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Resources & Prerequisities
Resources:

▶ Lectures & tutorials (the main resources)

▶ Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering De-
sign Optimization. Cambridge University Press, 2021. ISBN:
9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical
optimization. Springer, 2006. ISBN: 0387303030.

We shall need elementary knowledge and understanding of

▶ Linear algebra in Rn

Operations with vectors and matrices, bases, diagonalization.

▶ Multi-variable calculus (i.e., in Rn)
Partial derivatives, gradients, Hessians, Taylor’s theorem.

We will refresh our memories during lectures and tutorials.
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Evaluation

Oral exam - You will get a manual describing the knowledge
necessary for E and better.

There might be homework assignments that you may discuss at
tutorials, but (for this year) there is no mandatory homework.

Please be aware that

This is a difficult math-based course.
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What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a
design, system, or decision) as fully perfect, functional, or effective
as possible.

specifically: the mathematical procedures (such as finding the
maximum of a function) involved in this

Britannica

Collection of mathematical principles and methods used for solving
quantitative problems in many disciplines, including physics,
biology, engineering, economics, and business

Historically, (mathematical/numerical) optimization is called
mathematical programming.
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Optimization
People optimize in

▶ scheduling
▶ transportation,
▶ education,
▶ · · ·

▶ investments
▶ portfolio management,
▶ utility maximization,
▶ · · ·

▶ industrial design
▶ aerodynamics,
▶ electrical engineering,
▶ · · ·

▶ sciences
▶ molecular modeling,
▶ computational systems biology,
▶ · · ·

▶ machine learning

▶ · · ·
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Optimization Algorithms
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Optimization Algorithms
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Design Optimization Process
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Design Optimization Process
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A bit naive example:

▶ Consider a company with several plants producing a single
product but with different efficiency.

▶ The goal is to set the production of each plant so that demand
for goods is satisfied, but overproduction is minimized.

▶ First try: Model each plant’s production and maximize the
total production efficiency.
This would lead to a solution where only the most efficient plant will

produce.

▶ However, after a certain level of demand, no single plant can
satisfy the demand ⇒, introducing constraints on the
maximum production of the plants.
This would maximize production of the most efficient plant and then the

second one, etc.

▶ Then you notice that all plant employees must work.

▶ Then you start solving transportation problems depending on
the location of the plants.

▶ ...
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Optimization Problem Formulation

1. Describe the problem
▶ Problem formulation is vital since the

optimizer exploits any weaknesses in the
model formulation.

▶ You might get the “right answer to the
wrong question.”

▶ The problem description is typically
informal at the beginning.

2. Gather information
▶ Identify possible inputs/outputs.
▶ Gather data and identify the analysis

procedure.
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Optimization Problem Formulation

3. Define the design variables
▶ Identify the quantities that describe the

system:

x ∈ Rn

(i.e., certain characteristics of the system,
such as position, investments, etc.)

▶ The variables are supposed to be
independent; the optimizer must be free to
choose the components of x independently.

▶ The choice of variables is typically not
unique (e.g., a square can be described by
its side or area).

▶ The variables may affect the functional
form of the objective and constraints (e.g.,
linear vs non-linear).
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Optimization Problem Formulation

4. Define the objective
▶ The function determines if one design is

better than another.
▶ Must be a scalar computable from the

variables:

f : Rn → R

(e.g., profit, time, potential energy, etc.)
▶ The objective function is either maximized

or minimized depending on the application.
▶ The choice is not always obvious: E.g.,

minimizing just the weight of a vehicle
might result in a vehicle being too
expensive to be manufactured.
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Optimization Problem Formulation

5. Define the constraints
▶ Prescribe allowed values of the variables.
▶ May have a general form

c(x) ≤ 0 or c(x) ≥ 0 or c(x) = 0

(e.g., time cannot be negative, bounded
amount of money to invest)
Where c : Rn → R is a function depending
on the variables.

11



Modelling and Optimization
The Optimization Problem consists of

▶ variables

▶ objective

▶ constraints

The above components constitute a model.

Modelling is concerned with model building, optimization with
maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined

with modeling.

The Optimization Problem (OP): Find settings of variables so
that the objective is maximized/minimized while satisfying the
constraints.

An Optimization Algorithm (OA) solves the above problem and
provides a solution, some setting of variables satisfying the
constraints and minimizing/maximizing the objective.
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Optimization Problems
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Optimization Problem Formally

Denote by

f : Rn → R an objective function,

x a vector of real variables,

g1, . . . , gng inequality constraint functions gi : Rn → R.

h1, . . . , hnh equality constraint functions hj : Rn → R.

The optimization problem is to

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh
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Optimization Problem - Example

f (x1, x2) = (x1 − 2)2 + (x2 − 1)2

g1(x1, x2) = x21 − x2
g2(x1, x2) = x1 + x2 − 2

The optimization problem is

minimize (x1−2)2+(x2−1)2 subject to

{
x2 − x21 ≥ 0,

2− x1 − x2 ≥ 0.

I.e.,

minimize (x1−2)2+(x2−1)2 subject to

{
x21 − x2 ≤ 0,

x1 + x2 − 2 ≤ 0.
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Constraints
Consider the constraints

gi (x) ≤ 0 i = 1, . . . , ng
hj(x) = 0 j = 1, . . . , nh

Define the feasibility region by

F = {x | gi (x) ≤ 0, hj(x) = 0, i = 1, . . . , ng , j = 1, . . . , nh}

x ∈ F is feasible, x ̸∈ F is infeasible.

Note that constraints of the form gi (x) ≥ 0 can be easily
transformed to the inequality contraints −gi (x) ≤ 0

x∗ ∈ F is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F
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Constraints

Inequality constraints gi (x) ≤ 0 can be active or inactive.

active

gi (x
∗) = 0

inactive

gi (x
∗) < 0
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More Practical Example

The problem formulation:

▶ A company has two chemical factories F1 and F2, and a dozen
retail outlets R1, . . . ,R12.

▶ Each Fi can produce (maximum of) ai tons of a chemical
each week.

▶ Each retail outlet Rj demands at least bj tons.

▶ The cost of shipping one ton from Fi to Rj is cij .

The problem: Determine how much each factory should ship to
each outlet to satisfy the requirements and minimize cost.

18
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More Practical Example
Variables: xij for i = 1, 2 and j = 1, . . . , 12. Each xij (intuitively)
corresponds to tons shipped from Fi to Rj .

The objective:

min
∑
ij

cijxij

subject to

12∑
j=1

xij ≤ ai , i = 1, 2

2∑
i=1

xij ≥ bj , j = 1, . . . , 12,

xij ≥ 0, i = 1, 2, j = 1, . . . , 12.

The above is linear programming problem since both the objective
and constraint functions are linear.
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Discrete Optimization

In our original optimization problem definition, we consider real
(continuous) variables.

Sometimes, we need to assume discrete values. For example, in the
previous example, the factories may produce tractors. In such a
case, it does not make sense to produce 4.6 tractors.

Usually, an integer constraint is added, such as

xi ∈ Z

It constrains xi only to integer values. This leads to so-called
integer programming.

Discrete optimization problems have discrete and finite variables.
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Wing Design Example
Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are call span b and chord c .

However, two other variables are often used in aircraft design:
Wing area S and wing aspect ratio AR. It holds that

S = bc AR = b2/S

21
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Wing Design Example

What exactly are the objectives and constraints?

Our objective function is the power required to keep level flight:

f (b, c) =
Dv

η

Here,

▶ D is the draft
That is the aerodynamic force that opposes an aircraft’s motion through

the air.

▶ η is the propulsion efficiency
That is the efficiency with which the energy contained in a vehicle’s fuel

is converted into kinetic energy of the vehicle.

▶ v is the lift velocity
That is the velocity needed to lift the aircraft, which depends on its

weight.
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Wing Design Example
For illustration, let us look at the lift velocity v .

In level flight, the aircraft must generate enough lift L to equal its
weight W , that is L = W .

The weight partially depends on the wing area:

W = W0 +WSS

Here S = bc is the wing area, and W0 is the payload weight.

The lift can be approximated using the following formula.

L = q · CL · S
Where q = 1

2ϱv
2 is the fluid dynamic pressure, here ϱ is the air

density, CL is a lift coefficient (depending on the wing shape).

Thus, we may obtain the lift velocity as

v =
√

2W /ϱCLS =
√

2(W0 +WSbc)/ϱCLbc

Similarly, various physics-based arguments provide approximations
of the draft D and the propulsion efficiency η.
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Wing Design Example
The draft D = Di + Df is the sum of the induced and viscous draft.

The induced draft can be approximated by

Di = W 2/q π b2 e

Here, e is the Oswald efficiency factor, a correction factor that represents
the change in drag with the lift of a wing, as compared with an ideal
wing having the same aspect ratio.

The viscous draft can be approximated by

Df = k Cf q 2.05S

Here, k is the form factor (accounts for the pressure drag), and Cf is the
skin friction coefficient that can be approximated by

Cf = 0.074/Re0.2

Where Re is the Reynolds number that somewhat characterizes air flow
patterns around the wing and is defined as follows:

Re = ρvc/µ

Here µ is the air dynamic viscosity.
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Wing Design Example

The propulsion efficiency η can be roughly approximated by the
Gaussian efficiency curve.

η = ηmax exp

(
−(v − v̄)2

2σ2

)
Here, v̄ is the peak propulsive efficiency velocity, and σ is the std
of the efficiency function.
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Wing Design Example

The objective function contours:

The engineers would refuse the solution: The aspect ratio is much
higher than typically seen in airplanes. It adversely affects the
structural strength. Add constraints!
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Wing Design Example

Added a constraint on bending stress at the root of the wing:

It looks like a reasonable wing ...

27



Optimization Problem Classification
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Optimization Problem Classification

▶ Continuous allows only xi ∈ R, discrete allows only xi ∈ Z,
mixed allows variables of both kinds.

▶ Single-objective: f : Rn → R, Multi-objective: f : Rn → Rm

▶ Unconstrained: No constraints, just the objective function.
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Optimization Problem Classification
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Smoothness

We consider various classes of problems depending on the
smoothness properties of the objective/constraint functions:

▶ C 0: Continuous function
Continuity allows us to estimate value

in small neighborhoods.

▶ C 1: Continuous first derivatives
Derivatives give information about the

slope. If continuous, it changes

smoothly, allowing us to estimate the

slope locally.

▶ C 2: Continuous second
derivatives
Second derivatives inform about

curvature.

31



Linearity

Linear programming: Both the objective and the constraints are
linear.

It is possible to solve precisely, efficiently, and in rational numbers
(see the linear programming later).
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Multimodality
Denote by F the feasibility set.

x∗ is a (weak) local minimiser if there is ε > 0 such that

f (x∗) ≤ f (x) for all x ∈ F satisfying ||x∗ − x || ≤ ε

x∗ is a (weak) global minimiser if

f (x∗) ≤ f (x) for all x ∈ F
Global/local minimiser is strict if the inequality is strict.

Unimodal functions have a single global minimiser in F ,
multimodal have multiple local minimisers in F .
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Convexity
S ⊆ Rn is a convex set if the straight line segment connecting any
two points in S lies entirely inside S . Formally, for any two points
x ∈ S and y ∈ S , we have αx + (1− α)y ∈ S for all α ∈ [0, 1]

f is a convex function if its domain is a convex set and if for any
two points x and y in this domain, the graph of f lies below the
straight line connecting (x , f (x)) to (y , f (y)) in the space Rn+1.
That is, we have

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), for all α ∈ [0, 1].

A standard form convex optimization assumes
▶ convex objective f and convex inequality constraint

functions gi
▶ affine equality constraint functions hj

Implications:
▶ Every local minimum is a global minimum.
▶ If the above inequality is strict for all x ̸= y , then there is

a unique minimum.
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Stochasticity

Sometimes, the parameters of a model cannot be specified with
certainty.

For example, in the transportation model, customer demand
cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and
modeled using an appropriate probability distribution.

Stochastic optimization problem is to minimize/maximize the
expectation of a statistic parametrized with the variables x :

Find x maximizing Ef (x ;W )

Here, W is a vector of random variables, and the expectation is
taken using the probability distribution of these variables.

In this course, we stick with deterministic optimization.
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Optimization Algorithms
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Optimization Algorithm

An optimization algorithm solves the optimization problem, i.e.,
searches for x∗, which (in some sense) minimizes the objective f
and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions
x0, x1, . . . and then identifies one resembling a solution.

The problem is to

▶ compute the candidate solutions,
(complexity of the objective function, difficulties in selection of the

candidates, etc.)

▶ Select the one closest to a minimum.
(hard to decide whether a given point is a minimum (even a local one))
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Optimization Algorithm Properties

Typically, we are concerned with the following issues:

▶ Robustness: OA should perform well on various problems in
their class for all reasonable choices of the initial variables.

▶ Efficiency: OA should not require too much computer time or
storage.

▶ Accuracy: OA should be able to identify a solution with
precision without being overly sensitive to
▶ errors in the data/model
▶ the arithmetic rounding errors
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Order and Search

Order

▶ Zeroth = gradient-free: no info about derivatives is used

▶ First = gradient-based: use info about first derivatives
(e.g., gradient descent)

▶ Second = use info about first and second derivatives
(e.g., Newton’s method)

Search

▶ Local search = start at a point and search for a solution by
successively updating the current solution
(e.g., gradient descent)

▶ Global search tries to span the whole space
(e.g., grid search)
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Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on
the optimization problem, we can do the following:

▶ Prove that the algorithm converges to an optimum/minimum.

▶ Determine the rate of convergence.

▶ Decide whether we are at (or close to) an optimum/minimum.

For example, for linear optimization problems, the simplex
algorithm converges to a minimum in, at most, exponentially many
steps, and we may efficiently decide whether we have reached a
minimum.

We may prove only some or none of the properties for some
algorithms.
There are (almost) infinitely many heuristic algorithms without provable

convergence, often motivated by the behaviors of various animals.
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Deterministic vs Stochastic and Static vs Dynamic
Stochastic optimization is based on a random selection of
candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the
form of random mutations).

Also, various variants of the gradient-based methods are often
randomized (e.g., variants of the stochastic gradient descent).

In this course, we stick to static optimization problems where we
solve the optimization problem only once.

In contrast, the dynamic optimization, a sequence of (usually)
dependent optimization problems are solved sequentially.

For example, consider driving a car where the driver must react
optimally to changing situations several times per second.

Dynamic optimization problems are usually defined using a kind of
(Markov) decision process.
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Single-variable Objectives
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Unconstrained Single Variable Optimization Problem

An objective function f : R→ R

A variable x

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

We consider

▶ f continuously differentiable

▶ f twice continuously differentiable

Present the following methods:

▶ Gradient descent

▶ Newton’s method

▶ Secant method
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Gradient Based Methods

An objective function f : R→ R

A variable x ∈ R

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

Assume that

f ′(x) = lim
h→0

f (x + h)− f (x)

h
for x ∈ R

is continuous on R.

Denote by C1 the set of all continuously differentiable functions.
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Gradient Descent in Single Variable

Gradient descent algorithm for finding a local minimum of a
function f , using a variable step length.

Input: Function f with first derivative f ′, initial point x0, initial
step length α0 > 0, tolerance ϵ > 0

Output: A point x that approximately minimizes f (x)
1: Set k ← 0
2: while |f ′(xk)| > ϵ do
3: Calculate the derivative: y ′ ← f ′(xk)
4: Update xk+1 ← xk − αk · y ′
5: Update step length αk to αk+1 based on a certain strategy
6: Increment k
7: end while
8: return xk
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Convergence of Single Variable Gradient Descent

Theorem 1
Assume that f is

▶ continuously differentiable, i.e., that f ′ exists,

▶ bounded below, i.e., there is B ∈ R such that f (x) ≥ B for all
x ∈ R,

▶ L-smooth, i.e., there is L > 0 such that
|f ′(x)− f ′(x ′)| ≤ L|x − x ′| for all x , x ′ ∈ R.

Consider a sequence x0, x1, . . . computed by the gradient descent
algorithm for f . Assume a constant step length α ≤ 1

L .
Then limk→∞ |f ′(xk)| = 0 and, moreover,

min
0≤t<T

|f ′(xt)| ≤
√

2L(f (x0)− B)

T
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Example
Consider the following objective function f

f (x) =
1

2
x2 − sin x

48



Example

Consider the objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5, and that the required accuracy is ϵ = 10−4, i.e.,
we stop when |xk+1 − xk | < ϵ.

Consider the step length α = 1.

We compute
f ′(x) = x − cos x .

Then,
x1 = 0.5− (0.5− cos 0.5)

= 0.5− (−0.37758)
= 0.87758
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Example
Continuing in the same way:

x1 = 0.87758

x2 = 0.63901

x3 = 0.80269

x4 = 0.69478

x5 = 0.76820

x6 = 0.71917

x7 = 0.75236

x8 = 0.73008

x9 = 0.74512

x10 = 0.73501

x11 = 0.74183

x12 = 0.73724

x13 = 0.74033

x14 = 0.73825

x15 = 0.73965

x16 = 0.73870

x17 = 0.73934

x18 = 0.73891

x19 = 0.73920

x20 = 0.73901

x21 = 0.73914

x22 = 0.73905

Note that |x22 − x21| < 10−4.
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Example
What if we consider the step length 1/k? Then

x1 = 0.50000

x2 = 0.87758

x3 = 0.75830

x4 = 0.74753

x5 = 0.74399

x6 = 0.74235

x7 = 0.74144

x8 = 0.74087

x9 = 0.74050

x10 = 0.74024

x11 = 0.74004

x12 = 0.73990

x13 = 0.73978

x14 = 0.73969

Note that |x14 − x13| < 10−4 but x14 is far from the solution
which is 0.7390....
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Frame Title
What if we consider the step length 1/k? Then

x1 = 0.50000

x2 = 0.87758

x3 = 0.75830

x4 = 0.74753

x5 = 0.74399

x6 = 0.74235

x7 = 0.74144

x8 = 0.74087

x9 = 0.74050

x10 = 0.74024

x11 = 0.74004

x12 = 0.73990

x13 = 0.73978

x14 = 0.73969

· · ·

x115 = 0.739100605

x116 = 0.739100379

x117 = 0.739100159

x118 = 0.739099944

x119 = 0.739099734

x120 = 0.739099529

x121 = 0.739099328

x122 = 0.739099132

x123 = 0.739098940

x124 = 0.739098752

x125 = 0.739098568

x126 = 0.739098388

x127 = 0.739098212

x128 = 0.739098040
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Example

Gradient descent with the step length = 1.0:
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Example

Gradient descent with the step length = 1/k :
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Example
Gradient descent with the step length = 1/k2:

It does not seem to converge to the same number as the previous
step lengths.
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Example

Gradient descent with the step length = 1.0:
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Example

Gradient descent with the step length = 1/k :
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Properties of Gradient Descent

▶ The objective must be differentiable, however:
▶ Can be extended to functions with few non-linearities by

considering differentiable parts or sub-gradients.
▶ There are methods for differentiable approximation of

non-differentiable functions.

▶ GD is sensitive to the initial point: Converges to a local
minimum for a small step length (typically) to the closest one.

▶ GD is quite sensitive to the step length.
Might be very slow or too fast (even overshoot and diverge).

▶ For convex functions, the algorithm converges to a minimum
(if it converges).

▶ Straightforward to implement if the derivatives are available.

GD is much more interesting in multiple variables, forming the
basis for neural network learning (see later).

Better algorithm for unimodal functions using just derivatives?
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Newton’s Method

An objective function f : R→ R

A variable x ∈ R

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

Assume that

f ′′(x) = lim
h→0

f ′(x + h)− f ′(x)

h
for x ∈ R

is continuous on R.

Denote by C2 the set of all twice continuously differentiable
functions.
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Taylor Series Approximation
We would need the o-notation: Given functions f , g : R→ R we
write f = o(g) if

lim
x→0

f (x)

g(x)
= 0

Consider a function f : R→ R and x0 ∈ R. Assume that f is twice
differentiable at x0. Then for all x ∈ R we have that

f (x) = f (x0)+ f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2+o(|x−x0|2)

Thus, such f can be reasonably approximated around x0 with a
quadratic function

f (x) ≈ q(x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2
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differentiable at x0. Then for all x ∈ R we have that

f (x) = f (x0)+ f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2+o(|x−x0|2)

Thus, such f can be reasonably approximated around x0 with a
quadratic function

f (x) ≈ q(x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2
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Newton’s Method Idea
The method computes successive approximations x0, x1, . . . , xk , . . .
as the GD.

To compute xk+1, a quadratic approximation

q(x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)

2

is considered around xk .

Then xk+1 is set to the extreme point of q(x) (i.e., q′(xk+1) = 0).
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Newton’s Method Algorithm

Now note that for

q(x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)

2

we have

q′(x) = f ′(xk) + f ′′(xk)(x − xk)

and thus

q′(x) = 0 iff x = xk −
f ′(xk)

f ′′(xk)

Newton’s method then sets

xk+1 := xk −
f ′(xk)

f ′′(xk)
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Newton’s Method Algorithm

Input: A function f with derivative f ′ and second derivative f ′′,
initial point x0, tolerance ϵ > 0

Output: A point x that approximately minimizes f (x)
1: Set k ← 0
2: while |xk+1 − xk | > ϵ do
3: Calculate the derivative: y ′ ← f ′(xk)
4: Calculate the second derivative : y ′′ ← f ′′(xk)

5: Update the estimate: xk+1 ← xk − y ′

y ′′

6: Increment k
7: end while
8: return xk

Note that the method implicitly assumes that f ′′(xk) ̸= 0 in every
iteration.
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Example

Consider the following objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5, and that the required accuracy is ϵ = 10−5, i.e.,
we stop when |xk+1 − xk | ≤ ϵ.

We compute

f ′(x) = x − cos x , f ′′(x) = 1 + sin x .

Hence,

x1 = 0.5− 0.5− cos 0.5

1 + sin 0.5

= 0.5− −0.3775
1.479

= 0.7552
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Example
Proceeding similarly, we obtain

x2 = x1 −
f ′ (x1)

f ′′ (x1)
= x1 −

0.02710

1.685
= 0.7391

x3 = x2 −
f ′ (x2)

f ′′ (x2)
= x2 −

9.461× 10−5

1.673
= 0.7390851339

x4 = x3 −
f ′ (x3)

f ′′ (x3)
= x3 −

1.17× 10−9

1.673
= 0.7390851332

· · ·

Note that

|x4 − x3| < ϵ = 10−5

f ′ (x4) = −8.6× 10−6 ≈ 0

f ′′ (x4) = 1.673 > 0

So, we conclude that x∗ ≈ x4 is a strict minimizer.
However, remember that the above does not have to be true!
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Convergence
Newton’s method works well if f ′′(x) > 0 everywhere.

However, if f ′′(x) < 0 for some x , Newton’s method may fail to
converge to a minimizer (converges to a point x where f ′(x) = 0):

If the method converges to a minimizer, it does so quadratically.
What does this mean?
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Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each
step is proportionally reduced by a constant factor:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= r , 0 < r < 1

Superlinear Convergence

Convergence is superlinear if:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= 0

This often requires an algorithm to utilize second-order
information.
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Quadratic Convergence of Newton’s Method

Quadratic Convergence

Quadratic convergence is achieved when the number of accurate
digits roughly doubles with each iteration:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|2

= C , C > 0

Newton’s method is a classic example of an algorithm with
quadratic convergence.

Theorem 2 (Quadratic Convergence of Newton’s Method)

Let f : R→ R satisfy f ∈ C2 and suppose x∗ is a minimizer of f
such that f ′′(x∗) > 0. Assume Lipschitz continuity of f ′′. If the
initial guess x0 is sufficiently close to x∗, then the sequence {xk}
computed by the Newton’s method converges quadratically to x∗.
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Newton’s Method of Tangents
Newton’s method is also a technique for finding roots of functions.
In our case, this means finding a root of f ′.

Denote g = f ′. Then Newton’s approximation goes like this:

xk+1 = xk −
g(xk)

g ′(xk)
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Secant Method

What if f ′′ is unavailable, but we want to use something like
Newton’s method (with its superlinear convergence)?

Assume f ∈ C1 and try to approximate f ′′ around xk−1 with

f ′′(x) ≈ f ′(x)− f ′(xk−1)

x − xk−1

Substituting x with xk , we obtain

1

f ′′(xk)
≈ xk − xk−1

f ′(xk)− f ′(xk−1)

Then, we may try to use Newton’s step with this approximation:

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
· f ′(xk)

Is the rate of convergence superlinear?
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Example

Consider the following objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5 and x1 = 1.0.
Now, we need to initialize the first two values.

We have f ′(x) = x − cos x

Hence,

x2 = 1.0− 1.0− 0.5

(1.0− cos 1.0)− (0.5− cos 0.5)
(0.5− cos 0.5)

= 0.7254
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Example

Continuing, we obtain:

x0 = 0.5

x1 = 1.0

x2 = 0.72548

x3 = 0.73839

x4 = 0.739087

x5 = 0.739085132

x6 = 0.739085133
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Example
Start the secant method with the approximation given by Newton’s
method:

x0 = 0.5

x1 = 0.7552

x2 = 0.7381

x3 = 0.739081

x5 = 0.7390851339

x6 = 0.7390851332

· · ·
Compare with Newton’s method:

x0 = 0.5

x1 = 0.7552

x2 = 0.7391

x3 = 0.7390851339

x4 = 0.73908513321516067229

x5 = 0.73908513321516067229

· · ·
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Superlinear Convergence of Secant Method

Theorem 3 (Superlinear Convergence of Secant Method)

Assume f : R→ R twice continuously differentiable and x∗

a minimizer of f . Assume f ′′ Lipschitz continuous and f ′′(x∗) > 0.
The sequence {xk} generated by the Secant method converges to
x∗ superlinearly if x0 and x1 are sufficiently close to x∗.

The rate of convergence p of the Secant method is given by the
positive root of the equation p2 − p − 1 = 0, which is

p = 1+
√
5

2 ≈ 1.618 (the golden ratio). Formally,

lim
k→∞

|xk+1 − x∗|

|xk − x∗|
1+

√
5

2

= C , C > 0
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Secant Method for Root Finding
As for Newton’s method of tangents, the secant method can be
seen as a method for finding a root of f ′.

Denote g = f ′. Then the secant method approximation is

xk+1 = xk −
xk − xk−1

g(xk)− g(xk−1)
· g(xk)
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General Form

Note that all methods have similar update formula:

xk+1 = xk −
f ′(xk)

ak

Different choice of ak produce different algorithm:

▶ ak = 1 gives the gradient descent,

▶ ak = f ′′(xk) gives Newton’s method,

▶ ak =
f ′(xk )−f ′(xk−1)

xk−xk−1
gives the secant method,

▶ ak = f ′′(xm) where m = ⌊k/p⌋p gives Shamanskii method.
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Summary

▶ Newton’s method
▶ Converges to an extremum under C2 assumption (quadratic

convergence)
▶ The choice of the initial point is critical; the method may

diverge to a stationary point, which is not a minimizer. The
method may also cycle.

▶ If the second derivative is very small, close to the minimizer,
the method can be very slow (the quadratic convergence is
guaranteed only if the second derivative is non-zero at the
minimizer and the constants depend on the second derivative).

▶ Secant method
▶ The second derivative is not needed.
▶ Superlinear (but not quadratic) convergence for an initial point

close to a minimum.
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Constrained Single Variable Optimization Problem

An objective function f : R→ R

A variable x

A constraint

a0 ≤ x ≤ b0

Consider the following cases:

▶ f unimodal on [a0, b0]

▶ f continuously differentiable on [a0, b0]

▶ f twice continuously differentiable on [a0, b0]

78



Unimodal Function Minimization
We assume only unimodality on [a0, b0] where the single extremum
is a minimum.

More precisely, we assume that there is x∗ such that
▶ f (x ′) > f (x ′′) for all x ′, x ′′ ∈ [a0, x

∗] satisfying x ′ < x ′′

▶ f (x ′) < f (x ′′) for all x ′, x ′′ ∈ [x∗, b0] satisfying x ′ < x ′′

Assume that even a single evaluation of f is costly.

Minimize the number of evaluations searching for the minimum. 79



Simple Algorithm
Select u, v such that a0 < u < v < b0.

Observe that

▶ If f (u) < f (v), then the minimizer must lie in [a0, v ].

▶ If f (u) ≥ f (v), then the minimizer must lie in [u, b0].

Continue the search in the resulting interval.
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The Algorithm
An abstract search algorithm:

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: Choose uk , vk such that ak < uk < vk < bk
4: if f (uk) < f (vk) then
5: ak+1 ← ak and bk+1 ← vk
6: else
7: ak+1 ← uk and bk+1 ← bk
8: end if
9: end for

The algorithm produces a sequence of intervals:

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [aK , bK ]

where [aK , bK ] contains the minimizer of f .

The algorithm evaluates f twice in every iteration.

Is it necessary?
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Intermediate Points

Choose uk , vk symmetrically in the following sense:

uk − ak = bk − vk = ϱ(bk − ak)

for some ϱ ∈ (0, 1).

The algorithm will then look as follows:

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: uk ← ak + ρ(bk − ak)
4: vk ← bk − ρ(bk − ak)
5: if f (uk) < f (vk) then
6: ak+1 ← ak and bk+1 ← vk
7: else
8: ak+1 ← uk and bk+1 ← bk
9: end if

10: end for
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Intermediate Points
Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.

As v1 = b1 − ρ(b1 − a1) = b1 − ρ(b1 − a0), demanding v1 = u0
implies

u0 = b1 − ρ(b1 − a0) ⇒ ϱ(b1 − a0) = b1 − u0

Since b1 − a0 = 1− ϱ and b1 − u0 = 1− 2ϱ we have

ϱ(1− ϱ) = 1− 2ϱ ⇔ ϱ2 − 3ϱ+ 1 = 0

Solving to ρ1 =
3+

√
5

2 , ρ2 =
3−

√
5

2 , we consider ϱ = 3−
√
5

2
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Intermediate Points
Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.

As v1 = b1 − ρ(b1 − a1) = b1 − ρ(b1 − a0), demanding v1 = u0
implies

u0 = b1 − ρ(b1 − a0) ⇒ ϱ(b1 − a0) = b1 − u0

Since b1 − a0 = 1− ϱ and b1 − u0 = 1− 2ϱ we have

ϱ(1− ϱ) = 1− 2ϱ ⇔ ϱ2 − 3ϱ+ 1 = 0

Solving to ρ1 =
3+

√
5

2 , ρ2 =
3−

√
5

2 , we consider ϱ = 3−
√
5

2

83



Intermediate Points
Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.

As v1 = b1 − ρ(b1 − a1) = b1 − ρ(b1 − a0), demanding v1 = u0
implies

u0 = b1 − ρ(b1 − a0) ⇒ ϱ(b1 − a0) = b1 − u0

Since b1 − a0 = 1− ϱ and b1 − u0 = 1− 2ϱ we have

ϱ(1− ϱ) = 1− 2ϱ ⇔ ϱ2 − 3ϱ+ 1 = 0

Solving to ρ1 =
3+

√
5

2 , ρ2 =
3−

√
5

2 , we consider ϱ = 3−
√
5

2

83



Intermediate Points
Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.

As v1 = b1 − ρ(b1 − a1) = b1 − ρ(b1 − a0), demanding v1 = u0
implies

u0 = b1 − ρ(b1 − a0) ⇒ ϱ(b1 − a0) = b1 − u0

Since b1 − a0 = 1− ϱ and b1 − u0 = 1− 2ϱ we have

ϱ(1− ϱ) = 1− 2ϱ ⇔ ϱ2 − 3ϱ+ 1 = 0

Solving to ρ1 =
3+

√
5

2 , ρ2 =
3−

√
5

2 , we consider ϱ = 3−
√
5

2

83



Golden Section Search
Choosing uk = ak + ρ(bk − ak) and vk = bk − ρ(bk − ak) allows us
to reuse one of the values of f (uk−1) and f (vk−1).

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: uk ← ak + ρ(bk − ak)
4: vk ← bk − ρ(bk − ak)
5: if uk = vk−1 then
6: fuk ← fvk−1 and fuk ← f (vk)
7: else
8: fuk ← f (uk) and set fvk = fuk−1

9: end if
10: if fuk < fvk then
11: ak+1 ← ak and bk+1 ← vk
12: else
13: ak+1 ← uk and bk+1 ← bk
14: end if
15: end for
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Golden Section Search

Note that

ρ =
3−
√
5

2
≈ 0.61803

and thus

bk − ak ≈ 0.61803 · (bk−1 − ak−1)

which for a0 = 0 and b0 = 1 means

bk − ak = (1− ϱ)k ≈ (0.61803)k
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Example
Consider f defined by

f (x) = x4 − 14x3 + 60x2 − 70x

on the interval [0, 2].

By definition, a0 = 0 and b0 = 2.

u0 = a0 + ρ (b0 − a0) = 0.7639

v0 = a0 + (1− ρ) (b0 − a0) = 1.236

Here ρ = (3−
√
5)/2.

In the first step, we have to compute both fu0 and fv0:

fu0 = f (u0) = −24.36
fv0 = f (v0) = −18.96

fu0 < fv0 and thus a1 = a0 = 0 and b1 = v0 = 1.236.
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Example

We have a1 = a0 = 0 and b1 = v0 = 1.236.

Now compute u1 and v1 as follows

u1 = a1 + ρ (b1 − a1) = 0.4721

v1 = a1 + (1− ρ) (b1 − a1) = 0.7639

Note that v1 coincides with u0 as expected.

So we only have to compute

fu1 = f (u1) = −21.1

and put fv1 = fu0.

As fv1 < fu1 we obtain a2 = 0.4721 and b2 = 1.236.

... and so on.
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Summary of Golden Search

A method for solving constrained problems where the objective is
unimodal.

Straightforward method with guaranteed convergence, which in
every step evaluates the objective only once.

The implementation in Scipy:
https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.golden.html
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Constrained Gradient Descent and Newton’s Method

An objective function f : R→ R

A variable x

A constraints

a0 ≤ x ≤ b0

(find your c functions and the constraints)

Consider the following cases:

▶ f unimodal on [a0, b0]

▶ f continuously differentiable on [a0, b0]

▶ f twice continuously differentiable on [a0, b0]

Homework: Modify the gradient descent and Newton’s method to
work on the bounded interval (the above definitions guarantee
continuous differentiability at a0 and b0).
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Unconstrained Optimization Overview

90



Notation
In what follows, we will work with vectors in Rn.

The vectors will be (usually) denoted by x ∈ Rn.

We often consider sequences of vectors, x0, x1, . . . , xk , . . ..

The index k will usually indicate that xk is the k-the vector in a
sequence.

When we talk (relatively rarely) about components of vectors, we
use i as an index, i.e., xi will be the i-th component of x ∈ Rn.

We denote by ||x || the Euclidean norm of x .

We denote by ||x ||∞ the L∞ norm giving the maximum of
absolute values of components of x .

We ocasionally use the matrix morn ||A||, consistent with the
Euclidean norm, defined by

||A|| = sup
||x ||=1

||Ax || =
√
λ1

Here λ1 is the largest eigenvalue of A⊤A.
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How to Recognize (Local) Minimum

How do we verify that x∗ ∈ Rn is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity
if one has a smaller value (impractical).

Assuming the smoothness of f , we may benefit from the “stable”
behavior of f around x∗.
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Derivatives and Gradients

The gradient of f : Rn → R, denoted by ∇f (x), is a column vector
of first-order partial derivatives of the function concerning each
variable:

∇f (x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]⊤
,

Where each partial derivative is defined as the following limit:

∂f

∂xi
= lim

ε→0

f (x1, . . . , xi + ε, . . . , xn)− f (x1, . . . , xi , . . . , xn)

ε
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Gradient

The gradient is a vector pointing in the direction of the most
significant function increase from the current point.
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Gradient
Consider the following function of two variables:

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

∇f (x1, x2) =
[
3x21 + 2x22 − 20
4x1x2 − 3x22

]
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Directional Derivatives vs Gradient
The rate of change in a direction p is quantified by a directional
derivative, defined as

∇pf (x) = lim
ε→0

f (x + εp)− f (x)

ε
.

We can find this derivative by projecting the gradient onto the
desired direction p using the dot product ∇pf (x) = (∇f (x))⊤p

(Here, we assume continuous partial derivatives.)
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Geometry of Gradient
Consider the geometric interpretation of the dot product:

∇pf (x) = (∇f (x))⊤p = ||∇f || ||p|| cos θ
Here θ is the angle between ∇f and p.

The directional derivative is maximized by θ = 0, i.e. when ∇f
and p point in the same direction.
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Hessian
Taking derivative twice, possibly w.r.t. different variables, gives the
Hessian of f

∇2f (x) = H(x) =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Note that the Hessian is a function which takes x ∈ Rn and gives a
n × n-matrix of second derivatives of f .

We have

Hij =
∂2f

∂xi∂xj
.

If f has continuous second partial derivatives, then H is symmetric,
i.e., Hij = Hji .
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Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.
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Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,

and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .
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Consider f (x) = x⊤Hx where

H =

(
4/3 0
0 1

)
The eigenvalues are

κ1 = 4/3 κ2 = 1

Their corresponding eigenvectors
are (1, 0)⊤ and (0, 1)⊤.

Note that

f (x) = κ1x
2
1 + κ2x

2
2

Considering a direction vector p we get

g(t) = f (0 + tp) = t2
(
κ1p

2
1 + κ2p

2
2

)
which is a parabola with g ′′ = 2

(
κ1p

2
1 + κ2p

2
2

)
.
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Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)

The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.
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Hessian Visualization Example
Consider

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

And it’s Hessian.

H (x1, x2) =

[
6x1 4x2
4x2 4x1 − 6x2

]
.
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Taylor’s Theorem

Theorem 4 (Taylor)

Suppose that f : Rn → R is twice continuously differentiable and
that p ∈ Rn. Then, we have

f (x + p) = f (x) +∇f (x)Tp +
1

2
pTH(x)p + o(||p||2).

Here H = ∇2f is the Hessian of f .
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First-Order Necessary Conditions

Theorem 5
If x∗ is a local minimizer and f is continuously differentiable in an
open neighborhood of x∗, then ∇f (x∗) = 0.
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Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative
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Definiteness
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Second-Order Necessary Condition

Theorem 6 (Second-Order Necessary Conditions)

If x∗ is a local minimizer of f and ∇2f is continuous in a
neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive
semidefinite.

Theorem 7 (Second-Order Sufficient Conditions)

Suppose that ∇2f is continuous in a neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict
local minimizer of f .
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[ √
7
2 −

3
2√

7
2 −

3
2

]
.
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.
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Example
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∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

The Hessian, at the first point, is

H (xA) =

[
3 −2
−2 2

]
,

whose eigenvalues are κ1 ≈ 0.438 and κ2 ≈ 4.561. Because both
eigenvalues are positive, this point is a local minimum.
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∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the second point,

H (xB) =

[
3(3 +

√
7) −2

−2 2

]
.

The eigenvalues are κ1 ≈ 1.737 and κ2 ≈ 17.200, so this point is
another local minimum.

110



Example
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 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the third point,

H (xC ) =

[
9− 3

√
7 −2

−2 2

]
.

The eigenvalues for this Hessian are κ1 ≈ −0.523 and κ2 ≈ 3.586,
so this point is a saddle point.
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Proofs of Some Theorems
Optional
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Taylor’s Theorem

To prove the theorems characterizing minima/maxima, we need
the following form of Taylor’s theorem:

Theorem 8 (Taylor)

Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have that.

f (x + p) = f (x) +∇f (x + tp)Tp,

for some t ∈ (0, 1). Moreover, if f is twice continuously
differentiable, we have that

f (x + p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p,

for some t ∈ (0, 1).
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Proof of Theorem 5 (Optional)

We prove that if x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f (x∗) = 0.

Suppose for contradiction that ∇f (x∗) ̸= 0. Define the vector
p = −∇f (x∗) and note that pT∇f (x∗) = −∥∇f (x∗)∥2 < 0.
Because ∇f is continuous near x∗, there is a scalar T > 0 such
that

pT∇f (x∗ + tp) < 0, for all t ∈ [0,T ]

For any t̄ ∈ (0,T ], we have by Taylor’s theorem that

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗ + tp) , for some t ∈ (0, t̄).

Therefore, f (x∗ + t̄p) < f (x∗) for all t̄ ∈ (0,T ]. We have found a
direction leading away from x∗ along which f decreases, so x∗ is
not a local minimizer, and we have a contradiction.
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Proof of Theorem 6 (Optional)

We prove that if x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f (x∗) = 0 and
∇2f (x∗) is positive semidefinite.

We know that ∇f (x∗) = 0. For contradiction, assume that
∇2f (x∗) is not positive semidefinite.

Then we can choose a vector p such that pT∇2f (x∗) p < 0.

As ∇2f is continuous near x∗, pT∇2f (x∗ + tp) p < 0 for all
t ∈ [0,T ] where T > 0.

By Taylor we have for all t̄ ∈ (0,T ] and some t ∈ (0, t̄)

f (x∗ + t̄p) = f (x∗)+t̄pT∇f (x∗)+1

2
t̄2pT∇2f (x∗ + tp) p < f (x∗) .

Thus, x∗ is not a local minimizer.
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Proof of Theorem 7 (Optional)

We prove the following: Suppose that ∇2f is continuous in an
open neighborhood of x∗ and that ∇f (x∗) = 0 and ∇2f (x∗) is
positive definite. Then x∗ is a strict local minimizer of f .

Because the Hessian is continuous and positive definite at x∗, we
can choose a radius r > 0 so that ∇2f (x) remains positive definite
for all x in the open ball D = {z | ∥z − x∗∥ < r}. Taking any
nonzero vector p with ∥p∥ < r , we have x∗ + p ∈ D and so

f (x∗ + p) = f (x∗) + pT∇f (x∗) + 1

2
pT∇2f (z)p

= f (x∗) +
1

2
pT∇2f (z)p,

where z = x∗ + tp for some t ∈ (0, 1). Since z ∈ D, we have
pT∇2f (z)p > 0, and therefore f (x∗ + p) > f (x∗), giving the
result.
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Unconstrained Optimization
Algorithms
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Search Algorithms

We consider algorithms that

▶ Start with an initial guess x0
▶ Generate a sequence of points x0, x1, . . .

▶ Stop when no progress can be made or when a minimizer
seems approximated with sufficient accuracy.

To compute xk+1 the algorithms use the information about f at
the previous iterates x0, x1, . . . , xk .

The monotone algorithms satisfy f (xk+1) < f (xk).

There are two overall strategies:

▶ Line search

▶ Trust region
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Line Search Overview

To compute xk+1, a line search algorithm chooses

▶ direction pk
▶ step size αk

and computes

xk+1 = xk + αkpk

The vector pk should be a descent direction, i.e., a direction in
which f decreases locally.

αk is selected to approximately solve

min
α>0

f (xk + αpk)

However, typically, an exact solution is expensive and unnecessary.
Instead, line search algorithms inspect a limited number of trial
step lengths and find one that decreases f appropriately (see later).
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A descent direction does not have to
be followed to the minimum.
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Trust Region

To compute xk+1, a trust region algorithm chooses

▶ model function mk whose behavior near xk is similar to f

▶ a trust region R ⊆ Rn around xk . Usually R is the ball defined
by ||x − xk || ≤ ∆ where ∆ > 0 is trust region radius.

and finds xk+1 solving

min
x∈R

mk(x)

If the solution does not sufficiently decrease f , we shrink the trust
region and re-solve.

The model mk is usually derived from the Taylor’s theorem.

mk (xk + p) = fk + pT∇fk +
1

2
pTBkp

Where Bk approximates the Hessian of f at xk .
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Line Search Methods
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Line Search

For setting the step size, we consider

▶ Armijo condition and backtracking algorithm

▶ strong Wolfe conditions and bracketing & zooming

For setting the direction, we consider

▶ Gradient descent

▶ Newton’s method

▶ quasi-Newton methods (BFGS)

▶ (Conjugate gradients)

We start with the step size.
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Step Size

Assume

xk+1 = xk + αkpk

Where pk is a descent direction

p⊤k ∇fk < 0

Define

ϕ(α) = f (xk + αpk)

We know that

ϕ′(α) = ∇f (xk + αpk)
⊤pk which means ϕ′(0) = ∇f ⊤k pk

Note that ϕ′(0) must be negative as pk is a descent direction.
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Armijo Condition
The sufficient decrease condition (aka Armijo condition)

ϕ(α) ≤ ϕ(0) + α
(
µ1ϕ

′(0)
)

where µ1 is a constant such that 0 < µ1 ≤ 1

In practice, µ1 is several orders smaller than 1, typically µ1 = 10−4.
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Backtracking Line Search Algorithm

Algorithm 1 Backtracking Line Search

Input: αinit > 0, 0 < µ1 < 1, 0 < ρ < 1
Output: α∗ satisfying sufficient decrease condition
1: α← αinit

2: while ϕ(α) > ϕ(0) + αµ1ϕ
′(0) do

3: α← ρα
4: end while

The parameter ρ is typically set to 0.5. It can also be a variable set
by a more sophisticated method (interpolation).

The αinit depends on the method for setting the descent direction
pk . For Newton and quasi-Newton, it is 1.0, but for other
methods, it might be different.
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Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.
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Backtracking Example

f (x1, x2) =

0.1x61 − 1.5x41 + 5x21

+ 0.1x42 + 3x22 − 9x2 + 0.5x1x2

µ1 = 10−4 and ρ = 0.7.
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Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.
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Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions

▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣
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Satisfiability of Strong Wolfe Conditions

Theorem 9
Suppose f : Rn → R is continuously differentiable. Let pk be a
descent direction at xk , and assume that f is bounded below along
the ray {xk + αpk | α > 0}. Then, if 0 < µ1 < µ2 < 1, step length
intervals exist that satisfy the strong Wolfe conditions.
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Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 10 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

133



Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 10 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

133



Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 10 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

133



Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.
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Algorithm 2 Bracketing

Input: α1 > 0 and αmax

1: Set α0 ← 0
2: i ← 1
3: repeat
4: Evaluate ϕ(αi )
5: if ϕ(αi ) > ϕ(0)+αiµ1ϕ

′(0) or [ϕ(αi ) ≥ ϕ(αi−1) and i > 1]
then

6: α∗ ← zoom(αi−1, αi ) and stop
7: end if
8: Evaluate ϕ′(αi )
9: if |ϕ′(αi )| ≤ µ2|ϕ′(0)| then

10: set α∗ ← αi and stop
11: else if ϕ′(αi ) ≥ 0 then
12: set α∗ ← zoom(αi , αi−1) and stop
13: end if
14: Choose αi+1 ∈ (αi , αmax)
15: i ← i + 1
16: until a condition is met
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Explanation of Bracketing

Note that the sequence of trial steps αi is monotonically
increasing.

Note that zoom is called when one of the following conditions is
satisfied:

▶ αi violates the sufficient decrease condition (lines 5 and 6)

▶ ϕ(αi ) ≥ ϕ(αi−1) (also lines 5 and 6)

▶ ϕ′(αi ) ≥ 0 (lines 11 and 12)

The last step increases the αi . May use, e.g., a constant multiple.
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Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.
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1: function zoom(αlo, αhi)
2: repeat
3: Set α between αlo and αhi using interpolation

(bisection, quadratic, etc.)

4: Evaluate ϕ(α)
5: if ϕ(α) > ϕ(0) + αµ1ϕ

′(0) or ϕ(α) ≥ ϕ(αlo) then
6: αhi ← α
7: else
8: Evaluate ϕ′(α)
9: if |ϕ′(α)| ≤ µ2|ϕ′(0)| then

10: Set α∗ ← α and stop
11: end if
12: if ϕ′(α)(αhi − αlo) ≥ 0 then
13: αhi ← αlo

14: end if
15: αlo ← α
16: end if
17: until a condition is met
18: end function
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Bracketing & Zooming Example
We use quadratic interpolation; the bracketing chooses
αi+1 = 2αi , and the sufficient curvature factor is µ2 = 0.9.

Bracketing is achieved in the first iteration by using a significant
initial step of αinit = 1.2 (left). Then, zooming finds an improved
point through interpolation.
The small initial step of αinit = 0.05 (right) does not satisfy the
strong Wolfe conditions, and the bracketing phase moves forward
toward a flatter part of the function.
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Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html
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Unconstrained Optimization
Algorithms

Descent Direction

First-Order Methods

141



Gradient Descent

Consider the gradient descent (aka
gradient descent) method where

xk+1 = xk+αkpk pk = −∇f (xk)

Unfortunately, the gradient does not possess much information
about the step size.

So usually, a normalized gradient is used to obtain the direction,
and then a line search is performed:

xk+1 = xk + αkpk pk = − ∇f (xk)
||∇f (xk)||

The line search is exact if αk minimizes f (xk + αkpk). Not
practical, we usually find αk satisfying the strong Wolfe conditions.
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Gradient Descent Algorithm with Line Search

Algorithm 3 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk )
∥∇f (xk )∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇fk ≈ αk−1p

⊤
k−1∇fk−1 ⇒ αinit = αk−1

p⊤k−1∇fk−1

p⊤k ∇fk
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f (x1, x2) = x21 + βx22

Consider β = 1, 5, 15 and
exact line search

Note that pk+1 and pk are always orthogonal. 145



f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

The gradient descent can be prolonged.
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Global Convergence with Line Search
Recall the Zoutendijk’s theorem.

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 11 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Global Convergence of Gradient Descent

Assume that each αk satisfies strong Wolfe conditions.

Note that the angle θk between pk = −∇fk and the negative
gradient −∇fk equals 0. Hence, cos θk = 1.

Thus, under the assumptions of Zoutendijk’s theorem, we obtain∑
k≥0

cos2 θk ∥∇fk∥2 =
∑
k≥0

∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.
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Local Linear Convergence of Gradient Descent

Theorem 12
Suppose that f : Rn → R is twice continuously differentiable, that
the line search is exact, and that the descent converges to x∗

where ∇f (x∗) = 0 and the Hessian matrix ∇2f (x∗) is positive
definite. Then

f (xk+1)− f (x∗) ≤
(
λn − λ1

λn + λ1

)2

[f (xk)− f (x∗)] ,

where λ1 ≤ · · · ≤ λn are the eigenvalues of ∇2f (x∗).

149



f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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Two Spring Problem - Gradient Descent

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
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Rosenbrock Function - Gradient Descent
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
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Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).
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Unconstrained Optimization
Algorithms

Descent Direction

Second-Order Methods
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Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .
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Newton’s Method

Algorithm 7 Newton’s Method

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: Compute ∇fk = ∇f (xk)
4: Solve Hkpk = −∇fk for pk
5: xk+1 ← xk + pk
6: k ← k + 1
7: end while
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Newton’s Method - Example

Newton’s method finds the minimum of a quadratic function in a
single step.

Note that the Newton’s method is scale-invariant!
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f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.
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Convergence Issues

Also, the computation of the Hessian is costly.
159



Local Quadratic Convergence of Newton’s Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

160



Local Quadratic Convergence of Newton’s Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

160



Local Quadratic Convergence of Newton’s Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

160



Local Quadratic Convergence of Newton’s Method

Theorem 13
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

160



Newton’s Method with Line Search

Algorithm 8 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: αinit ← 1
3: while ∥∇fk∥∞ > ε do
4: Compute ∇fk = ∇f (xk)
5: Solve Hkpk = −∇fk for pk
6: αk ← linesearch(pk , αinit)
7: xk+1 ← xk + αkpk
8: k ← k + 1
9: end while
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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Two Spring Problem - Newton’s Method

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent.

163



Rosenbrock Function - Newton’s Method
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 10,662 iterations of gradient descent.
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Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 14 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

165



Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?
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Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?
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Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.
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Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).
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Modified Newton’s Method

Algorithm 9 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: Hk ← ∇2f (xk)
4: if Hk is not sufficiently positive definite then
5: Hk ← Hk +∆Hk so that Hk is sufficiently pos. definite
6: end if
7: Compute ∇fk = ∇f (xk)
8: Solve Hkpk = −∇fk for pk
9: Set xk+1 = xk + αkpk , here αk sat. the Wolfe cond.

10: k ← k + 1
11: end while
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Convergence of Modified Newton’s Method
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Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.
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Quasi-Newton Methods
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Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .
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Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.
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Secant Condition

Consider the secant condition:

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

The notation is usually simplified by

sk = xk+1 − xk yk = ∇fk+1 −∇fk

So that the secant condition becomes

H̃k+1sk = yk

Does it have a symmetric positive definite solution?
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Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 15
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.
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Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .
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Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.
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Symmetric Rank One Update

Algorithm 10 SR1

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point

k ← 0, αinit ← 1, H̃0 ← I
while ∥∇fk∥∞ > ε do

Compute ∇fk = ∇f (xk)
Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
u ← y − H̃ks
H̃k+1 ← H̃k +

uu⊤

u⊤s
k ← k + 1

end while

Note that the denominator u⊤sk can be 0, in which case the update is

impossible. The usual strategy is to skip the update and set H̃k+1 = H̃k .
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Example
We will look at a three-dimensional quadratic problem
f (x) = 1

2x
⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

The initial guesses are H̃0 = I and x0 = (0, 0, 0)⊤.

At the initial point, ∥∇f (x0)∥∞ = ∥−c∥∞ = 9, so this point is not
optimal.The first search direction is

p0 =

−8−9
−8

 .

The exact line search gives α0 = 0.3333.
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Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.

182



Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.

182



Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.
182



Example

This gives the new estimates:

x2 =

−3.81−3.21
−1.90

 , ∇f2 =

 0.36
−0.65
0.36

 , s1 =

−1.14−0.21
0.75

 , y1 =

−2.29−0.65
3.03

 ,

and

H̃2 =

 1.6568 0.6102 −0.3432
0.6102 1.9153 0.6102
−0.3432 0.6102 3.6568

 .

At the point x2, ∥∇f (x2)∥∞ = 0.65 so we keep going, with

p2 =

−0.48510.5749
−0.2426

 ,

and α = 0.3810.
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Example

This gives

x3 =

−4−3
−2

 , ∇f3 =

0
0
0

 , s2 =

−0.180.21
−0.09

 , y2 =

−0.360.65
−0.36

 ,

and H̃3 = Q. Now ∥∇f (x3)∥∞ = 0, so we stop.
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Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.
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Symmetric Rank Two Update

Consider

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

Once again, verifying H̃k+1sk = yk is not difficult.

Lemma 1
Assume that H̃k is symmetric positive definite.
Then H̃k+1 is symmetric positive definite iff y⊤k sk > 0.

We know that line search satisfying the strong Wolfe conditions
preserves y⊤k sk > 0.

Thus, starting with a symmetric positive definite H̃0 (e.g., a scalar
multiple of I ), every H̃k is symmetric positive definite and satisfies
the secant condition.
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BFGS

Algorithm 11 BFGS v1

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point

k ← 0, αinit ← 1, H̃0 ← I
while ∥∇fk∥∞ > τ do

Compute ∇fk = ∇f (xk)
Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
H̃k+1 ← H̃k −

(H̃k s)(H̃k s)
⊤

s⊤H̃k s
+ yy⊤

y⊤s

k ← k + 1
end while

Note that we still have to solve a linear system for pk .
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Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8


and α0 = 0.3333.
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Example

The new estimate of the solution and the new Hessian
approximation are

x1 =

 −2.6667−3.0000
−2.6667

 and H̃1 =

 1.1021 0.3445 0.5104
0.3445 1.7751 1.0335
0.5104 1.0335 2.3270

 .

At iteration 1, ∥∇f (x1)∥∞ = 2.6667, so we continue. The next
search direction is

p1 =

 −3.2111−0.6124
2.1223


and α1 = 0.3577.
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Example
This gives the estimates.

x2 =

 −3.8152−3.2191
−1.9076

 and H̃2 =

 1.6393 0.6412 −0.3607
0.6412 1.8600 0.6412
−0.3607 0.6412 3.6393

 .

At iteration 2, ∥∇f (x2)∥∞ = 0.6572, so we continue, computing

p2 =

 −0.52890.6268
−0.2644


and α2 = 0.3495. This gives

x3 =

 −4−3
−2

 and H̃3 =

 2 0 0
0 3 0
0 0 4

 .

Now ∥∇f (x3)∥∞ = 0, so we stop.

Notice that we got the same x1, x2, x3 as for SR1. This follows from using the

exact line search and the quadratic problem. It does not hold in general.
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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Two Spring Problem - BFGS

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent and 12
iterations of Newton’s method.
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Rosenbrock Function - BFGS
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.

Compare with 10,662 iterations of gradient descent and 24 iterations of

Newton’s method. 193



Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.
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Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤

(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤

(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.
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Rank One Update V2

Algorithm 12 Rank 1 update v1

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0, αinit ← 1, H̃0 ← I
2: while ∥∇fk∥∞ > ε do
3: Compute ∇fk = ∇f (xk)
4: pk ← −H̃−1

k ∇fk
5: α← linesearch(pk , αinit)
6: xk+1 ← xk + αpk
7: s ← xk+1 − xk
8: y ← ∇fk+1 −∇fk
9: H̃−1

k+1 ← H̃−1
k +

(s−H̃−1
k y)(s−H̃−1

k y)
⊤

(s−H̃−1
k y)

⊤
y

10: k ← k + 1
11: end while

196



BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

yields

H̃−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H̃−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .
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BFGS
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BFGS V2

Algorithm 13 BFGS v2

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0, αinit ← 1, H̃0 ← I
2: while ∥∇fk∥∞ > ε do
3: Compute ∇fk = ∇f (xk)
4: pk ← −H̃−1

k ∇fk
5: α← linesearch(pk , αinit)
6: xk+1 ← xk + αpk
7: s ← xk+1 − xk
8: y ← ∇fk+1 −∇fk
9: H̃−1

k+1 ←
(
I − sy⊤

s⊤y

)
H̃−1
k

(
I − ys⊤

s⊤y

)
+ ss⊤

s⊤y

10: k ← k + 1
11: end while
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Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃−1

k ∇fk using these values.

The space complexity becomes nm, which is beneficial when n is
large.
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Another View on BFGS (Optional)

We search for H̃−1
k+1 where H̃k+1 satisfies H̃k+1sk = yk . Search for

a solution Ṽ for Ṽ yk = sk .

The idea is to use Ṽ close to H̃−1
k (in some sense):

min
H̃

∥∥∥Ṽ − H̃−1
k

∥∥∥
subject to Ṽ = Ṽ⊤, Ṽ yk = sk

Here the norm is weighted Frobenius norm:

∥A∥ ≡
∥∥∥W 1/2AW 1/2

∥∥∥
F
,

where ∥ · ∥F is defined by ∥C∥2F =
∑n

i=1

∑n
j=1 c

2
ij . The weight W

can be chosen as any matrix satisfying the relation Wyk = sk .

BFGS is obtained with W = Ḡ−1
k where Ḡk is the average Hessian

defined by Ḡk =
[∫ 1

0 ∇
2f (xk + ταkpk) dτ

]
Solving this gives precisely the BFGS formula for H̃−1

k+1.
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Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 16 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Global Convergence of Quasi-Newton’s Method

Assume that all αk satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians H̃k are positive
definite with a uniformly bounded condition number:∣∣∣∣∣∣H̃k

∣∣∣∣∣∣ ∣∣∣∣∣∣H̃−1
k

∣∣∣∣∣∣ ≤ M for all k

Then θk between pk = −H̃−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.
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Behavior of BFGS

▶ It may happen that H̃k becomes a poor approximation of the
Hessian Hk . If, e.g., y

⊤
k is tiny, then H̃k+1 will be huge.

However, it has been proven experimentally that if H̃k wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.
The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).

▶ There are more sophisticated ways of setting the initial
Hessian approximation H0.
See Numerical Optimization, Nocedal & Wright, page 201.
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Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
205



206



Rosenbrock: f (x1, x2) = (1− x1)
2 + 100

(
x2 − x21

)2
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Rosenbrock:
f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2
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Computational Complexity

Algorithm Computational Complexity
Steepest Descent O(n) per iteration
Newton’s Method O(n3) to compute Hessian and solve system
BFGS O(n2) to update Hessian approximation

Table: Summary of the computational complexity for each optimization
algorithm.

▶ Steepest Descent: Simple but often slow, requiring many
iterations.

▶ Newton’s Method: Fast convergence but expensive per
iteration.

▶ BFGS: Quasi-Newton, no Hessian needed, good speed and
iteration count balance.
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Constrained Optimization
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Constrained Optimization Problem

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

x∗ is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F

where F is the feasibility region

F = {x | gi (x) ≤ 0, hj(x) = 0, i = 1, . . . , ng , j = 1, . . . , nh}

Thus, to find a constrained minimizer, we have to inspect
unconstrained minima of f inside of F and points along the
boundary of F .
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COP - Example

minimize
x1,x2

f (x1, x2) = x21 − 1
2x1 − x2 − 2

subject to g1 (x1, x2) = x21 − 4x1 + x2 + 1 ≤ 0
g2 (x1, x2) =

1
2x

2
1 + x22 − x1 − 4 ≤ 0
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Equality Constraints

Let us restrict our problem only to the equality constraints:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Assume that f and hj have continuous second derivatives.

Now, we try to imitate the theory from the unconstrained case and
characterize minima using gradients.

This time, we must consider the gradient of f and hj .
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Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimizer of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0
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The hyperplane defined by ∇f ⊤p = 0 contains directions p of zero
variation in f .

In the unconstrained case, x∗ is minimizer only if ∇f (x∗) = 0
because otherwise there would be a direction p satisfying
∇f (x∗)p < 0, a decrease direction.
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Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region.

How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j
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Feasible Points and Directions

Here, the only feasible direction at x is p = 0.
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Feasible Points and Directions

Here the feasible directions at x∗ point along the red line, i.e.,

∇h1(x∗)p = 0 ∇h2(x∗)p = 0
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)
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Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.
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Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

But then, from the geometry of the problem, we obtain

Theorem 17
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) = −
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.
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Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

So we can now use methods for searching stationary points. This will lead to

the Lagrange-Newton method.
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minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)

Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2
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Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

H(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ∗ s.t.

∇f (x∗) =
nh∑
j=1

−λ∗
j∇hj(x∗)

and that

p⊤H(x∗, λ∗)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .
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Inequality Constraints

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

Lagrange multipliers and the Lagrangian function can be extended
to deal with inequality constraints.

The resulting necessary conditions for constrained minima are
called Karush-Tucker-Kuhn (KKT) conditions.

In this course, Lagrange methods are considered only for
equality-constrained problems. So, we omit further discussion of
KKT.
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Constrained Optimization
Sequential Quadratic Programming
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Quadratic Programming
The quadratic optimization problem with equality constraints is to

minimize 1
2x

⊤Qx + q⊤x
by varying x
subject to Ax + b = 0

Here
▶ Q is a n × n symmetric matrix. For simplicity assume positive

definite.
▶ A is a m × n matrix. Assume full rank.
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Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

For Q positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.
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Lagrange-Newton
Now consider an arbitrary f : Rn → R and arbitrary constraint
functions hj : Rn → R.

Consider the Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

We search for the stationary point of L, that is (x∗, λ∗) satisfying

∇xL(x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj(x∗) = 0

∇λL(x∗, λ∗) = h(x∗) = 0

These are n + nh equations in unknowns (x∗, λ∗).

From Lagrange theorem: If x∗ is regular and solves the COP, then
there exists λ∗ such that (x∗, λ∗) solves the system of equations.

We use Newton’s method to solve the system of equations.
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Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)
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Hessian of Lagrangian

Note that

∇2L(xk , λk) =

(
∇xxL(xk , λk) ∇xλL(xk , λk)
∇λxL(xk , λk) ∇λλL(xk , λk)

)
=

(
H(xk , λk) ∇h(xk)
∇h(xk)⊤ 0

)
Here H is the Lagrangian-Hessian:

H(xk , λk) = Hf (xk) +

nh∑
j=1

λkjHhj (xk)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .

∇h(xk) = (∇h1(xk) · · · ∇hnh(xk))

is the matrix of columns ∇hj(xk) for j = 1, . . . , nh.
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Lagrange-Newton for Equality Constraints

Algorithm 14 Lagrange-Newton

1: Choose starting point x0
2: k ← 0
3: repeat
4: Compute ∇f (xk), ∇h(xk), h(xk)
5: Compute ∇L(xk , λk)
6: Compute Hessians Hf (xk),Hhj (xk) for j = 1, . . . , nh
7: Compute Lagrangian-Hessian H(xk , λk)
8: Compute ∇2L(xk , λk)

9: Compute (pk , µk)
⊤ = −

(
∇2L(xk , λk)

)−1∇L(xk , λk)
10: xk+1 ← xk + pk
11: λk+1 ← λk + µk

12: k ← k + 1
13: until convergence
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Sequential Quadratic Programming for Inequality
Constraints

Introducing inequality constraints brings serious problems.

The main problem is caused by the fact that active constraints
behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through
possible combinations of active/inactive constraints and solve for
each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game

theory.

We will consider this type of algorithm only for linear programming
(the simplex algorithm).
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Summary of Differentiable Optimization

We have considered optimization for differentiable f and hj ’s.

We have considered both constrained and unconstrained
optimization problems.

Primarily line-search methods: Local search, in every step set a
direction and a step length.

The step length should satisfy the strong Wolfe conditions.
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Summary of Unconstrained Methods

Consider only f without constraints.

For setting direction we used several methods

▶ Gradient descent
Go downhill. Only first-order derivatives needed. Zig-zags.

▶ Newton’s method
Always minimize the local quadratic approximation of f . Second-order

derivatives needed. Better behavior than GD, computationally heavy.

▶ quasi-Newton (SR1, BFGS, L-BFGS)
Approximate the quadratic approximation of f . Only first-order

derivatives needed. Behaves similarly to Newton’s method. Much more

computationally efficient.
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Summary of Constrained Optimization

Penalty methods, both exterior and interior.
Penalize minimizer approximations out of the feasible region (exterior), or close

to the border (interior).

▶ Exterior
Penalize minimizer approximations out of the feasible region.

Quadratic penalty, both for equality and inequality constraints.

▶ Interior
Penalize minimizer approximations close to the border (interior).

Inverse barrier, logarithmic barrier, only for inequality
constraints.

Finally, we have considered the Lagrange-Newton method for
equality constraints.
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Linear Programming
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Linear Optimization Problem

minimize f (x)
by varying x ∈ Rn

subject to gi (x) ≤ 0 i = 1, . . . , ng
hj(x) = 0 j = 1, . . . , nh

We assume that

▶ f is linear, i.e.,

f (x) = c⊤x here c ∈ Rn

▶ each gi is linear,

▶ each hj is linear.

For convenience, in what follows, we also allow constraints of the
form gi (x) ≥ 0.
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Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.
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Example

The lines define the boundaries of the feasible region

−2x1 + x2 = 2

−x1 + x2 = 3

x1 = 3

x1 = 0

x2 = 0
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Standard Form
The standard form linear program

minimize c⊤x
subject to Ax = b

x ≥ 0

Here
▶ x = (x1, . . . , xn)

⊤ ∈ Rn

▶ c = (c1, . . . , cn)
⊤ ∈ Rn

▶ A is an m × n matrix of elements aij where m < n and
rank(A) = m
That is, all rows of A are linearly independent.

▶ b = (b1, . . . , bm)
⊤ ≥ 0

b ≥ 0 means bi ≥ 0 for all i .

Every linear optimization problem can be transformed into a
standard linear program such that there is a one-to-one
correspondence between solutions of the constraints preserving
values of the objective.
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Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0
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Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

242



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

242



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

242



Transformation Example

maximize z = −5x1 − 3x2
subject to 3x1 − 5x2 − 5 ≤ 0

−4x1 − 9x2 + 4 ≤ 0
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−4x1 − 9x2 + 4 ≤ 0

Introduce the bounded variables:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x ′2 + 5x ′′2 − 5 ≤ 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + 4 ≤ 0
x ′1, x

′′
1 , x

′
2, x

′′
2 ≥ 0
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x ′1, x
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1 , x
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Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x ′2 + 5x ′′2 + s1 = 5

4x ′1 − 4x ′′1 + 9x ′2 − 9x ′′2 − s2 = 4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

In the standard form:

A =

(
3 −3 −5 5 1 0
4 −4 9 −9 0 −1

)
x = (x1, x2, x3, x4, x5, x6)

⊤

Note that we have renamed the variables.

b = (5, 4)⊤

Ax = b where x ≥ 0

c = (−5, 5,−3, 3)⊤
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Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.
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Example

Transform to

minimize z = −x1 − 2x2
subject to −2x1 + x2 + s1 = 2

−x1 + x2 + s2 = 3
x1 + s3 = 3

x1, x2, s1, s2, s3 ≥ 0
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Example

The standard form:

A =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b

c = (−1,−2, 0, 0, 0)⊤
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Assumptions

Consider a linear programming problem in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

In what follows, we will use the following shorthand: Given two
column vectors x , x ′, we write [x , x ′] to denote the vector resulting
from stacking x on top of x ′.
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Assumptions

Consider a linear programming problem in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

In what follows, we will use the following shorthand: Given two
column vectors x , x ′, we write [x , x ′] to denote the vector resulting
from stacking x on top of x ′.
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Solutions

There are (typically) infinitely many solutions to the constraints.

Are there some distinguished ones? How do you find minimizers?

Here, the blue lines are contours of −x1 − x2.
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Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let
▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Definition
Consider x ∈ Rn and a basis B, and consider the decomposition of
x into xB ∈ Rm and xN ∈ Rn−m.
Then x is a basic solution w.r.t. the basis B if Ax = b and xN = 0.
Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.
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Example (Whiteboard)

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)
x = (x1, x2, x3, x4)

⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

For now let us ignore the objective function and play with the
polyhedron defined by the above inequalities.
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−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0
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−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1



x = (x1, x2, x3, x4, x5)
⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b?
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b? xB = (x3, x4, x5)

⊤ = (2, 3, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 0, 2, 3, 3)⊤ = xa Feasible!
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b?
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b? xB = (x2, x3, x5)

⊤ = (3,−1, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 3,−1, 0, 3)⊤ = xf Not feasible!
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =

−2 1 1
−1 1 0
1 0 0


What is xB satisfying BxB = b?
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =

−2 1 1
−1 1 0
1 0 0


What is xB satisfying BxB = b? xB = (x1, x2, x3)

⊤ = (3, 6, 2)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (3, 6, 2, 0, 0)⊤ = xd Feasible!
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Existence of Basic Feasible Solutions

Theorem 18 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution
exists.

2. If an optimal feasible solution exists, then an optimal basic
feasible solution exists.

Note that the theorem reduces solving a linear programming
problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

However, the enumeration of all basic feasible solutions would be
impractical; the number of basic feasible solutions is potentially(

n

m

)
=

n!

m!(n −m)!

For n = 100 and m = 10, we get 535, 983, 370, 403, 809, 682, 970.
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Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ in Θ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 19
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.
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Optimal Solutions

Here, the blue lines are contours of −x1 − x2. The minimizer is xd .
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Degenerate Basic Solutions
A basic solution x = [xB , xN ] ∈ Rn is degenerate if at least one
component of xB is 0.

Two different bases can correspond to the same point. To see this,
consider the constraints defined by

Ax =

 2 1 0 0
3 0 1 0
4 0 0 1




x1
x2
x3
x4

 =

 6
13
12

 = b.

There are two bases

{x1, x2, x3} giving

B =

 2 1 0
3 0 1
4 0 0


{x1, x3, x4} giving

B ′ =

 2 0 0
3 1 0
4 0 1


Each gives the same degenerate basic solution x = (3, 0, 4, 0)⊤.
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Simplex Algorithm
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Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.
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Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .
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b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).
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Algorithm 15 Simplex - Non-degenerate

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B(y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute xj→i

11: end for
12: if c⊤(xj→i − x) ≥ 0 for all i ∈ {m + 1, . . . , n} then
13: Stop, we have an optimal solution.
14: end if
15: Select i ∈ {m + 1, . . . , n} such that c⊤(xj→i − x) < 0
16: B ← Bj→i

17: until convergence
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A = (u1 u2 u3 u4)

=

(
1 2 1 0
2 1 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (4, 4)⊤

c = (−1,−1, 0, 0)⊤

minimize c⊤x subject to Ax = b where x ≥ 0

Consider a basis

B = (a3 a4) =

(
1 0
0 1

)
The basic solution is x = (x1, x2, x3, x4)

⊤ = (0, 0, 4, 4)⊤
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Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.
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So let us move to the basis {x1, x3}.
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Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.
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Non-Degenerate Case Convergence

Theorem 20
Suppose that the simplex method is applied to a linear program
and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either
terminates at an optimal basic feasible solution or determines that
the problem is unbounded.

However, what happens if we meet a degenerate solution?

So, let us drop the non-degeneracy assumption.
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Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .
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b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).
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We say that we pivot about (j , i).
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Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!
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No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!
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Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.
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Derivation of Reduced Cost

c⊤xj→i = c⊤(x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

= c⊤(x ′1, . . . , x
′
j−1, x

′
j , x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

= c1x
′
1 + · · ·+ cmx

′
m + ciα

= c1(x1 − αy1) + · · · cm(xm − αym) + ciα

= (c1x1 + · · ·+ cmxm)− (c1y1 + · · ·+ cmym − ci )α

= c⊤x − (−ci + cBy)α

Here we use the fact that x ′k = xk − αyk for each
k ∈ {1, . . . , j − 1, j + 1, . . . ,m} and that xj − αyj = 0.

Then clearly

c⊤xj→i − c⊤x = (ci − cBy)α

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}
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Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · 1 + 0 · (−1)) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).
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Algorithm 16 Simplex

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B (y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute ri = ci − c⊤B y where y = (y1, . . . , ym)
⊤

11: end for
12: if ri ≥ 0 for all i ∈ {m + 1, . . . , n} then
13: Stop, we have an optimal solution.
14: end if
15: Select i ∈ {m + 1, . . . , n} such that ri < 0
16: B ← Bj→i

17: until convergence
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Degenerate Example (Cont.)

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!
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b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.
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Degenerate Case - Looping

Consider the following linear program:

minimize z = −3
4x1 + 150x2 − 1

50x3 + 6x4
subject to 1

4x1 − 60x2 − 1
25x3 + 9x4 + x5 = 0

1
2x1 − 90x2 − 1

50x3 + 3x4 + x6 = 0
x3 + x7 = 1
x1, x2, x3, x4, x5, x6, x7 ≥ 0

Executing the simplex method on this program starting with the
basis {x5, x6, x7} and always choosing i minimizing the reduced
cost at line 15, eventually ends up back in the basis {x5, x6, x7}.
In other words, even though the reduced cost is always negative, the overall

effect on the objective is 0.
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Convergence of Simplex Method

A solution is to use Bland’s rule:

▶ Select the smallest index j at line 9.

▶ Select the smallest index i at line 15.

Theorem 21
If the simplex method is implemented using Bland’s rule to select
the entering and leaving variables, then the simplex method is
guaranteed to terminate.
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Simplex Convergence Summary

In a non-degenerate case:

▶ There is always a unique j to be selected at line 9.

▶ The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in
a non-degenerate case.

In a degenerate case:

▶ We may have several j from which to select at line 9.

▶ Even though the reduced cost is negative, the basic solution
may remain the same.

The simplex algorithm may cycle!

Using Bland’s rule, the simplex method always converges to a
minimizer or detects an unbounded LP.
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Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem.

minimize y1 + y2 + · · ·+ ym

subject to (A Im)

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.
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Two-Phase Simplex Algorithm
Solve the artificial LP problem:

minimize y1 + y2 + · · ·+ ym

subject to [A Im]

(
x
y

)
= b(

x
y

)
≥ 0

Proposition 1

The original LP problem has a basic feasible solution iff the
associated artificial LP problem has an optimal feasible solution
with the objective function 0.

If we solve the artificial problem with y = 0, we obtain x such that
Ax = b, x ≥ 0 is a basic feasible solution for the original problem.

If there is no such a solution to the artificial problem, there is no basic

feasible solution, and hence no feasible solution, to the original problem.
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Linear Programming
Properties
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LP Complexity
Iterations of the simplex algorithm can be implemented to
compute the first step using O(m2n) arithmetic operations and
each next step O(mn).

There are as many as
(n
m

)
basic solutions (many of them likely

infeasible). How large are these numbers?

The number of iterations may be proportional to
(n
m

)
that is

EXPTIME.
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Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)
▶ Consider small random perturbations of the coefficients in the

LP (use Gaussian noise with a small variance)
▶ Then, the expected computation time for the resulting

instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?
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Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 22 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.
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Linear Programming in Practice

Heavily used tools for solving practical problems.

Several advanced linear programming solvers (usually parts of
larger optimization packages) implement various heuristics for
solving large-scale problems, such as sensitivity analysis.

See an overview of tools here:
http://en.wikipedia.org/wiki/Linear programming#Solvers and scripting .28programming.29 languages

For example, the well-known Gurobi solver uses the simplex
algorithm to solve LP problems.
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Linear Programming - Tableaus
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Tableau

Consider a linear program in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

We have considered the simplex algorithm, which searches for the
minimum by moving around the vertices of the feasible region.

The algorithm is relatively straightforward but, in its original form,
not so suitable for computations by hand.

Tableaus provide all information about the current state of the
simplex algorithm and can be used to streamline the process.
Keep in mind that we are not developing a new algorithm. Tableau just

provides another view of the same simplex algorithm as presented before.
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Tableau (Matrix Form)
Consider LP with a matrix A and vectors b, c . Assume A = (B N)
where B consists of basic columns and N of the non-basic ones.

Consider the following matrix ( the initial tableau):(
A b
c⊤ 0

)
=

(
B N b
c⊤B c⊤N 0

)
Apply elementary row operations so that the matrix B is turned
into Im (preserving the last row for now). That is, multiply with(

B−1 0
0 1

)
The result is(

B−1 0
0 1

)(
B N b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
c⊤B c⊤N 0

)
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Tableau (Matrix Form)
We have(

Im B−1N B−1b
c⊤B c⊤N 0

)

We apply row operations to the last row to eliminate the c⊤B . This
corresponds to multiplying the matrix with(

Im 0
−c⊤B 1

)
We obtain(

Im 0
−c⊤B 1

)(
Im B−1N B−1b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
0 c⊤N − c⊤B B−1N −c⊤B B−1b

)
This is the canonical form tableau for the basis B.
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Tableau (Components)
Let A = (u1 . . . , un), the basis {x1, . . . , xm}, B = (u1 . . . , um).

Assume uk = (u1k , . . . , unk). Then the initial tableau is

(
B N b
c⊤B c⊤N 0

)
=


u11 · · · u1m u1(m+1) · · · u1n b1
...

. . .
...

...
. . .

...
...

um1 · · · umm um(m+1) · · · umn bm
c1 · · · cm cm+1 · · · cn 0



Now transform all columns of the upper part of the matrix (except
the last row) to the basis B:

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

and obtain uk = y1ku1+ · · ·+ ymkum for k = m+1, . . . , n and thus
1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0


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Tableau (Components)


1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0



Use row operations to eliminate c1, . . . , cm. This is equivalent to
multiplying the above matrix with

(
Im 0
−c⊤B 1

)
=


1 · · · 0 0
...
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′
m)

⊤ = B−1b is the vector b transformed to the
basis B, and for k = m + 1, . . . , n we have
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the reduced cost for the k-th column (non-basic). Also, note that
the basic solution is x = (b′1, . . . , b

′
m, 0, . . . , 0), and hence

−z = (−c1)b′1 + · · ·+ (−cm)b′m
is the negative of the value of the objective for the basic solution
corresponding to the basis {x1, . . . , xm}.
Recall that, by definition, the basic solution x satisfies xm+1 = · · · = xn = 0.
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Tableau Simplex
Assume that for a basis B we have obtained the canonical tableau:

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
0 · · · 0 c ′m+1 · · · c ′n −z


The simplex algorithm then proceeds as follows:

1. Choose i ∈ {m + 1, . . . , n} such that c ′i < 0.

2. Choose j ∈ {1, . . . ,m} minimizing b′j/yji over all j satisfying
yji > 0.
Note that b′

j = xj for the basic solution x w.r.t. B.

3. Move the i-the column into the basis and the j-th column out
of the basis.

4. Use elementary row operations to transform the tableau into
the canonical form for the new basis.

5. Repeat until b′1, . . . , b
′
m ≥ 0,
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Example

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤
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Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤

Tableau for the basis {x3, x4}: x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0


is already in the canonical form.

Note that the last row of the tableau corresponds to writing the objective as

−z + c⊤x = 0 where z is a new variable and x is the basic solution for {x3, x4}.
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Start with the basis {x3, x4} and consider the canonical form: x3 y31 y32 1 0 b1
x4 y41 y42 0 1 b2
−z c1 c2 c3 c4 0

 =

 x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0



Choose x1 to enter the basis (x1 has the reduced cost −3 and x2
has the reduced costs −2).Now b1/y31 = 2/1 > 1/1 = b2/y41.
Thus, remove x4 from the basis.We move to the basis {x1, x3} and
transform the tableau into the canonical form for this basis: x1 1 y12 0 y14 b′1

x3 0 y32 1 y34 b′2
−z c ′1 c ′2 c ′3 c ′4 3

 =

 x1 1 0 0 1 1
x3 0 1 1 −1 1

−z 0 −2 0 3 3


Here, the reduced cost of x2 is −2, and of x4 is 3. Thus, x2 enters
the basis.Now x3 leaves the basis because y12 = 0 but y32 > 0.We
move to the basis {x1, x2} and transform the tableau into the
canonical form: x1 1 0 0 1 1

x2 0 1 1 −1 1

−z 0 0 2 1 5


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Integer Linear Programming
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Integer Linear Programming

ILP = LP + variables constrained to integer values
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Integer Linear Programming

We consider several variants of integer programming:

▶ 0-1 integer linear programming

▶ Mixed 0-1 integer linear programming

▶ Integer linear programming

▶ Mixed integer linear programming

We consider the basic branch and bound algorithm.

We also consider a cutting-plane method for integer programming.

Integer linear programming is a huge subject; we shall only scratch
its surface slightly.
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0-1 Integer Linear Programming

Let us start with a special case where variables are constrained to
values from {0, 1}.

0-1 integer linear program (0-1 ILP) is

minimize c⊤x
subject to Ax ≤ b

xi ∈ {0, 1}
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0-1 Integer Linear Programming

Consider the following example:

minimize c⊤x
subject to a⊤x ≤ b

x ≥ 0
xi ∈ {0, 1}

Here c , a ∈ Rn and b ∈ R.

Do you recognize the problem?

It is the 0-1 knapsack problem.

Theorem 23
Finding x ∈ {0, 1}n satisfying the constraints of a given 0-1 integer
linear program is NP-complete.

It is one of Karp’s 21 NP-complete problems.
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0-1 Mixed Integer Linear Programming
0-1 mixed integer linear program (0-1 MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ {0, 1} for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of binary variables.

The problem is NP-hard; the simplex algorithm cannot be used
directly.

The problem can be solved by searching for possible values 0 and 1
in the binary variables and solving the linear programs with binary
variables fixed to concrete values.

An exhaustive search through all possible binary assignments would
be infeasible for many variables.

Usually, a sequential search that fixes only some of the binary
variables and leaves the rest unrestricted to 0 or 1 is used.
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Notation

In what follows, LP relaxation is the linear program obtained from
0-1 MILP by removing the constraints xi ∈ {0, 1} for xi ∈ D and
adding constraints xi ≥ 0 and x ≤ 1 for all xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the 0-1 MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the 0-1 MILP constraints. Initialize with f ∗ =∞.

Keep a pool of 0-1 MILP problems P initialized with P = {P}
where P is the original 0-1 MILP to be solved.
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Algorithm 17 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x of the LP relaxation of P
5: if c⊤x < f ∗ then
6: if xi ∈ {0, 1} for all xi ∈ D then
7: x∗ ← x
8: f ∗ ← c⊤x
9: else

10: Choose xi ∈ D such that xi ̸∈ {0, 1}
11: Generate LP P0 by adding xi = 0 to P
12: Generate LP P1 by adding xi = 1 to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅
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Strategies

There are many possible strategies for choosing the problem to be
solved next:

▶ DFS, BFS, etc.

▶ heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

▶ Simplest one: Choose xi which maximizes min{xi , 1− xi}
▶ Look ahead to the relaxations of the possible subdivisions

The solutions to the LP relaxations can be reused. Some methods
(dual simplex) exploit that we are just adding a single constraint
xi = 0 or xi = 1.

The procedure may be stopped when we find a solution x , which
gives a small enough value of the objective.
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(Mixed) Integer Programming
Integer linear program (ILP) is

minimize c⊤x
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

Mixed integer linear program (MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ Z for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of integer variables.

We may use a similar branch and bound approach as for the binary
variables. The problem is that now, each integer variable has an
infinite domain.
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Notation

In what follows, LP relaxation is the linear program obtained from
MILP by removing the constraints xi ∈ Z for xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the MILP constraints. Initialize with f ∗ =∞.

Keep a pool of MILP problems P initialized with P = {P} where
P is the original MILP to be solved.

In what follows, we temporarily cease to abuse notation and use x̄
to denote the vector of values of the vector of variables x . Then x̄i
will denote the concrete value of the variable xi .
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Algorithm 18 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x̄ of the LP relaxation of P
5: if c⊤x̄ < f ∗ then
6: if x̄i ∈ Z for all xi ∈ D then
7: x∗ ← x̄
8: f ∗ ← c⊤x̄
9: else

10: Choose xi ∈ D such that x̄i ̸∈ Z
11: Generate LP P− by adding xi ≤ ⌊x̄i⌋ to P
12: Generate LP P+ by adding xi ≥ ⌈x̄i⌉ to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅
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Example
Consider the following MILP P:

minimize −x1 − 2x2 − 3x3 − 1.5x4
subject to x1 + x2 + 2x3 + 2x4 ≤ 10

7x1 + 8x2 + 5x3 + x4 = 31.5
x1, x2, x3, x4 ≥ 0

and assume D = {x1, x2, x3}. That is, x1, x2, x3 ∈ Z.

The algorithm starts with P = {P} and x∗ = ⊥ and f ∗ =∞.

The solution to the LP relaxation of P is:

x = [0, 1.1818, 4.4091, 0], the objective value is − 15.59

Let us choose x3. So, consider two programs:

▶ P− where we add x3 ≤ 4 to P

▶ P+ where we add x3 ≥ 5 to P

Now P = {P−,P+}.
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Consider first P+.

P+ is P with the added constraint x3 ≥ 5. The LP relaxation of
P+ is infeasible. We get P = {P−}.

P− is P with the additional constraint x3 ≤ 4.

The LP relaxation of P− solves to

x̄ = [0, 1.4, 4, 0.3], the objective value is − 15.25

We still have f ∗ =∞ so we split P− by constraining x2:
▶ P−− is obtained from P− by adding x2 ≤ 1
▶ P−+ is obtained from P− by adding x2 ≥ 2

and we continue with P = {P−−,P−+}.

Adding one more constraint x3 ≥ 3 to P−+ would yield a MILP
solution (0, 2, 3, 0.5) to the LP relaxation with the objective value
equal to −13.75.

The algorithm assigns f ∗ = −13.75 and x∗ = (0, 2, 3, 0.5).

The remaining search always leads either to an infeasible relaxation
or to a relaxation with an objective value worse than f ∗.
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The final solution: x∗ = (0, 2, 3, 0.5) and f ∗ = −13.75.
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Cutting Planes
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Removing Non-Integer Solutions

The basic branch and bound method generates two new problems
in every step.

Another strategy might be to successively cut out non-integer
optimal solutions and preserve the integer ones until an integer
optimal solution is computed by the LP relaxation

We consider a concrete method for obtaining such cuts from the
ILP constraints called Gomory cuts.
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Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack
variables:

minimize c⊤x
subject to Ax = b

x ≥ 0
x ∈ Z for x ∈ D

Here, D contains the original (i.e., non-slack) variables of the ILP.

We demand the integer solution only for the original D variables.

However, one can prove that if all constants in the ILP are integer,
then there is an optimal solution where all variables (including the
slacks) are integer-valued.
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Gomory Cuts

Let A = (u1 . . . , un), the basis {x1, . . . , xn}, B = (u1 . . . , um).

Consider the canonical tableau for B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


The −z row is omitted as it is unnecessary for the discussion.

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

Consider a basic solution x = (b′1, . . . , b
′
m, 0, . . . , 0).

If all b′1, . . . , b
′
m are integers, then also x solves the ILP.

Otherwise, assume that b′i is not an integer.
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Gomory Cuts
From the tableau, we know that every feasible solution x satisfies:

xi + yi(m+1)xm+1 + · · ·+ yinxn = b′i

Then, x also satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ b′i

Moreover, any integer feasible solution x satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ ⌊b′i⌋

But, subtracting the inequalities, integer feasible solutions x satisfy:

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

But note that the basic feasible solution x = (b′1, . . . , b
′
m, 0, . . . , 0)

does not satisfy the last inequality because b′i > ⌊b′i⌋ and
xm+1 = · · · = xn = 0.
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Gomory Cuts Method
Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


Choose a non-integer component xi = b′i of the basic feasible
solution w.r.t. B and consider the constraint

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

Transform the above inequality into equality by introducing a new
variable xn+1 and obtain the following constraint (Gomory cut)

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

Add the Gomory cut and the constraint xn+1 ≥ 0 to the program.

Repeat until an integer solution is reached.
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Gomory Cuts Method
Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.
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Example

Consider ILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 ≤ 12

3x1 + 11x2 ≤ 66
x1, x2 ≥ 0
x1, x2 ∈ Z

Adding slack variables x3, x4 we obtain the following MILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z
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We have

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

An optimal basic solution to the LP relaxation is(
11

2
,
9

2
, 0, 0

)⊤

and the canonical tableau w.r.t. the basis {x1, x2} isx1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Let us introduce the Gomory cut corresponding to the variable x1.
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x1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 1 and m = 2 turns into(
11

36
− 0

)
x3 +

(
1

36
− 0

)
x4 − x5 =

1

2
(=

11

2
− 5)

We add this constraint to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Solving the LP relaxation yields(
5,

51

11
,
18

11
, 0, 0

)⊤

The canonical tableau for the solution is
x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Introduce the Gomory cut for x2.
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
x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 2 and m = 3 turns into(
1

11
− 0

)
x4 +

(
− 3

11
+

11

11

)
x5 − x6 =

7

11
(=

51

11
− 44

11
)

We add this to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

1
11x4 +

8
11x5 − x6 =

7
11

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Once more the solution of the above is non-integer. However,
introducing another Gomory cut (and a variable x7) would yield a
solution:

(5, 4, 1, 7, 0, 0, 0)⊤

Which gives the point (x1, x2) = (5, 4) corresponding to the
graphical solution.
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Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.

322



Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.

322



Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.

322



Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.

322



Summary of Integer Linear Programming

We have considered:

▶ Linear Programming (LP)
Linear objective and constraints.

▶ 0-1 Integer Linear Programming (0-1 ILP)
Linear objective and constraints. All variables restricted to {0, 1}.

▶ 0-1 Mixed Integer Programming (0-1 MILP)
Linear objective and constraints. Some variables restricted to {0, 1}.

▶ Integer Linear Programming (ILP)
Linear objective and constraints. All variables restricted to Z.

▶ Mixed Integer Linear Programming (MILP)
Linear objective and constraints. Some variables restricted to Z.
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Summary of Integer Linear Programming
Complexity:

▶ Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in P-time.

Algorithms:

▶ Branch and Bound

▶ 0-1 MILP: Search through possible assignments of 0 and 1 to
some discrete variables while solving the LP relaxations
Branching with the choice of 0/1 values of variables, bounding with

a solution found so far.
▶ MILP: Solve LP relaxation, use non-integer values of the

solution to introduce constraints, removing such values from
the solution.

▶ Cutting planes

▶ Sequentially cut out portions of the LP relaxation feasible
space by introducing cuts based on solutions of LP relaxations.

▶ Does not branch but is usually combined with branch and
bound (branch and cut).
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Gradient-Free Optimization
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Gradient-Free Methods
So far, we have explored problems where the objective f and the
constraint functions hj , gi are known and (at least) differentiable.

What if the functions are just black boxes that can be evaluated
but nothing else?

What if the evaluation itself is costly?

Example: GPU parameters fine-tunning:
▶ Tens of parameters.
▶ The objective is to execute GPU software as efficiently as

possible (tested by execution of a benchmark software suite)
▶ Evaluation of the objective function = Execution of a

benchmark software suite
▶ How do we optimize the parameters?

Nothing is (possibly) differentiable here. Small changes in the parameters may

give wildly different results.

There are many methods for such optimization. Most of them, of
course, are without any convergence and efficiency guarantees.
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Gradient-Free Methods Zoo

For more details see ”Engineering Design Optimization” by
Joaquim R. R. A. Martins and Andrew Ning
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Evolutionary
“Evolutionary algorithms are inspired by processes that occur in nature or

society. There is a plethora of evolutionary algorithms in the literature, thanks

to the fertile imagination of the research community and a never-ending supply

of phenomena for inspiration.”

ant colony optimization, bee colony algorithm, fish swarm, artificial flora

optimization algorithm, bacterial foraging optimization, bat algorithm, big

bang–big crunch algorithm, biogeography-based optimization, bird mating

optimizer, cat swarm, cockroach swarm, cuckoo search, design by shopping

paradigm, dolphin echolocation algorithm, elephant herding optimization, firefly

algorithm, flower pollination algorithm, fruit fly optimization algorithm, galactic

swarm optimization, gray wolf optimizer, grenade explosion method, harmony

search algorithm, hummingbird optimization algorithm, hybrid glowworm

swarm optimization algorithm, imperialist competitive algorithm, intelligent

water drops, invasive weed optimization, mine bomb algorithm, monarch

butterfly optimization, moth-flame optimization algorithm, penguin search

optimization algorithm, quantum-behaved particle swarm optimization, salp

swarm algorithm, teaching–learning-based optimization, whale optimization

algorithm, and water cycle algorithm, ...
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Two Methods

To appreciate the gradient-free approaches, we shall (rather
arbitrarily) concentrate on two methods:

▶ Nelder-Mead

▶ Particle Swarm Optimization

Both methods are somehow biologically motivated.

We consider the unconstrained optimization. That is, assume an
objective function f : Rn → R.
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Nelder-Mead
The Nelder-Mead algorithm is based on a simplex defined by a set
of n + 1 points in Rn:

X =
{
x (0), x (1), . . . , x (n)

}
⊆ Rn

In two dimensions, the simplex is a triangle, and in three dimensions, it

becomes a tetrahedron

A minimizer is approximated by a simplex node with a minimum
value of f . The simplex changes in every step.
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Nelder-Mead
Initially, n + 1 nodes of the simplex need to be chosen: Typically,
equal-length of edges and x (0) will be our starting point x0.

x (i) = x (0) + s(i),

where s(i) is a vector whose components j are defined by

s
(i)
j =

{
L

n
√
2
(
√
n + 1− 1) + L√

2
, if j = i

L
n
√
2
(
√
n + 1− 1), if j ̸= i .

Here, L is the length of each side.

Nelder-Mead method proceeds by modifying the simplex so that
the values of f in the vertices (hopefully) decrease.
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Nelder-Mead
The Nelder-Mead algorithm performs five main operations on the
simplex to create a new one: reflection, expansion, outside
contraction, inside contraction, and shrinking.

Except for shrinking, each operation generates a new point,

x = xc + α
(
xc − x (n)

)
,

Here α ∈ R and xc is the centroid of all the points except for the
worst one, that is, assuming x (n) maximizes f among the nodes

xc =
1

n

n−1∑
i=0

x (i)

This generates a new point along the line that connects the worst
point, x (n), and the centroid of the remaining points, xc .

This direction can be seen as a possible descent direction.
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This generates a new point along the line that connects the worst
point, x (n), and the centroid of the remaining points, xc .

This direction can be seen as a possible descent direction.
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Nelder-Mead Algorithm

1. Start with a simplex x (0), . . . , x (n)

Assume an order of these points:

f (x (0)) ≤ . . . ≤ f (x (n))

2. Calculate the centroid

xc =
1

n

n−1∑
i=0

x (i)
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Nelder-Mead Algorithm (Reflection)

3. Reflection of x (n) over the centroid:

xr = xc + α
(
xc − x (n)

)
for α > 0

If f (x (0)) ≤ f (xr ) < f (x (n−1)), then

Replace x (n) with xr

Go to 1.

Now going further we know that either f (xr ) < f (x (0)), or f (xr ) ≥ f (x (n−1))

α = 1
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Nelder-Mead Algorithm (Expansion)

4. Expansion

If f (xr ) < f (x (0)), then

Compute

xe = xc + γ
(
xc − x (n)

)
for γ > 1

If f (xe) < f (xr ), then

Replace x (n) with xe .

Else, replace x (n) with xr .

Go to 1. γ = 2

Now going further we know that f (xr ) ≥ f (x (n−1))
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Nelder-Mead (Contraction)
5. Contraction

If f (xr ) < f (x (n)), then compute outside contraction

xoc = xc + ρ (xr − xc) for 0 < ρ ≤ 0.5

If f (xoc) < f (xr ), then

Replace x (n) with xoc

Go to 1.

If f (xr ) ≥ f (x (n)), then compute inside contraction

xic = xc + ρ
(
x (n) − xc

)
for 0 < ρ ≤ 0.5

If f (xic) < f (x (n)), then

Replace x (n) with xic

Go to 1.

ρ = 0.5

ρ = 0.5
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Nelder-Mead (Shrink)

6. Shrink

Replace all points x (k) for k > 0 with

x (k) = x (k) + σ(x (k) − x (0)) for 0 < σ < 1

Go to 1.

σ = 0.5
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Nelder-Mead

The above procedure is repeated until convergence. This may be
decided, e.g., based on the size of the simplex:

∆x =
n−1∑
i=0

∥∥∥x (i) − x (n)
∥∥∥ < ϵ

Standard values for constants are:

▶ Reflection α = 1

▶ Expansion γ = 2

▶ Contraction ρ = 0.5

▶ Shrink σ = 0.5
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Nelder-Mead
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Nelder-Mead Example
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Particle Swarm Optimization

▶ The “swarm” in PSO is a set of points (agents or particles)
that move in space, looking for the best solution.

▶ Each particle moves according to its velocity.

▶ This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

▶ Each particle remembers the point where it found its best
result so far, and it exchanges the information with the swarm.
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PSO
The position of particle i for iteration k +1 is updated according to

x
(i)
k+1 = x

(i)
k + v

(i)
k+1∆t,

Where ∆t is a constant artificial time step. The velocity for each
particle is updated as follows:

v
(i)
k+1 = αv

(i)
k + β

x
(i)
best − x

(i)
k

∆t
+ γ

xbest − x
(i)
k

∆t

▶ The first term is momentum.

α is usually set from the interval [0.8, 1.2], higher α motivates

exploration, smaller α convergence towards (a local) minimizer.

▶ x
(i)
best is the first minimum objective point visited by the i-th particle.

β is usually set randomly from [0, βmax]. βmax is usually selected from the

interval [0, 2], closer to 2.

▶ xbest is a minimum objective point visited by any particle.

γ is also usually set randomly from the interval [0, γmax]. γmax is usually

selected from the interval [0, 2], closer to 2.
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v
(i)
k+1 = αv

(i)
k + β

x
(i)
best − x

(i)
k

∆t
+ γ

xbest − x
(i)
k

∆t
.

Eliminate ∆t by multiplying with ∆t:

∆x
(i)
k+1 = α∆x

(i)
k + β

(
x
(i)
best − x

(i)
k

)
+ γ

(
xbest − x

(i)
k

)
Then, update the particle position for the next iteration:

x
(i)
k+1 = x

(i)
k +∆x

(i)
k+1.
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PSO

▶ Initialization is usually done randomly.

▶ The particles should stay in a bounded region. When a
particle wants to leave the region, reorient the velocity or
reset the position of the particle.

▶ It is also helpful to impose a maximum velocity. Otherwise,
updates completely unrelated to the previous positions might
be made.

▶ The velocity may be decreased gradually to exchange
exploitation with exploration.
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Example

K = 0
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Example

K = 1
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Example

K = 3
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Example

K = 5
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Example

K = 12
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Example

K = 17
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Jones Function

f (x1, x2) = x41 + x42 − 4x31 − 3x32 + 2x21 + 2x1x2

Global minimum: f (x∗) = −13.5320 at x∗ = (2.6732,−0.6759).
Local minima: f (x) = −9.7770 at x = (−0.4495, 2.2928)

f (x) = −9.0312 at x = (2.4239, 1.9219)

Make it discontinuous by adding 4 ⌈sin (πx1) sin (πx2)⌉
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Nelder-Mead: 179 evaluations were needed to reach the minimum
(with restarts due to local minima).
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Particle Swarm Optimization: 760 evaluations found the global
minimum without restarts.
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Quasi-Newton with restarts: 96 evaluations needed. Converged in
two out of six random restarts.
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FINALE!
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Summary
We have considered the following methods:
▶ Unconstrained & Differentiable Objective

▶ Line Search with step size determined by Wolfe conditions and
direction determined by

▶ Gradient Descent
▶ Newton’s Method (2nd derivatives needed)
▶ Quasi-Newton: SR-1, BFGS

▶ Constrained & Differentiable Objective
▶ Penalty Methods

▶ Exterior (quadratic penalty)
▶ Interior/Barrier (inverse and logarithmic barriers)

▶ Lagrangian used in Sequential Quadratic Programming
▶ Linear Objective and Constraints

▶ Simplex Method (including degenerate case and tableaus)
▶ Branch & Bound
▶ Gomory Cuts

▶ Unconstrained & Non-Differentiable (just a few examples)
▶ Nelder-Mead
▶ Particle Swarm Optimization
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Most Notable Omissions
▶ Conjugate Gradient Methods

Unfortunately, I had to choose between quasi-Newton and CG.

▶ Trust Region Methods
▶ Combinatorial, Multiobjective, Stochastic, Bayesian (etc.)

Optimization
Completely different areas with different methods.

▶ Infinitely many non-differentiable optimization methods
motivated by arbitrary phenomena from:
▶ biology
▶ chemistry
▶ physics
▶ economics
▶ politics
▶ mathematics
▶ agriculture
▶ pop-culture
▶ Scientology
▶ astrology
▶ ... ... ...
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