
Linear Programming - Tableaus
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Tableau

Consider a linear program in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

We have considered the simplex algorithm, which searches for the
minimum by moving around the vertices of the feasible region.

The algorithm is relatively straightforward but, in its original form,
not so suitable for computations by hand.

Tableaus provide all information about the current state of the
simplex algorithm and can be used to streamline the process.
Keep in mind that we are not developing a new algorithm. Tableau just

provides another view of the same simplex algorithm as presented before.
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Tableau (Matrix Form)
Consider LP with a matrix A and vectors b, c . Assume A = (B N)
where B consists of basic columns and N of the non-basic ones.

Consider the following matrix ( the initial tableau):(
A b
c⊤ 0

)
=

(
B N b
c⊤B c⊤N 0

)
Apply elementary row operations so that the matrix B is turned
into Im (preserving the last row for now). That is, multiply with(

B−1 0
0 1

)
The result is(

B−1 0
0 1

)(
B N b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
c⊤B c⊤N 0

)
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Tableau (Matrix Form)
We have(

Im B−1N B−1b
c⊤B c⊤N 0

)

We apply row operations to the last row to eliminate the c⊤B . This
corresponds to multiplying the matrix with(

Im 0
−c⊤B 1

)
We obtain(

Im 0
−c⊤B 1

)(
Im B−1N B−1b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
0 c⊤N − c⊤B B−1N −c⊤B B−1b

)
This is the canonical form tableau for the basis B.
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Tableau (Components)
Let A = (u1 . . . , un), the basis {x1, . . . , xm}, B = (u1 . . . , um).

Assume uk = (u1k , . . . , unk). Then the initial tableau is

(
B N b
c⊤B c⊤N 0

)
=


u11 · · · u1m u1(m+1) · · · u1n b1
...

. . .
...

...
. . .

...
...

um1 · · · umm um(m+1) · · · umn bm
c1 · · · cm cm+1 · · · cn 0



Now transform all columns of the upper part of the matrix (except
the last row) to the basis B:

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

and obtain uk = y1ku1+ · · ·+ ymkum for k = m+1, . . . , n and thus
1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0
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Tableau (Components)


1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0



Use row operations to eliminate c1, . . . , cm. This is equivalent to
multiplying the above matrix with

(
Im 0
−c⊤B 1

)
=


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
−c1 · · · −cm 1


from the left. We obtain ...
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Tableau (Components)
... the canonical form for the basis {x1, . . . , xm}:

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
0 · · · 0 c ′m+1 · · · c ′n −z



Here, (b′1, . . . , b
′
m)

⊤ = B−1b is the vector b transformed to the
basis B, and for k = m + 1, . . . , n we have

c ′k = ck − (y1kc1 + · · ·+ ymkcm)

the reduced cost for the k-th column (non-basic). Also, note that
the basic solution is x = (b′1, . . . , b

′
m, 0, . . . , 0), and hence

−z = (−c1)b′1 + · · ·+ (−cm)b′m
is the negative of the value of the objective for the basic solution
corresponding to the basis {x1, . . . , xm}.
Recall that, by definition, the basic solution x satisfies xm+1 = · · · = xn = 0.
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Tableau Simplex
Assume that for a basis B we have obtained the canonical tableau:

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
0 · · · 0 c ′m+1 · · · c ′n −z


The simplex algorithm then proceeds as follows:

1. Choose i ∈ {m + 1, . . . , n} such that c ′i < 0.

2. Choose j ∈ {1, . . . ,m} minimizing b′j/yji over all j satisfying
yji > 0.
Note that b′

j = xj for the basic solution x w.r.t. B.

3. Move the i-the column into the basis and the j-th column out
of the basis.

4. Use elementary row operations to transform the tableau into
the canonical form for the new basis.

5. Repeat until b′1, . . . , b
′
m ≥ 0,
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Example

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤
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⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤

Tableau for the basis {x3, x4}: x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0


is already in the canonical form.

Note that the last row of the tableau corresponds to writing the objective as

−z + c⊤x = 0 where z is a new variable and x is the basic solution for {x3, x4}.
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Start with the basis {x3, x4} and consider the canonical form: x3 y31 y32 1 0 b1
x4 y41 y42 0 1 b2
−z c1 c2 c3 c4 0

 =

 x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0



Choose x1 to enter the basis (x1 has the reduced cost −3 and x2
has the reduced costs −2).Now b1/y31 = 2/1 > 1/1 = b2/y41.
Thus, remove x4 from the basis.We move to the basis {x1, x3} and
transform the tableau into the canonical form for this basis: x2 1 y12 0 y14 b′1

x4 0 y32 1 y34 b′2
−z c ′1 c ′2 c ′3 c ′4 3

 =

 x1 1 0 0 1 1
x3 0 1 1 −1 1

−z 0 −2 0 3 3


Here, the reduced cost of x2 is −2, and of x4 is 3. Thus, x2 enters
the basis.Now x3 leaves the basis because y12 > 0 but y32 = 0.We
move to the basis {x1, x2} and transform the tableau into the
canonical form: x1 1 0 0 1 1

x2 0 1 1 −1 1

−z 0 0 2 1 5
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Integer Linear Programming
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Integer Linear Programming

ILP = LP + variables constrained to integer values
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Integer Linear Programming

We consider several variants of integer programming:

▶ 0-1 integer linear programming

▶ Mixed 0-1 integer linear programming

▶ Integer linear programming

▶ Mixed integer linear programming

We consider the basic branch and bound algorithm.

We also consider a cutting-plane method for integer programming.

Integer linear programming is a huge subject; we shall only scratch
its surface slightly.
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0-1 Integer Linear Programming

Let us start with a special case where variables are constrained to
values from {0, 1}.

0-1 integer linear program (0-1 ILP) is

minimize c⊤x
subject to Ax ≤ b

xi ∈ {0, 1}

14



0-1 Integer Linear Programming

Consider the following example:

minimize c⊤x
subject to a⊤x ≤ b

x ≥ 0
xi ∈ {0, 1}

Here c , a ∈ Rn and b ∈ R.

Do you recognize the problem?

It is the 0-1 knapsack problem.

Theorem 1
Finding x ∈ {0, 1}n satisfying the constraints of a given 0-1 integer
linear program is NP-complete.

It is one of Karp’s 21 NP-complete problems.
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0-1 Mixed Integer Linear Programming
0-1 mixed integer linear program (0-1 MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ {0, 1} for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of binary variables.

The problem is NP-hard; the simplex algorithm cannot be used
directly.

The problem can be solved by searching for possible values 0 and 1
in the binary variables and solving the linear programs with binary
variables fixed to concrete values.

An exhaustive search through all possible binary assignments would
be infeasible for many variables.

Usually, a sequential search that fixes only some of the binary
variables and leaves the rest unrestricted to 0 or 1 is used.
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Notation

In what follows, LP relaxation is the linear program obtained from
0-1 MILP by removing the constraints xi ∈ {0, 1} for xi ∈ D and
adding constraints xi ≥ 0 and x ≤ 1 for all xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the 0-1 MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the 0-1 MILP constraints. Initialize with f ∗ =∞.

Keep a pool of 0-1 MILP problems P initialized with P = {P}
where P is the original 0-1 MILP to be solved.
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Algorithm 1 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x of the LP relaxation of P
5: if c⊤x < f ∗ then
6: if xi ∈ {0, 1} for all xi ∈ D then
7: x∗ ← x
8: f ∗ ← c⊤x
9: else

10: Choose xi ∈ D such that xi ̸∈ {0, 1}
11: Generate LP P0 by adding xi = 0 to P
12: Generate LP P1 by adding xi = 1 to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅

18



Strategies

There are many possible strategies for choosing the problem to be
solved next:

▶ DFS, BFS, etc.

▶ heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

▶ Simplest one: Choose xi which maximizes min{xi , 1− xi}
▶ Look ahead to the relaxations of the possible subdivisions

The solutions to the LP relaxations can be reused. Some methods
(dual simplex) exploit that we are just adding a single constraint
xi = 0 or xi = 1.

The procedure may be stopped when we find a solution x , which
gives a small enough value of the objective.
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(Mixed) Integer Programming
Integer linear program (ILP) is

minimize c⊤x
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

Mixed integer linear program (MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ Z for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of integer variables.

We may use a similar branch and bound approach as for the binary
variables. The problem is that now, each integer variable has an
infinite domain.
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Notation

In what follows, LP relaxation is the linear program obtained from
MILP by removing the constraints xi ∈ Z for xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the MILP constraints. Initialize with f ∗ =∞.

Keep a pool of MILP problems P initialized with P = {P} where
P is the original MILP to be solved.

In what follows, we temporarily cease to abuse notation and use x̄
to denote the vector of values of the vector of variables x . Then x̄i
will denote the concrete value of the variable xi .
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Algorithm 2 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x̄ of the LP relaxation of P
5: if c⊤x̄ < f ∗ then
6: if x̄i ∈ Z for all xi ∈ D then
7: x∗ ← x̄
8: f ∗ ← c⊤x̄
9: else

10: Choose xi ∈ B such that x̄i ̸∈ Z
11: Generate LP P− by adding xi ≤ ⌊x̄i⌋ to P
12: Generate LP P+ by adding xi ≥ ⌈x̄i⌉ to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅
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Example
Consider the following MILP P:

minimize −x1 − 2x2 − 3x3 − 1.5x4
subject to x1 + x2 + 2x3 + 2x4 ≤ 10

7x1 + 8x2 + 5x3 + x4 = 31.5
x1, x2, x3, x4 ≥ 0

and assume D = {x1, x2, x3}. That is, x1, x2, x3 ∈ Z.

The algorithm starts with P = {P} and x∗ = ⊥ and f ∗ =∞.

The solution to the LP relaxation of P is:

x = [0, 1.1818, 4.4091, 0], the objective value is − 15.59

Let us choose x3. So, consider two programs:

▶ P− where we add x3 ≤ 4 to P

▶ P+ where we add x3 ≥ 5 to P

Now P = {P−,P+}.
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Consider first P+.

P+ is P with the added constraint x3 ≥ 5. The LP relaxation of
P+ is infeasible. We get P = {P−}.

P− is P with the additional constraint x3 ≤ 4.

The LP relaxation of P− solves to

x̄ = [0, 1.4, 4, 0.3], the objective value is − 15.25

We still have f ∗ =∞ so we split P− by constraining x2:
▶ P−− is obtained from P− by adding x2 ≤ 1
▶ P−+ is obtained from P− by adding x2 ≥ 2

and we continue with P = {P−−,P−+}.

Adding one more constraint x3 ≥ 3 to P−+ would yield a MILP
solution (0, 2, 3, 0.5) to the LP relaxation with the objective value
equal to −13.75.

The algorithm assigns f ∗ = −13.75 and x∗ = (0, 2, 3, 0.5).

The remaining search always leads either to an infeasible relaxation
or to a relaxation with an objective value worse than f ∗.
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The final solution: x∗ = (0, 2, 3, 0.5) and f ∗ = −13.75.
25



Cutting Planes
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Removing Non-Integer Solutions

The basic branch and bound method generates two new problems
in every step.

Another strategy might be to successively cut out non-integer
optimal solutions and preserve the integer ones until an integer
optimal solution is computed by the LP relaxation

We consider a concrete method for obtaining such cuts from the
ILP constraints called Gomory cuts.
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Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack
variables:

minimize c⊤x
subject to Ax = b

x ≥ 0
x ∈ Z for x ∈ D

Here, D contains the original (i.e., non-slack) variables of the ILP.

We demand the integer solution only for the original D variables.

However, one can prove that if all constants in the ILP are integer,
then there is an optimal solution where all variables (including the
slacks) are integer-valued.
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Gomory Cuts

Let A = (u1 . . . , un), the basis {x1, . . . , xn}, B = (u1 . . . , um).

Consider the canonical tableau for B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


The −z row is omitted as it is unnecessary for the discussion.

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

Consider a basic solution x = (b′1, . . . , b
′
m, 0, . . . , 0).

If all b′1, . . . , b
′
m are integers, then also x solves the ILP.

Otherwise, assume that b′i is not an integer.
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Gomory Cuts
From the tableau, we know that every feasible solution x satisfies:

xi + yi(m+1)xm+1 + · · ·+ yinxn = b′i

Then, x also satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ b′i

Moreover, any integer feasible solution x satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ ⌊b′i⌋

But, subtracting the inequalities, integer feasible solutions x satisfy:

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

But note that the basic feasible solution x = (b′1, . . . , b
′
m, 0, . . . , 0)

does not satisfy the last inequality because b′i > ⌊b′i⌋ and
xm+1 = · · · = xn = 0.
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Gomory Cuts Method
Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


Choose a non-integer component xi = b′i of the basic feasible
solution w.r.t. B and consider the constraint

xi+(yi(m+1)−⌊yi(m+1)⌋)xm+1+ · · ·+(yin−⌊yin⌋)xn ≥ b′i−⌊b′i⌋

Transform the above inequality into equality by introducing a new
variable xn+1 and obtain the following constraint (Gomory cut)

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

Add the Gomory cut and the constraint xn+1 ≥ 0 to the program.

Repeat until an integer solution is reached.
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Example

Consider ILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 ≤ 12

3x1 + 11x2 ≤ 66
x1, x2 ≥ 0
x1, x2 ∈ Z

Adding slack variables x3, x4 we obtain the following MILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z
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We have

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

An optimal basic solution to the LP relaxation is(
11

2
,
9

2
, 0, 0

)⊤

and the canonical tableau w.r.t. the basis {x1, x2} isx1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Let us introduce the Gomory cut corresponding to the variable x1.
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x1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 1 and m = 2 turns into(
11

36
− 0

)
x3 +

(
1

36
− 0

)
x4 − x5 =

1

2
(=

11

2
− 5)

We add this constraint to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Solving the LP relaxation yields(
5,

51

11
,
18

11
, 0, 0

)⊤

The canonical tableau for the solution is
x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Introduce the Gomory cut for x2.
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x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 2 and m = 3 turns into(
1

11
− 0

)
x4 +

(
− 3

11
+

11

11

)
x5 − x6 =

7

11
(=

51

11
− 44

11
)

We add this to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

1
11x4 +

8
11x5 − x6 =

7
11

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Once more the solution of the above is non-integer. However,
introducing another Gomory cut (and a variable x7) would yield a
solution:

(5, 4, 1, 7, 0, 0, 0)⊤

Which gives the point (x1, x2) = (5, 4) corresponding to the
graphical solution.
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Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.
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Summary of Integer Linear Programming

We have considered:

▶ Linear Programming (LP)
Linear objective and constraints.

▶ 0-1 Integer Linear Programming (0-1 ILP)
Linear objective and constraints. All variables restricted to {0, 1}.

▶ 0-1 Mixed Integer Programming (0-1 MILP)
Linear objective and constraints. Some variables restricted to {0, 1}.

▶ Integer Linear Programming (ILP)
Linear objective and constraints. All variables restricted to Z.

▶ Mixed Integer Linear Programming (MILP)
Linear objective and constraints. Some variables restricted to Z.
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Summary of Integer Linear Programming
Complexity:

▶ Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in P-time.

Algorithms:

▶ Branch and Bound

▶ 0-1 MILP: Search through possible assignments of 0 and 1 to
some discrete variables while solving the LP relaxations
Branching with the choice of 0/1 values of variables, bounding with

a solution found so far.
▶ MILP: Solve LP relaxation, use non-integer values of the

solution to introduce constraints, removing such values from
the solution.

▶ Cutting planes

▶ Sequentially cut out portions of the LP relaxation feasible
space by introducing cuts based on solutions of LP relaxations.

▶ Does not branch but is usually combined with branch and
bound (branch and cut).
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