognize the problem? It is the 0-1 knapsack problem.

0-1 Integer Linear Programming

Consider the following example:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & a^{\top} x \leq b \\
& x \geq 0 \\
& x_{i} \in\{0,1\}
\end{aligned}
$$

Here $c, a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
Do you recognize the problem? It is the 0-1 knapsack problem.
Theorem 23
Finding $x \in\{0,1\}^{n}$ satisfying the constraints of a given 0-1 integer linear program is NP-complete.

It is one of Karp's 21 NP-complete problems.

0-1 Mixed Integer Linear Programming

 0-1 mixed integer linear program (0-1 MILP) is$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in\{0,1\} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of binary variables.

0-1 Mixed Integer Linear Programming

0-1 mixed integer linear program (0-1 MILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in\{0,1\} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of binary variables.
The problem is NP-hard; the simplex algorithm cannot be used directly.

0-1 Mixed Integer Linear Programming

0-1 mixed integer linear program (0-1 MILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in\{0,1\} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of binary variables.
The problem is NP-hard; the simplex algorithm cannot be used directly.

The problem can be solved by searching for possible values 0 and 1 in the binary variables and solving the linear programs with binary variables fixed to concrete values.

0-1 Mixed Integer Linear Programming

0-1 mixed integer linear program (0-1 MILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in\{0,1\} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of binary variables.
The problem is NP-hard; the simplex algorithm cannot be used directly.

The problem can be solved by searching for possible values 0 and 1 in the binary variables and solving the linear programs with binary variables fixed to concrete values.

An exhaustive search through all possible binary assignments would be infeasible for many variables.

Usually, a sequential search that fixes only some of the binary variables and leaves the rest unrestricted to 0 or 1 is used.

Notation

In what follows, $L P$ relaxation is the linear program obtained from 0-1 MILP by removing the constraints $x_{i} \in\{0,1\}$ for $x_{i} \in \mathcal{D}$ and adding constraints $x_{i} \geq 0$ and $x \leq 1$ for all $x_{i} \in \mathcal{D}$.

Notation

In what follows, $L P$ relaxation is the linear program obtained from 0-1 MILP by removing the constraints $x_{i} \in\{0,1\}$ for $x_{i} \in \mathcal{D}$ and adding constraints $x_{i} \geq 0$ and $x \leq 1$ for all $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the 0-1 MILP constraints. Initialized with the undefined symbol \perp.

Notation

In what follows, $L P$ relaxation is the linear program obtained from $0-1$ MILP by removing the constraints $x_{i} \in\{0,1\}$ for $x_{i} \in \mathcal{D}$ and adding constraints $x_{i} \geq 0$ and $x \leq 1$ for all $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the 0-1 MILP constraints. Initialized with the undefined symbol \perp.

Assume a global variable f^{*}, keeping the value of the best solution satisfying the 0-1 MILP constraints. Initialize with $f^{*}=\infty$.

Notation

In what follows, $L P$ relaxation is the linear program obtained from $0-1$ MILP by removing the constraints $x_{i} \in\{0,1\}$ for $x_{i} \in \mathcal{D}$ and adding constraints $x_{i} \geq 0$ and $x \leq 1$ for all $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the 0-1 MILP constraints. Initialized with the undefined symbol \perp.

Assume a global variable f^{*}, keeping the value of the best solution satisfying the 0-1 MILP constraints. Initialize with $f^{*}=\infty$.
Keep a pool of 0-1 MILP problems \mathcal{P} initialized with $\mathcal{P}=\{P\}$ where P is the original 0-1 MILP to be solved.

Algorithm 17 Branch and Bound (Non-Deterministic)
1: repeat
2: \quad Choose $P \in \mathcal{P}$
3: \quad if LP relaxation of P is feasible then
4:
5:
6:
7:
8:

16: end if
17: $\quad \mathcal{P} \leftarrow \mathcal{P} \backslash\{P\}$
18: until $\mathcal{P}=\emptyset$
Choose $x_{i} \in \mathcal{D}$ such that $x_{i} \notin\{0,1\}$ Generate LP P_{0} by adding $x_{i}=0$ to P Generate LP P_{1} by adding $x_{i}=1$ to P
Add P_{0} and P_{1} to \mathcal{P}.
end if
end if
else
Find a solution x of the LP relaxation of P
if $c^{\top} x<f^{*}$ then
if $x_{i} \in\{0,1\}$ for all $x_{i} \in \mathcal{D}$ then
$x^{*} \leftarrow x$
$f^{*} \leftarrow c^{\top} x$

Strategies

There are many possible strategies for choosing the problem to be solved next:

- DFS, BFS, etc.
- heuristics using solutions to the relaxations

Strategies

There are many possible strategies for choosing the problem to be solved next:

- DFS, BFS, etc.
- heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

- Simplest one: Choose x_{i} which maximizes $\min \left\{x_{i}, 1-x_{i}\right\}$
- Look ahead to the relaxations of the possible subdivisions

Strategies

There are many possible strategies for choosing the problem to be solved next:

- DFS, BFS, etc.
- heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

- Simplest one: Choose x_{i} which maximizes $\min \left\{x_{i}, 1-x_{i}\right\}$
- Look ahead to the relaxations of the possible subdivisions

The solutions to the LP relaxations can be reused. Some methods (dual simplex) exploit that we are just adding a single constraint $x_{i}=0$ or $x_{i}=1$.

Strategies

There are many possible strategies for choosing the problem to be solved next:

- DFS, BFS, etc.
- heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

- Simplest one: Choose x_{i} which maximizes $\min \left\{x_{i}, 1-x_{i}\right\}$
- Look ahead to the relaxations of the possible subdivisions

The solutions to the LP relaxations can be reused. Some methods (dual simplex) exploit that we are just adding a single constraint $x_{i}=0$ or $x_{i}=1$.

The procedure may be stopped when we find a solution x, which gives a small enough value of the objective.

(Mixed) Integer Programming

Integer linear program (ILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \geq 0 \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

(Mixed) Integer Programming

Integer linear program (ILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \geq 0 \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Mixed integer linear program (MILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in \mathbb{Z} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of integer variables.

(Mixed) Integer Programming

Integer linear program (ILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b \\
& x \geq 0 \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Mixed integer linear program (MILP) is

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x_{i} \in \mathbb{Z} \text { for } x_{i} \in \mathcal{D}
\end{aligned}
$$

Here $\mathcal{D} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of integer variables.
We may use a similar branch and bound approach as for the binary variables. The problem is that now, each integer variable has an infinite domain.

Notation

In what follows, $L P$ relaxation is the linear program obtained from MILP by removing the constraints $x_{i} \in \mathbb{Z}$ for $x_{i} \in \mathcal{D}$.

Notation

In what follows, $L P$ relaxation is the linear program obtained from MILP by removing the constraints $x_{i} \in \mathbb{Z}$ for $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the MILP constraints. Initialized with the undefined symbol \perp.

Notation

In what follows, $L P$ relaxation is the linear program obtained from MILP by removing the constraints $x_{i} \in \mathbb{Z}$ for $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the MILP constraints. Initialized with the undefined symbol \perp.

Assume a global variable f^{*}, keeping the value of the best solution satisfying the MILP constraints. Initialize with $f^{*}=\infty$.

Notation

In what follows, $L P$ relaxation is the linear program obtained from MILP by removing the constraints $x_{i} \in \mathbb{Z}$ for $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the MILP constraints. Initialized with the undefined symbol \perp.

Assume a global variable f^{*}, keeping the value of the best solution satisfying the MILP constraints. Initialize with $f^{*}=\infty$.
Keep a pool of MILP problems \mathcal{P} initialized with $\mathcal{P}=\{P\}$ where P is the original MILP to be solved.

Notation

In what follows, $L P$ relaxation is the linear program obtained from MILP by removing the constraints $x_{i} \in \mathbb{Z}$ for $x_{i} \in \mathcal{D}$.

Assume a global variable x^{*}, keeping the best solution satisfying the MILP constraints. Initialized with the undefined symbol \perp.

Assume a global variable f^{*}, keeping the value of the best solution satisfying the MILP constraints. Initialize with $f^{*}=\infty$.
Keep a pool of MILP problems \mathcal{P} initialized with $\mathcal{P}=\{P\}$ where P is the original MILP to be solved.

In what follows, we temporarily cease to abuse notation and use \bar{x} to denote the vector of values of the vector of variables x. Then \bar{x}_{i} will denote the concrete value of the variable x_{i}.

Algorithm 18 Branch and Bound (Non-Deterministic)
1: repeat
2: \quad Choose $P \in \mathcal{P}$
3: \quad if LP relaxation of P is feasible then

16: end if
17: $\quad \mathcal{P} \leftarrow \mathcal{P} \backslash\{P\}$
18: until $\mathcal{P}=\emptyset$

Example

Consider the following MILP P :

$$
\begin{array}{cl}
\operatorname{minimize} & -x_{1}-2 x_{2}-3 x_{3}-1.5 x_{4} \\
\text { subject to } & x_{1}+x_{2}+2 x_{3}+2 x_{4} \leq 10 \\
& 7 x_{1}+8 x_{2}+5 x_{3}+x_{4}=31.5 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

and assume $\mathcal{D}=\left\{x_{1}, x_{2}, x_{3}\right\}$. That is, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.

Example

Consider the following MILP P :

$$
\begin{array}{cl}
\operatorname{minimize} & -x_{1}-2 x_{2}-3 x_{3}-1.5 x_{4} \\
\text { subject to } & x_{1}+x_{2}+2 x_{3}+2 x_{4} \leq 10 \\
& 7 x_{1}+8 x_{2}+5 x_{3}+x_{4}=31.5 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

and assume $\mathcal{D}=\left\{x_{1}, x_{2}, x_{3}\right\}$. That is, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.
The algorithm starts with $\mathcal{P}=\{P\}$ and $x^{*}=\perp$ and $f^{*}=\infty$.

Example

Consider the following MILP P :

$$
\begin{array}{cl}
\operatorname{minimize} & -x_{1}-2 x_{2}-3 x_{3}-1.5 x_{4} \\
\text { subject to } & x_{1}+x_{2}+2 x_{3}+2 x_{4} \leq 10 \\
& 7 x_{1}+8 x_{2}+5 x_{3}+x_{4}=31.5 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

and assume $\mathcal{D}=\left\{x_{1}, x_{2}, x_{3}\right\}$. That is, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.
The algorithm starts with $\mathcal{P}=\{P\}$ and $x^{*}=\perp$ and $f^{*}=\infty$.
The solution to the LP relaxation of P is:

$$
x=[0,1.1818,4.4091,0], \quad \text { the objective value is }-15.59
$$

Example

Consider the following MILP P :

$$
\begin{array}{cl}
\operatorname{minimize} & -x_{1}-2 x_{2}-3 x_{3}-1.5 x_{4} \\
\text { subject to } & x_{1}+x_{2}+2 x_{3}+2 x_{4} \leq 10 \\
& 7 x_{1}+8 x_{2}+5 x_{3}+x_{4}=31.5 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

and assume $\mathcal{D}=\left\{x_{1}, x_{2}, x_{3}\right\}$. That is, $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$.
The algorithm starts with $\mathcal{P}=\{P\}$ and $x^{*}=\perp$ and $f^{*}=\infty$.
The solution to the LP relaxation of P is:

$$
x=[0,1.1818,4.4091,0], \quad \text { the objective value is }-15.59
$$

Let us choose x_{3}. So, consider two programs:

- P_{-}where we add $x_{3} \leq 4$ to P
- P_{+}where we add $x_{3} \geq 5$ to P

Now $\mathcal{P}=\left\{P_{-}, P_{+}\right\}$.

Consider first P_{+}.
P_{+}is P with the added constraint $x_{3} \geq 5$. The LP relaxation of
P_{+}is infeasible. We get $\mathcal{P}=\left\{P_{-}\right\}$.

Consider first P_{+}.
P_{+}is P with the added constraint $x_{3} \geq 5$. The LP relaxation of
P_{+}is infeasible. We get $\mathcal{P}=\left\{P_{-}\right\}$.
P_{-}is P with the additional constraint $x_{3} \leq 4$.

Consider first P_{+}.
P_{+}is P with the added constraint $x_{3} \geq 5$. The LP relaxation of
P_{+}is infeasible. We get $\mathcal{P}=\left\{P_{-}\right\}$.
P_{-}is P with the additional constraint $x_{3} \leq 4$.
The LP relaxation of P_{-}solves to

$$
\bar{x}=[0,1.4,4,0.3], \quad \text { the objective value is }-15.25
$$

Consider first P_{+}.
P_{+}is P with the added constraint $x_{3} \geq 5$. The LP relaxation of
P_{+}is infeasible. We get $\mathcal{P}=\left\{P_{-}\right\}$.
P_{-}is P with the additional constraint $x_{3} \leq 4$.
The LP relaxation of P_{-}solves to

$$
\bar{x}=[0,1.4,4,0.3], \quad \text { the objective value is }-15.25
$$

We still have $f^{*}=\infty$ so we split P_{-}by constraining x_{2} :

- P_{--}is obtained from P_{-}by adding $x_{2} \leq 1$
- P_{-+}is obtained from P_{-}by adding $x_{2} \geq 2$
and we continue with $\mathcal{P}=\left\{P_{--}, P_{-+}\right\}$.

Consider first P_{+}.
P_{+}is P with the added constraint $x_{3} \geq 5$. The LP relaxation of
P_{+}is infeasible. We get $\mathcal{P}=\left\{P_{-}\right\}$.
P_{-}is P with the additional constraint $x_{3} \leq 4$.
The LP relaxation of P_{-}solves to

$$
\bar{x}=[0,1.4,4,0.3], \quad \text { the objective value is }-15.25
$$

We still have $f^{*}=\infty$ so we split P_{-}by constraining x_{2} :

- P_{--}is obtained from P_{-}by adding $x_{2} \leq 1$
- P_{-+}is obtained from P_{-}by adding $x_{2} \geq 2$
and we continue with $\mathcal{P}=\left\{P_{--}, P_{-+}\right\}$.
Adding one more constraint $x_{3} \geq 3$ to P_{-+}would yield a MILP solution $(0,2,3,0.5)$ to the LP relaxation with the objective value equal to -13.75 .

The algorithm assigns $f^{*}=-13.75$ and $x^{*}=(0,2,3,0.5)$.
The remaining search always leads either to an infeasible relaxation or to a relaxation with an objective value worse than f^{*}.

The final solution: $x^{*}=(0,2,3,0.5)$ and $f^{*}=-13.75$.

Cutting Planes

Removing Non-Integer Solutions

The basic branch and bound method generates two new problems in every step.

Removing Non-Integer Solutions

The basic branch and bound method generates two new problems in every step.

Another strategy might be to successively cut out non-integer optimal solutions and preserve the integer ones until an integer optimal solution is computed by the LP relaxation

Removing Non-Integer Solutions

The basic branch and bound method generates two new problems in every step.

Another strategy might be to successively cut out non-integer optimal solutions and preserve the integer ones until an integer optimal solution is computed by the LP relaxation

We consider a concrete method for obtaining such cuts from the ILP constraints called Gomory cuts.

Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack variables:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x \in \mathbb{Z} \text { for } x \in \mathcal{D}
\end{aligned}
$$

Here, \mathcal{D} contains the original (i.e., non-slack) variables of the ILP.

Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack variables:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x \in \mathbb{Z} \text { for } x \in \mathcal{D}
\end{aligned}
$$

Here, \mathcal{D} contains the original (i.e., non-slack) variables of the ILP.
We demand the integer solution only for the original \mathcal{D} variables.

Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack variables:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
& x \in \mathbb{Z} \text { for } x \in \mathcal{D}
\end{aligned}
$$

Here, \mathcal{D} contains the original (i.e., non-slack) variables of the ILP.
We demand the integer solution only for the original \mathcal{D} variables.
However, one can prove that if all constants in the ILP are integer, then there is an optimal solution where all variables (including the slacks) are integer-valued.

Gomory Cuts

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{n}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.

Gomory Cuts

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{n}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.
Consider the canonical tableau for B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

The $-z$ row is omitted as it is unnecessary for the discussion.

$$
u_{k}=B\left(y_{1 k}, \ldots, y_{m k}\right)^{\top} \text { for } k=1, \ldots, n \text { and } b^{\prime}=B^{-1} b
$$

Gomory Cuts

Let $A=\left(u_{1} \ldots, u_{n}\right)$, the basis $\left\{x_{1}, \ldots, x_{n}\right\}, B=\left(u_{1} \ldots, u_{m}\right)$.
Consider the canonical tableau for B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

The $-z$ row is omitted as it is unnecessary for the discussion.

$$
u_{k}=B\left(y_{1 k}, \ldots, y_{m k}\right)^{\top} \text { for } k=1, \ldots, n \text { and } b^{\prime}=B^{-1} b
$$

Consider a basic solution $x=\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}, 0, \ldots, 0\right)$.
If all $b_{1}^{\prime}, \ldots, b_{m}^{\prime}$ are integers, then also x solves the ILP.
Otherwise, assume that b_{i}^{\prime} is not an integer.

Gomory Cuts

From the tableau, we know that every feasible solution x satisfies:

$$
x_{i}+y_{i(m+1)} x_{m+1}+\cdots+y_{i n} x_{n}=b_{i}^{\prime}
$$

Gomory Cuts

From the tableau, we know that every feasible solution x satisfies:

$$
x_{i}+y_{i(m+1)} x_{m+1}+\cdots+y_{i n} x_{n}=b_{i}^{\prime}
$$

Then, x also satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq b_{i}^{\prime}
$$

Gomory Cuts

From the tableau, we know that every feasible solution x satisfies:

$$
x_{i}+y_{i(m+1)} x_{m+1}+\cdots+y_{i n} x_{n}=b_{i}^{\prime}
$$

Then, x also satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq b_{i}^{\prime}
$$

Moreover, any integer feasible solution x satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Gomory Cuts

From the tableau, we know that every feasible solution x satisfies:

$$
x_{i}+y_{i(m+1)} x_{m+1}+\cdots+y_{i n} x_{n}=b_{i}^{\prime}
$$

Then, x also satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq b_{i}^{\prime}
$$

Moreover, any integer feasible solution x satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq\left\lfloor b_{i}^{\prime}\right\rfloor
$$

But, subtracting the inequalities, integer feasible solutions x satisfy:

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Gomory Cuts

From the tableau, we know that every feasible solution x satisfies:

$$
x_{i}+y_{i(m+1)} x_{m+1}+\cdots+y_{i n} x_{n}=b_{i}^{\prime}
$$

Then, x also satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq b_{i}^{\prime}
$$

Moreover, any integer feasible solution x satisfies:

$$
x_{i}+\left\lfloor y_{i(m+1)}\right\rfloor x_{m+1}+\cdots+\left\lfloor y_{i n}\right\rfloor x_{n} \leq\left\lfloor b_{i}^{\prime}\right\rfloor
$$

But, subtracting the inequalities, integer feasible solutions x satisfy:

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

But note that the basic feasible solution $x=\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}, 0, \ldots, 0\right)$ does not satisfy the last inequality because $b_{i}^{\prime}>\left\lfloor b_{i}^{\prime}\right\rfloor$ and $x_{m+1}=\cdots=x_{n}=0$.

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B. Assume that the basic solution x w.r.t. B is non-integer.

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B. Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B. Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Choose a non-integer component $x_{i}=b_{i}^{\prime}$ of the basic feasible solution w.r.t. B

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B. Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Choose a non-integer component $x_{i}=b_{i}^{\prime}$ of the basic feasible solution w.r.t. B and consider the constraint

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.
Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Choose a non-integer component $x_{i}=b_{i}^{\prime}$ of the basic feasible solution w.r.t. B and consider the constraint

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Transform the above inequality into equality by introducing a new variable x_{n+1} and obtain the following constraint (Gomory cut)

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n}-x_{n+1}=b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.
Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Choose a non-integer component $x_{i}=b_{i}^{\prime}$ of the basic feasible solution w.r.t. B and consider the constraint

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Transform the above inequality into equality by introducing a new variable x_{n+1} and obtain the following constraint (Gomory cut)

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n}-x_{n+1}=b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Add the Gomory cut and the constraint $x_{n+1} \geq 0$ to the program.

Gomory Cuts Method

Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.
Consider the canonical tableau for the basis B :

$$
A^{\prime}=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & y_{1(m+1)} & \cdots & y_{1 n} & b_{1}^{\prime} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & y_{m(m+1)} & \cdots & y_{m n} & b_{m}^{\prime}
\end{array}\right)
$$

Choose a non-integer component $x_{i}=b_{i}^{\prime}$ of the basic feasible solution w.r.t. B and consider the constraint

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n} \geq b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Transform the above inequality into equality by introducing a new variable x_{n+1} and obtain the following constraint (Gomory cut)

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n}-x_{n+1}=b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

Add the Gomory cut and the constraint $x_{n+1} \geq 0$ to the program.
Repeat until an integer solution is reached.

Example

Consider ILP:

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2} \leq 12 \\
& 3 x_{1}+11 x_{2} \leq 66 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Adding slack variables x_{3}, x_{4} we obtain the following MILP:

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

We have

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

An optimal basic solution to the LP relaxation is

$$
\left(\frac{11}{2}, \frac{9}{2}, 0,0\right)^{\top}
$$

and the canonical tableau w.r.t. the basis $\left\{x_{1}, x_{2}\right\}$ is

$$
\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & b^{\prime} \\
1 & 0 & \frac{11}{36} & \frac{1}{36} & \frac{11}{2} \\
0 & 1 & -\frac{1}{12} & \frac{1}{12} & \frac{9}{2}
\end{array}\right)
$$

Let us introduce the Gomory cut corresponding to the variable x_{1}.

$$
\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & b^{\prime} \\
1 & 0 & \frac{11}{36} & \frac{1}{36} & \frac{11}{2} \\
0 & 1 & -\frac{1}{12} & \frac{1}{12} & \frac{9}{2}
\end{array}\right)
$$

Then

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n}-x_{n+1}=b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

with $i=1$ and $m=2$ turns into

$$
\left(\frac{11}{36}-0\right) x_{3}+\left(\frac{1}{36}-0\right) x_{4}-x_{5}=\frac{1}{2} \quad\left(=\frac{11}{2}-5\right)
$$

We add this constraint to our MILP.

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& \frac{11}{36} x_{3}+\frac{1}{36} x_{4}-x_{5}=\frac{1}{2} \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Solving the LP relaxation yields

$$
\left(5, \frac{51}{11}, \frac{18}{11}, 0,0\right)^{\top}
$$

The canonical tableau for the solution is

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b^{\prime} \\
1 & 0 & 0 & 0 & 1 & 5 \\
0 & 1 & 0 & \frac{1}{11} & -\frac{3}{11} & \frac{51}{11} \\
0 & 0 & 1 & \frac{1}{11} & -\frac{36}{11} & \frac{18}{11}
\end{array}\right)
$$

Introduce the Gomory cut for x_{2}.

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b^{\prime} \\
1 & 0 & 0 & 0 & 1 & 5 \\
0 & 1 & 0 & \frac{1}{11} & -\frac{3}{11} & \frac{51}{11} \\
0 & 0 & 1 & \frac{1}{11} & -\frac{36}{11} & \frac{18}{11}
\end{array}\right)
$$

Then

$$
\left(y_{i(m+1)}-\left\lfloor y_{i(m+1)}\right\rfloor\right) x_{m+1}+\cdots+\left(y_{i n}-\left\lfloor y_{i n}\right\rfloor\right) x_{n}-x_{n+1}=b_{i}^{\prime}-\left\lfloor b_{i}^{\prime}\right\rfloor
$$

with $i=2$ and $m=3$ turns into

$$
\left(\frac{1}{11}-0\right) x_{4}+\left(-\frac{3}{11}+\frac{11}{11}\right) x_{5}-x_{6}=\frac{7}{11} \quad\left(=\frac{51}{11}-\frac{44}{11}\right)
$$

We add this to our MILP.

$$
\begin{aligned}
\operatorname{minimize} & -3 x_{1}-4 x_{2} \\
\text { subject to } & 3 x_{1}-x_{2}+x_{3}=12 \\
& 3 x_{1}+11 x_{2}+x_{4}=66 \\
& \frac{11}{36} x_{3}+\frac{1}{36} x_{4}-x_{5}=\frac{1}{2} \\
& \frac{1}{11} x_{4}+\frac{8}{11} x_{5}-x_{6}=\frac{7}{11} \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& x_{1}, x_{2} \in \mathbb{Z}
\end{aligned}
$$

Once more the solution of the above is non-integer. However, introducing another Gomory cut (and a variable x_{7}) would yield a solution:

$$
(5,4,1,7,0,0,0)^{\top}
$$

Which gives the point $\left(x_{1}, x_{2}\right)=(5,4)$ corresponding to the graphical solution.

Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions to the integer linear programming problem with proven convergence (in the 1950s).

Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions to the integer linear programming problem with proven convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more methods have been devised based on algebraic principles (combinations of inequalities and rounding), geometry, etc.

Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions to the integer linear programming problem with proven convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more methods have been devised based on algebraic principles (combinations of inequalities and rounding), geometry, etc.
Cutting planes are also used in other non-linear, non-smooth optimization methods.

Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions to the integer linear programming problem with proven convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more methods have been devised based on algebraic principles (combinations of inequalities and rounding), geometry, etc.
Cutting planes are also used in other non-linear, non-smooth optimization methods.

Most importantly, cutting plane techniques are combined with branch and bound methods. The constraints are introduced before branching to eliminate some solutions before the split.
The resulting method is called branch and cut.

Summary of Integer Linear Programming

We have considered:

- Linear Programming (LP)

Linear objective and constraints.

Summary of Integer Linear Programming

We have considered:

- Linear Programming (LP)

Linear objective and constraints.

- 0-1 Integer Linear Programming (0-1 ILP)

Linear objective and constraints. All variables restricted to $\{0,1\}$.

Summary of Integer Linear Programming

We have considered:

- Linear Programming (LP)

Linear objective and constraints.

- 0-1 Integer Linear Programming (0-1 ILP)

Linear objective and constraints. All variables restricted to $\{0,1\}$.

- 0-1 Mixed Integer Programming (0-1 MILP)

Linear objective and constraints. Some variables restricted to $\{0,1\}$.

Summary of Integer Linear Programming

We have considered:

- Linear Programming (LP)

Linear objective and constraints.

- 0-1 Integer Linear Programming (0-1 ILP)

Linear objective and constraints. All variables restricted to $\{0,1\}$.

- 0-1 Mixed Integer Programming (0-1 MILP)

Linear objective and constraints. Some variables restricted to $\{0,1\}$.

- Integer Linear Programming (ILP)

Linear objective and constraints. All variables restricted to \mathbb{Z}.

Summary of Integer Linear Programming

We have considered:

- Linear Programming (LP)

Linear objective and constraints.

- 0-1 Integer Linear Programming (0-1 ILP)

Linear objective and constraints. All variables restricted to $\{0,1\}$.

- 0-1 Mixed Integer Programming (0-1 MILP)

Linear objective and constraints. Some variables restricted to $\{0,1\}$.

- Integer Linear Programming (ILP) Linear objective and constraints. All variables restricted to \mathbb{Z}.
- Mixed Integer Linear Programming (MILP)

Linear objective and constraints. Some variables restricted to \mathbb{Z}.

Summary of Integer Linear Programming

Complexity:

- Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in \mathbb{P}-time.

Summary of Integer Linear Programming

Complexity:

- Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in \mathbb{P}-time.

Algorithms:

- Branch and Bound
- 0-1 MILP: Search through possible assignments of 0 and 1 to some discrete variables while solving the LP relaxations Branching with the choice of $0 / 1$ values of variables, bounding with a solution found so far.

Summary of Integer Linear Programming

Complexity:

- Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in \mathbb{P}-time.

Algorithms:

- Branch and Bound
- 0-1 MILP: Search through possible assignments of 0 and 1 to some discrete variables while solving the LP relaxations Branching with the choice of $0 / 1$ values of variables, bounding with a solution found so far.
- MILP: Solve LP relaxation, use non-integer values of the solution to introduce constraints, removing such values from the solution.

Summary of Integer Linear Programming

Complexity:

- Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in \mathbb{P}-time.

Algorithms:

- Branch and Bound
- 0-1 MILP: Search through possible assignments of 0 and 1 to some discrete variables while solving the LP relaxations Branching with the choice of $0 / 1$ values of variables, bounding with a solution found so far.
- MILP: Solve LP relaxation, use non-integer values of the solution to introduce constraints, removing such values from the solution.
- Cutting planes
- Sequentially cut out portions of the LP relaxation feasible space by introducing cuts based on solutions of LP relaxations.

Summary of Integer Linear Programming

Complexity:

- Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in \mathbb{P}-time.

Algorithms:

- Branch and Bound
- 0-1 MILP: Search through possible assignments of 0 and 1 to some discrete variables while solving the LP relaxations Branching with the choice of $0 / 1$ values of variables, bounding with a solution found so far.
- MILP: Solve LP relaxation, use non-integer values of the solution to introduce constraints, removing such values from the solution.
- Cutting planes
- Sequentially cut out portions of the LP relaxation feasible space by introducing cuts based on solutions of LP relaxations.
- Does not branch but is usually combined with branch and bound (branch and cut).

Gradient-Free Optimization

Gradient-Free Methods

So far, we have explored problems where the objective f and the constraint functions h_{j}, g_{i} are known and (at least) differentiable.

Gradient-Free Methods

So far, we have explored problems where the objective f and the constraint functions h_{j}, g_{i} are known and (at least) differentiable.
What if the functions are just black boxes that can be evaluated but nothing else?

Gradient-Free Methods

So far, we have explored problems where the objective f and the constraint functions h_{j}, g_{i} are known and (at least) differentiable.
What if the functions are just black boxes that can be evaluated but nothing else?

What if the evaluation itself is costly?
Example: GPU parameters fine-tunning:

- Tens of parameters.
- The objective is to execute GPU software as efficiently as possible (tested by execution of a benchmark software suite)
- Evaluation of the objective function = Execution of a benchmark software suite
- How do we optimize the parameters?

Nothing is (possibly) differentiable here. Small changes in the parameters may give wildly different results.

There are many methods for such optimization. Most of them, of course, are without any convergence and efficiency guarantees.

Gradient-Free Methods Zoo

For more details see "Engineering Design Optimization" by Joaquim R. R. A. Martins and Andrew Ning

Evolutionary

"Evolutionary algorithms are inspired by processes that occur in nature or society. There is a plethora of evolutionary algorithms in the literature, thanks to the fertile imagination of the research community and a never-ending supply of phenomena for inspiration."

Evolutionary

"Evolutionary algorithms are inspired by processes that occur in nature or society. There is a plethora of evolutionary algorithms in the literature, thanks to the fertile imagination of the research community and a never-ending supply of phenomena for inspiration."
ant colony optimization, bee colony algorithm, fish swarm, artificial flora optimization algorithm, bacterial foraging optimization, bat algorithm, big bang-big crunch algorithm, biogeography-based optimization, bird mating optimizer, cat swarm, cockroach swarm, cuckoo search, design by shopping paradigm, dolphin echolocation algorithm, elephant herding optimization, firefly algorithm, flower pollination algorithm, fruit fly optimization algorithm, galactic swarm optimization, gray wolf optimizer, grenade explosion method, harmony search algorithm, hummingbird optimization algorithm, hybrid glowworm swarm optimization algorithm, imperialist competitive algorithm, intelligent water drops, invasive weed optimization, mine bomb algorithm, monarch butterfly optimization, moth-flame optimization algorithm, penguin search optimization algorithm, quantum-behaved particle swarm optimization, salp swarm algorithm, teaching-learning-based optimization, whale optimization algorithm, and water cycle algorithm, ...

Two Methods

To appreciate the gradient-free approaches, we shall (rather arbitrarily) concentrate on two methods:

- Nelder-Mead
- Particle Swarm Optimization

Both methods are somehow biologically motivated.
We consider the unconstrained optimization. That is, assume an objective function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Nelder-Mead

The Nelder-Mead algorithm is based on a simplex defined by a set of $n+1$ points in \mathbb{R}^{n} :

$$
X=\left\{x^{(0)}, x^{(1)}, \ldots, x^{(n)}\right\} \subseteq \mathbb{R}^{n}
$$

In two dimensions, the simplex is a triangle, and in three dimensions, it becomes a tetrahedron

A minimizer is approximated by a simplex node with a minimum value of f. The simplex changes in every step.

Nelder-Mead

Initially, $n+1$ nodes of the simplex need to be chosen: Typically, equal-length of edges and $x^{(0)}$ will be our starting point x_{0}.

$$
x^{(i)}=x^{(0)}+s^{(i)}
$$

where $s^{(i)}$ is a vector whose components j are defined by

$$
s_{j}^{(i)}= \begin{cases}\frac{L}{n \sqrt{2}}(\sqrt{n+1}-1)+\frac{L}{\sqrt{2}}, & \text { if } j=i \\ \frac{L}{n \sqrt{2}}(\sqrt{n+1}-1), & \text { if } j \neq i\end{cases}
$$

Here, L is the length of each side.

Nelder-Mead

Initially, $n+1$ nodes of the simplex need to be chosen: Typically, equal-length of edges and $x^{(0)}$ will be our starting point x_{0}.

$$
x^{(i)}=x^{(0)}+s^{(i)}
$$

where $s^{(i)}$ is a vector whose components j are defined by

$$
s_{j}^{(i)}= \begin{cases}\frac{L}{n \sqrt{2}}(\sqrt{n+1}-1)+\frac{L}{\sqrt{2}}, & \text { if } j=i \\ \frac{L}{n \sqrt{2}}(\sqrt{n+1}-1), & \text { if } j \neq i\end{cases}
$$

Here, L is the length of each side.
Nelder-Mead method proceeds by modifying the simplex so that the values of f in the vertices (hopefully) decrease.

Nelder-Mead

The Nelder-Mead algorithm performs five main operations on the simplex to create a new one: reflection, expansion, outside contraction, inside contraction, and shrinking.

Nelder-Mead

The Nelder-Mead algorithm performs five main operations on the simplex to create a new one: reflection, expansion, outside contraction, inside contraction, and shrinking.

Except for shrinking, each operation generates a new point,

$$
x=x_{c}+\alpha\left(x_{c}-x^{(n)}\right)
$$

Here $\alpha \in \mathbb{R}$ and x_{c} is the centroid of all the points except for the worst one, that is, assuming $x^{(n)}$ maximizes f among the nodes

$$
x_{c}=\frac{1}{n} \sum_{i=0}^{n-1} x^{(i)}
$$

Nelder-Mead

The Nelder-Mead algorithm performs five main operations on the simplex to create a new one: reflection, expansion, outside contraction, inside contraction, and shrinking.
Except for shrinking, each operation generates a new point,

$$
x=x_{c}+\alpha\left(x_{c}-x^{(n)}\right)
$$

Here $\alpha \in \mathbb{R}$ and x_{c} is the centroid of all the points except for the worst one, that is, assuming $x^{(n)}$ maximizes f among the nodes

$$
x_{c}=\frac{1}{n} \sum_{i=0}^{n-1} x^{(i)}
$$

This generates a new point along the line that connects the worst point, $x^{(n)}$, and the centroid of the remaining points, x_{c}.

This direction can be seen as a possible descent direction.

Nelder-Mead Algorithm

1. Start with a simplex $x^{(0)}, \ldots, x^{(n)}$

Assume an order of these points:

$$
f\left(x^{(0)}\right) \leq \ldots \leq f\left(x^{(n)}\right)
$$

2. Calculate the centroid

$$
x_{c}=\frac{1}{n} \sum_{i=0}^{n-1} x^{(i)}
$$

Nelder-Mead Algorithm (Reflection)

3. Reflection of $x^{(n)}$ over the centroid:

$$
x_{r}=x_{c}+\alpha\left(x_{c}-x^{(n)}\right) \quad \text { for } \alpha>0
$$

If $f\left(x^{(0)}\right) \leq f\left(x_{r}\right)<f\left(x^{(n-1)}\right)$, then
Replace $x^{(n)}$ with x_{r}
Go to 1 .

Now going further we know that either $f\left(x_{r}\right)<f\left(x^{(0)}\right)$, or $f\left(x_{r}\right) \geq f\left(x^{(n-1)}\right)$

Nelder-Mead Algorithm (Expansion)

4. Expansion

If $f\left(x_{r}\right)<f\left(x^{(0)}\right)$, then
Compute

$$
x_{e}=x_{c}+\gamma\left(x_{c}-x^{(n)}\right) \quad \text { for } \gamma>1
$$

If $f\left(x_{e}\right)<f\left(x_{r}\right)$, then
Replace $x^{(n)}$ with x_{e}.
Else, replace $x^{(n)}$ with x_{r}.
Go to 1 .

Now going further we know that $f\left(x_{r}\right) \geq f\left(x^{(n-1)}\right)$

Nelder-Mead (Contraction)

5. Contraction

If $f\left(x_{r}\right)<f\left(x^{(n)}\right)$, then compute outside contraction

$$
x_{o c}=x_{c}+\rho\left(x_{r}-x_{c}\right) \quad \text { for } 0<\rho \leq 0.5
$$

If $f\left(x_{o c}\right)<f\left(x_{r}\right)$, then
Replace $x^{(n)}$ with $x_{o c}$
Go to 1 .

If $f\left(x_{r}\right) \geq f\left(x^{(n)}\right)$, then compute inside contraction

$$
x_{i c}=x_{c}+\rho\left(x^{(n)}-x_{c}\right) \quad \text { for } 0<\rho \leq 0.5
$$

If $f\left(x_{i c}\right)<f\left(x^{(n)}\right)$, then
Replace $x^{(n)}$ with $x_{i c}$
Go to 1 .

Nelder-Mead (Shrink)

6. Shrink

Replace all points $x^{(k)}$ for $k>0$ with

$$
x^{(k)}=x^{(k)}+\sigma\left(x^{(k)}-x^{(0)}\right) \quad \text { for } 0<\sigma<1
$$

Go to 1 .

Nelder-Mead

The above procedure is repeated until convergence. This may be decided, e.g., based on the size of the simplex:

$$
\Delta_{x}=\sum_{i=0}^{n-1}\left\|x^{(i)}-x^{(n)}\right\|<\epsilon
$$

Nelder-Mead

The above procedure is repeated until convergence. This may be decided, e.g., based on the size of the simplex:

$$
\Delta_{x}=\sum_{i=0}^{n-1}\left\|x^{(i)}-x^{(n)}\right\|<\epsilon
$$

Standard values for constants are:

- Reflection $\alpha=1$
- Expansion $\gamma=2$
- Contraction $\rho=0.5$
- Shrink $\sigma=0.5$

Nelder-Mead Example

Particle Swarm Optimization

- The "swarm" in PSO is a set of points (agents or particles) that move in space, looking for the best solution.

Particle Swarm Optimization

- The "swarm" in PSO is a set of points (agents or particles) that move in space, looking for the best solution.
- Each particle moves according to its velocity.

Particle Swarm Optimization

- The "swarm" in PSO is a set of points (agents or particles) that move in space, looking for the best solution.
- Each particle moves according to its velocity.
- This velocity changes according to the past objective function values of that particle and the current objective values of the rest of the particles.

Particle Swarm Optimization

- The "swarm" in PSO is a set of points (agents or particles) that move in space, looking for the best solution.
- Each particle moves according to its velocity.
- This velocity changes according to the past objective function values of that particle and the current objective values of the rest of the particles.
- Each particle remembers the point where it found its best result so far, and it exchanges the information with the swarm.

The position of particle i for iteration $k+1$ is updated according to

$$
x_{k+1}^{(i)}=x_{k}^{(i)}+v_{k+1}^{(i)} \Delta t
$$

Where Δt is a constant artificial time step. The velocity for each particle is updated as follows:

$$
v_{k+1}^{(i)}=\alpha v_{k}^{(i)}+\beta \frac{x_{\text {best }}^{(i)}-x_{k}^{(i)}}{\Delta t}+\gamma \frac{x_{\text {best }}-x_{k}^{(i)}}{\Delta t}
$$

The position of particle i for iteration $k+1$ is updated according to

$$
x_{k+1}^{(i)}=x_{k}^{(i)}+v_{k+1}^{(i)} \Delta t
$$

Where Δt is a constant artificial time step. The velocity for each particle is updated as follows:

$$
v_{k+1}^{(i)}=\alpha v_{k}^{(i)}+\beta \frac{x_{\text {best }}^{(i)}-x_{k}^{(i)}}{\Delta t}+\gamma \frac{x_{\text {best }}-x_{k}^{(i)}}{\Delta t}
$$

- The first term is momentum.
α is usually set from the interval $[0.8,1.2]$, higher α motivates exploration, smaller α convergence towards (a local) minimizer.

The position of particle i for iteration $k+1$ is updated according to

$$
x_{k+1}^{(i)}=x_{k}^{(i)}+v_{k+1}^{(i)} \Delta t,
$$

Where Δt is a constant artificial time step. The velocity for each particle is updated as follows:

$$
v_{k+1}^{(i)}=\alpha v_{k}^{(i)}+\beta \frac{x_{\text {best }}^{(i)}-x_{k}^{(i)}}{\Delta t}+\gamma \frac{x_{\text {best }}-x_{k}^{(i)}}{\Delta t}
$$

- The first term is momentum.
α is usually set from the interval $[0.8,1.2]$, higher α motivates exploration, smaller α convergence towards (a local) minimizer.
- $x_{\text {best }}^{(i)}$ is the first minimum objective point visited by the i-th particle. β is usually set randomly from $\left[0, \beta_{\max }\right]$. $\beta_{\text {max }}$ is usually selected from the interval $[0,2]$, closer to 2 .
- $x_{\text {best }}$ is a minimum objective point visited by any particle.
γ is also usually set randomly from the interval $\left[0, \gamma_{\text {max }}\right]$. $\gamma_{\text {max }}$ is usually selected from the interval $[0,2]$, closer to 2 .

$$
v_{k+1}^{(i)}=\alpha v_{k}^{(i)}+\beta \frac{x_{\text {best }}^{(i)}-x_{k}^{(i)}}{\Delta t}+\gamma \frac{x_{\text {best }}-x_{k}^{(i)}}{\Delta t}
$$

Eliminate Δt by multiplying with Δt :

$$
\Delta x_{k+1}^{(i)}=\alpha \Delta x_{k}^{(i)}+\beta\left(x_{\text {best }}^{(i)}-x_{k}^{(i)}\right)+\gamma\left(x_{\text {best }}-x_{k}^{(i)}\right)
$$

Then, update the particle position for the next iteration:

$$
x_{k+1}^{(i)}=x_{k}^{(i)}+\Delta x_{k+1}^{(i)} .
$$

$x_{\text {best }}$
$x_{\text {best }}^{(i)}$

PSO

- Initialization is usually done randomly.
- Initialization is usually done randomly.
- The particles should stay in a bounded region. When a particle wants to leave the region, reorient the velocity or reset the position of the particle.
- Initialization is usually done randomly.
- The particles should stay in a bounded region. When a particle wants to leave the region, reorient the velocity or reset the position of the particle.
- It is also helpful to impose a maximum velocity. Otherwise, updates completely unrelated to the previous positions might be made.
- Initialization is usually done randomly.
- The particles should stay in a bounded region. When a particle wants to leave the region, reorient the velocity or reset the position of the particle.
- It is also helpful to impose a maximum velocity. Otherwise, updates completely unrelated to the previous positions might be made.
- The velocity may be decreased gradually to exchange exploitation with exploration.

Example

$K=0$

Example

$K=1$

Example

$K=3$

Example

$K=5$

Example

$K=12$

Example

$$
K=17
$$

Jones Function

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{4}+x_{2}^{4}-4 x_{1}^{3}-3 x_{2}^{3}+2 x_{1}^{2}+2 x_{1} x_{2}
$$

Global minimum: $f\left(x^{*}\right)=-13.5320$ at $x^{*}=(2.6732,-0.6759)$.
Local minima: $f(x)=-9.7770$ at $x=(-0.4495,2.2928)$

$$
f(x)=-9.0312 \text { at } x=(2.4239,1.9219)
$$

Make it discontinuous by adding $4\left\lceil\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right)\right\rceil$

Nelder-Mead: 179 evaluations were needed to reach the minimum (with restarts due to local minima).

Particle Swarm Optimization: 760 evaluations found the global minimum without restarts.

Quasi-Newton with restarts: 96 evaluations needed. Converged in two out of six random restarts.

FINALE!

Summary

We have considered the following methods:

- Unconstrained \& Differentiable Objective
- Line Search with step size determined by Wolfe conditions and direction determined by
- Gradient Descent
- Newton's Method (2nd derivatives needed)
- Quasi-Newton: SR-1, BFGS

Summary

We have considered the following methods:

- Unconstrained \& Differentiable Objective
- Line Search with step size determined by Wolfe conditions and direction determined by
- Gradient Descent
- Newton's Method (2nd derivatives needed)
- Quasi-Newton: SR-1, BFGS
- Constrained \& Differentiable Objective
- Penalty Methods
- Exterior (quadratic penalty)
- Interior/Barrier (inverse and logarithmic barriers)
- Lagrangian used in Sequential Quadratic Programming

Summary

We have considered the following methods:

- Unconstrained \& Differentiable Objective
- Line Search with step size determined by Wolfe conditions and direction determined by
- Gradient Descent
- Newton's Method (2nd derivatives needed)
- Quasi-Newton: SR-1, BFGS
- Constrained \& Differentiable Objective
- Penalty Methods
- Exterior (quadratic penalty)
- Interior/Barrier (inverse and logarithmic barriers)
- Lagrangian used in Sequential Quadratic Programming
- Linear Objective and Constraints
- Simplex Method (including degenerate case and tableaus)
- Branch \& Bound
- Gomory Cuts

Summary

We have considered the following methods:

- Unconstrained \& Differentiable Objective
- Line Search with step size determined by Wolfe conditions and direction determined by
- Gradient Descent
- Newton's Method (2nd derivatives needed)
- Quasi-Newton: SR-1, BFGS
- Constrained \& Differentiable Objective
- Penalty Methods
- Exterior (quadratic penalty)
- Interior/Barrier (inverse and logarithmic barriers)
- Lagrangian used in Sequential Quadratic Programming
- Linear Objective and Constraints
- Simplex Method (including degenerate case and tableaus)
- Branch \& Bound
- Gomory Cuts
- Unconstrained \& Non-Differentiable (just a few examples)
- Nelder-Mead
- Particle Swarm Optimization

Most Notable Omissions

- Conjugate Gradient Methods

Unfortunately, I had to choose between quasi-Newton and CG.

- Trust Region Methods
- Combinatorial, Multiobjective, Stochastic, Bayesian (etc.) Optimization
Completely different areas with different methods.
- Infinitely many non-differentiable optimization methods motivated by arbitrary phenomena from:
- biology
- chemistry
- physics
- economics
- politics
- mathematics
- agriculture
- pop-culture
- Scientology
- astrology

