
Decision Trees

1

Decision Trees

▶ One of the widely used methods for machine learning.

▶ Intuitively simple, directly explainable.

▶ Basis for random forests (a powerful model).

▶ We will consider the ID3 algorithm.
Quinlan, 1979

▶ Various adjustments that appear in C4.5, CART, etc.

2

Decision Trees

▶ One of the widely used methods for machine learning.

▶ Intuitively simple, directly explainable.

▶ Basis for random forests (a powerful model).

▶ We will consider the ID3 algorithm.
Quinlan, 1979

▶ Various adjustments that appear in C4.5, CART, etc.

2

Consider the weather forecast for tennis playing. How would you
decide whether to play today?

How do we obtain such a tree based on experience/data?

3

Consider the weather forecast for tennis playing. How would you
decide whether to play today?

How do we obtain such a tree based on experience/data?

3

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is, assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.

4

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is, assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.

4

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is, assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.
4

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

5

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

5

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

5

Example

The tennis problem:
▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

Then

A3(x⃗) = Humidity(x⃗) = Normal

A4(x⃗) = Wind(x⃗) = Weak

5

Example

The tennis problem:
▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

Then

A3(x⃗) = Humidity(x⃗) = Normal

A4(x⃗) = Wind(x⃗) = Weak

▶ C = {Yes,No}
5

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

6

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

6

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

6

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

6

Example

T = {O,H,W , z1, z2, z3, z4, z5}

Tleaf = {z1, z2, z3, z4, z5},Tint = {O,H,W }

E =
{
(O,H), (O,W), (H, z1), (H, z2),

(O, z3), (W , z4), (W , z5)
}

C (z1) = C (z3) = No,C (z2) = C (z4) = Yes

A(O) = Outlook, A(H) = Humidity , A(W) = Wind

V (O,H) = Sunny , V (O, z3) = Overcast, V (O,W) = Rain
V (H, z1) = High, V (H, z2) = Normal
V (W , z4) = Strong , V (W , z5) = Weak

Inference: For (Rain,Hot,High,Strong) we reach z4, yielding No.

7

Training Dataset

Consider a training dataset

D = {(x⃗k , ck) | k = 1, . . . , p}

Here x⃗k ∈ V (A1)× · · · × V (Ak) and ck ∈ C for every k.

Technically D can be a multiset containing several occurrences of the same

vector.

8

Index Outlook Temperature Humidity Wind PlayTennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

D =
{
((Sunny ,Hot,High,Weak),No),

((Sunny ,Hot,High,Strong),No)

· · ·
((Rain,Mild ,High,Strong),No)

}
9

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.

▶ If there is just a single class in D, create a single node
decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,

▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,

▶ for every v ∈ V (A), recursively construct a decision tree with
a root τv using Dv ,

▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,

▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

10

1: function ID3(dataset D, attribute set A)
2: Create a root node τ for the tree
3: if D = ∅ then
4: Return the single node τ assigned with a default class.
5: else if all examples in D are of the same class c then
6: Return the single-node tree, where τ is assigned c
7: else if set of attributes A is empty then
8: Return the single-node tree where τ is assigned

the most common class in D
9: else

10: Choose attribute A ∈ A best classifying examples in D.
11: Set the decision attribute for τ to A
12: for each value v ∈ D(A) do
13: Compute a decision tree ID3(Dv ,A∖ {A}) with root τv ,
14: add a new edge (τ, τv) assigned v .
15: end for
16: end if
17: return τ
18: end function

11

Best Classifying Attribute

We aim to choose an attribute that best informs us about the class.
As a result, we would possibly use as few attributes as possible and obtain a

small tree containing only class-relevant decisions.

How to choose an attribute that best classifies examples in D?

There are several measures used in practice.

The most common are

▶ information gain

▶ Gini impurity decrease

12

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the information gain for the current dataset D.

13

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the information gain for the current dataset D.

13

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the information gain for the current dataset D.

13

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the information gain for the current dataset D.

13

Information Gain
The intuition behind information gain:
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).
▶ Gain(D,A) measures reduction in uncertainty of classes by

splitting D according to A.

14

Information Gain
The intuition behind information gain:
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).

▶ Gain(D,A) measures reduction in uncertainty of classes by
splitting D according to A.

14

Information Gain
The intuition behind information gain:
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).
▶ Gain(D,A) measures reduction in uncertainty of classes by

splitting D according to A.
14

Gini Impurity

▶ We define Gini impurity of D by

Gini(D) = 1−
∑
c∈C

p2c

▶ The impurity decrease of an attribute A is then defined
similarly to the gain in the entropy case

ImpDec(D,A) = Gini(D)−
∑

v∈V (A)

|Dv |
|D|

Gini(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the impurity decrease for the current dataset D.

15

Gini Impurity

▶ We define Gini impurity of D by

Gini(D) = 1−
∑
c∈C

p2c

▶ The impurity decrease of an attribute A is then defined
similarly to the gain in the entropy case

ImpDec(D,A) = Gini(D)−
∑

v∈V (A)

|Dv |
|D|

Gini(Dv)

In every step of the ID3 algorithm, we choose an attribute
maximizing the impurity decrease for the current dataset D.

15

Gini Impurity

What is the intuition behind Gini(D) ?

Assume we randomly independently choose objects from D.

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.

In what follows (and at the exam), we will work only with the Gini
impurity as it is easier to compute.

16

Gini Impurity

What is the intuition behind Gini(D) ?

Assume we randomly independently choose objects from D.

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.

In what follows (and at the exam), we will work only with the Gini
impurity as it is easier to compute.

16

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.

17

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.

17

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.
17

Example

Going further on, consider D = DSunny . We get

▶ ImpDec(D,Temperature) = 0.279

▶ ImpDec(D,Humidity) = 0.48

▶ ImpDec(D,Wind) = 0.013

The best choice attribude after Sunny in Outlook is Humidity .

Now consider D = DRain.

▶ ImpDec(D,Temperature) = 0.013

▶ ImpDec(D,Humidity) = 0.013

▶ ImpDec(D,Wind) = 0.48

The best choice attribude after Rain in Outlook is Wind .

18

Example

Going further on, consider D = DSunny . We get

▶ ImpDec(D,Temperature) = 0.279

▶ ImpDec(D,Humidity) = 0.48

▶ ImpDec(D,Wind) = 0.013

The best choice attribude after Sunny in Outlook is Humidity .

Now consider D = DRain.

▶ ImpDec(D,Temperature) = 0.013

▶ ImpDec(D,Humidity) = 0.013

▶ ImpDec(D,Wind) = 0.48

The best choice attribude after Rain in Outlook is Wind .

18

Continuous-Valued Attributes
What if values of an attribute A come from a continuous variable?
A is a numerical attribute that can take any value in an interval, such as

temperature, size, time, etc.

Consider an internal node τ ∈ Tint assigned such a continuous
attribute A. Then
▶ τ is assigned a threshold value called a cut point H ∈ R,
▶ there are two edges etrue, efalse from τ ,
▶ etrue labeled with True and efalse labeled with False.

During inference, when considering
an example x⃗ in the node τ ,

▶ evaluate A(x⃗) ≤ H,

▶ if A(x⃗) ≤ H, then follow etrue,

▶ else follow efalse.

In training, the cut point is chosen from the attribute values in the training set

using information gain/impurity decrease similar to discrete attributes.

19

Continuous-Valued Attributes
What if values of an attribute A come from a continuous variable?
A is a numerical attribute that can take any value in an interval, such as

temperature, size, time, etc.

Consider an internal node τ ∈ Tint assigned such a continuous
attribute A. Then
▶ τ is assigned a threshold value called a cut point H ∈ R,
▶ there are two edges etrue, efalse from τ ,
▶ etrue labeled with True and efalse labeled with False.

During inference, when considering
an example x⃗ in the node τ ,

▶ evaluate A(x⃗) ≤ H,

▶ if A(x⃗) ≤ H, then follow etrue,

▶ else follow efalse.

In training, the cut point is chosen from the attribute values in the training set

using information gain/impurity decrease similar to discrete attributes.
19

Iris Example

Attributes
Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

Classes (Variety)
Setosa, Versicolor, Virginica

20

Iris Example
The dataset (150 examples):

Sepal.Length Sepal.Width Petal.Length Petal.Width Variety

5.5 3.5 1.3 0.2 Setosa
6.8 2.8 4.8 1.4 Versicolor
6.7 3.1 4.7 1.5 Versicolor
6.9 3.1 5.1 2.3 Virginica
7.3 2.9 6.3 1.8 Virginica
5.4 3.7 1.5 0.2 Setosa
4.6 3.4 1.4 0.3 Setosa
6.2 2.8 4.8 1.8 Virginica
5.4 3.0 4.5 1.5 Versicolor
4.7 3.2 1.6 0.2 Setosa
6.7 3.3 5.7 2.1 Virginica
5.0 3.4 1.5 0.2 Setosa
5.0 3.0 1.6 0.2 Setosa
4.4 2.9 1.4 0.2 Setosa
6.0 3.4 4.5 1.6 Versicolor
5.1 3.5 1.4 0.2 Setosa
6.6 3.0 4.4 1.4 Versicolor
5.9 3.2 4.8 1.8 Versicolor
5.6 2.8 4.9 2.0 Virginica
· · ·

Table: Summary of iris dataset measurements.

21

Iris Example

22

Iris Example - Decision Tree

23

Iris Example - Decision Tree Boudaries

If the leaves are split further, the Depth = 2 boundary would be
added.

24

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

25

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

25

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

25

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

25

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

25

Decision Trees

Practical Issues

26

Practical Issues

▶ Data preprocessing

▶ Model tunning (overfitting and underfitting)

▶ Sensitivity to changes in data/hyperparameters

▶ Learning representation problems (the XOR)

27

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

28

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

28

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

28

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

28

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

28

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

29

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

29

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

29

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

29

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.
29

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems good (but still needs to be tested on
fresh data).

30

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems good (but still needs to be tested on
fresh data).

30

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems good (but still needs to be tested on
fresh data).

30

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems good (but still needs to be tested on
fresh data).

30

Model Tuning - Overfitting in Decision Trees

See the overfitting on the left and the “nice” model on the right.

Both overfitting and underfitting are best avoided. But how do we
find out?

31

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.

32

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.

32

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.
32

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning, where recent history

shows a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

33

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning, where recent history

shows a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

33

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning, where recent history

shows a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

33

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning, where recent history

shows a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

33

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning, where recent history

shows a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

33

Pre-Prunning - Hyperparamaters
Hyperparameters controlling the size of the tree:

▶ Maximum depth - do not grow the tree beyond the max depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node - if D[τ] is
small, τ becomes a leaf (labeled with the majority class)
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

34

Pre-Prunning - Hyperparamaters
Hyperparameters controlling the size of the tree:

▶ Maximum depth - do not grow the tree beyond the max depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node - if D[τ] is
small, τ becomes a leaf (labeled with the majority class)
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

34

Pre-Prunning - Hyperparamaters
Hyperparameters controlling the size of the tree:

▶ Maximum depth - do not grow the tree beyond the max depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node - if D[τ] is
small, τ becomes a leaf (labeled with the majority class)
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

34

Pre-Prunning - Hyperparamaters
Hyperparameters controlling the size of the tree:

▶ Maximum depth - do not grow the tree beyond the max depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node - if D[τ] is
small, τ becomes a leaf (labeled with the majority class)
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

34

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .

35

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .

35

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .
35

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree; they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al. (1984) defined Err(T)
to be the misclassification rate on the training dataset, and
|T | is the number of nodes of the tree T .

36

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree; they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al. (1984) defined Err(T)
to be the misclassification rate on the training dataset, and
|T | is the number of nodes of the tree T .

36

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree; they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al. (1984) defined Err(T)
to be the misclassification rate on the training dataset, and
|T | is the number of nodes of the tree T .

36

Sensitivity to Small Changes and Randomness

▶ Decision trees are sensitive to small changes in data and
hyperparameters.
Several attributes may provide (almost) identical information gain but

divide the training dataset very differently.

▶ Some implementations choose attributes partially in random
(sci-kit-learn). You may get completely different trees.

A solution is to train an ensemble of many decision trees and then
use majority voting for classification.

This is the fundamental idea behind random forests (see later
lectures).

37

Sensitivity to Small Changes and Randomness

▶ Decision trees are sensitive to small changes in data and
hyperparameters.
Several attributes may provide (almost) identical information gain but

divide the training dataset very differently.

▶ Some implementations choose attributes partially in random
(sci-kit-learn). You may get completely different trees.

A solution is to train an ensemble of many decision trees and then
use majority voting for classification.

This is the fundamental idea behind random forests (see later
lectures).

37

Iris - Illustration

Decision trees trained on the Iris dataset.

Iris Setosa is perfectly separated by many choices for the first split.
38

Axis Sensitivity

The decision makes divisions along particular axes:

That is, rotated data may result in a completely different model.

That is why decision trees are often preceded by the principal
component analysis (PCA) transformation, which aligns data along
the axes of maximum data variance.

39

XOR Training Problem
Consider the following training dataset:

An ideal decision tree would look like this:

40

XOR Training Problem
Consider the following training dataset:

An ideal decision tree would look like this:

40

Attempts at Training on XOR
Max depth = 2:

The problem: Both information gain and decrease in impurity
consider only the relationship of a single attribute and the class.

However, there is no relationship between a single attribute and
the class; both attributes need to be considered together!

41

Attempts at Training on XOR
Max depth = 2:

The problem: Both information gain and decrease in impurity
consider only the relationship of a single attribute and the class.

However, there is no relationship between a single attribute and
the class; both attributes need to be considered together!

41

More Attempts at Training on XOR

Max depth = 3:

It’s better but still fails occasionally.

42

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

43

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

43

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

43

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

43

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

44

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

44

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

44

History of Decision Trees

▶ Hunt and colleagues use exhaustive search decision-tree
methods (CLS) to model human concept learning in the
1960’s.

▶ In the late 70’s, Quinlan developed ID3 with the information
gain heuristic to learn expert systems from examples.

▶ Simultaneously, Breiman, Friedman, and colleagues develop
CART (Classification and Regression Trees), similar to ID3.

▶ In the 1980s, various improvements were introduced to handle
noise, continuous features, missing features, and improved
splitting criteria. Various expert-system development tools
results.

▶ Quinlan’s updated decision-tree package (C4.5) released in
1993.

45

Comment on Regression Trees

Decision trees can also be used to approximate functions. Assign a
function value to the leaves instead of classes.

Here, “mse” is the mean-squared-error.

46

Comment on Regression Trees

Intuitively, for every subinterval of x1, the value (the red line) is at
the average y over the subinterval.

How are the subintervals being set?

47

Regression Trees
A regression tree is a decision tree whose leaves are labeled by
values from R.

We follow the same procedure as in decision trees during inference
on an input x⃗ .

How exactly are such trees trained?

We aim to minimize the mean squared error.

Assume, for the moment, that we want to train a single-node tree.
What will be the best labeling value for the single node?

Now, consider the training for arbitrary trees.

Assume ordinal attributes.
The algorithm also works for discrete attributes; ordinal attributes, however,

allow us to make binary splits.

The training procedure is the same as for the decision trees, except
that the splits and cut points are selected differently.

48

Regression Trees
A regression tree is a decision tree whose leaves are labeled by
values from R.

We follow the same procedure as in decision trees during inference
on an input x⃗ .

How exactly are such trees trained?

We aim to minimize the mean squared error.

Assume, for the moment, that we want to train a single-node tree.
What will be the best labeling value for the single node?

Now, consider the training for arbitrary trees.

Assume ordinal attributes.
The algorithm also works for discrete attributes; ordinal attributes, however,

allow us to make binary splits.

The training procedure is the same as for the decision trees, except
that the splits and cut points are selected differently.

48

Regression Trees
A regression tree is a decision tree whose leaves are labeled by
values from R.

We follow the same procedure as in decision trees during inference
on an input x⃗ .

How exactly are such trees trained?

We aim to minimize the mean squared error.

Assume, for the moment, that we want to train a single-node tree.
What will be the best labeling value for the single node?

Now, consider the training for arbitrary trees.

Assume ordinal attributes.
The algorithm also works for discrete attributes; ordinal attributes, however,

allow us to make binary splits.

The training procedure is the same as for the decision trees, except
that the splits and cut points are selected differently.

48

Regression Trees
A regression tree is a decision tree whose leaves are labeled by
values from R.

We follow the same procedure as in decision trees during inference
on an input x⃗ .

How exactly are such trees trained?

We aim to minimize the mean squared error.

Assume, for the moment, that we want to train a single-node tree.
What will be the best labeling value for the single node?

Now, consider the training for arbitrary trees.

Assume ordinal attributes.
The algorithm also works for discrete attributes; ordinal attributes, however,

allow us to make binary splits.

The training procedure is the same as for the decision trees, except
that the splits and cut points are selected differently.

48

Regression Trees
A regression tree is a decision tree whose leaves are labeled by
values from R.

We follow the same procedure as in decision trees during inference
on an input x⃗ .

How exactly are such trees trained?

We aim to minimize the mean squared error.

Assume, for the moment, that we want to train a single-node tree.
What will be the best labeling value for the single node?

Now, consider the training for arbitrary trees.

Assume ordinal attributes.
The algorithm also works for discrete attributes; ordinal attributes, however,

allow us to make binary splits.

The training procedure is the same as for the decision trees, except
that the splits and cut points are selected differently.

48

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2
Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄.

49

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2
Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄.

49

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2

Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄.

49

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2
Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.

Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄.

49

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2
Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄.

49

Regression Trees
Given a dataset D = {(x⃗1, d1), . . . , (x⃗p, dp)}, we denote by D̄ the
average desired value in D, that is D̄ = 1

p

∑p
k=1 dk .

Consider a dataset D and let us find a cut point for A in D.

We are looking for a value H of the attribute A such that the split:

D≤H = {(x⃗ , d) ∈ D | A(x⃗) ≤ H} D>H = {(x⃗ , d) ∈ D | A(x⃗) > H}
Minimizes the following split error:

1

|D≤H |
∑

(x⃗ ,d)∈D≤H

(
d − D̄≤H

)2
+

1

|D>H |
∑

(x⃗ ,d)∈D>H

(
d − D̄>H

)2
Denote by MinE(D) the minimum of the split error over all
attributes A and all cut points H.Compute

∆ =

 1

|D|
∑

(x⃗ ,d)∈D

(
d − D̄

)2−MinE

If ∆ is large enough, split on A and H that minimize the split
error. Otherwise, stop splitting and label the leaf with D̄. 49

Regression Tress

Without any lower bound on the number of examples in the leaves,
the algorithm will eventually overfit by splitting into (possibly)
singleton leaves.

50

Anomaly Detection

51

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.

▶ Data instances that occur rarely and whose features differ
significantly from most data.

▶ Outliers - observations that appear to be inconsistent (far
away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.

▶ Outliers - observations that appear to be inconsistent (far
away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.

52

What is the Anomaly Detection Good For?

There are two main sources of motivation for anomaly detection in
machine learning:

▶ Modeling perspective: Many models are sensitive to
anomalous data.

▶ Application perspective: Many tasks are based on searching
for anomalies in data.

53

What is the Anomaly Detection Good For?

There are two main sources of motivation for anomaly detection in
machine learning:

▶ Modeling perspective: Many models are sensitive to
anomalous data.

▶ Application perspective: Many tasks are based on searching
for anomalies in data.

53

Modeling Perspective

Recall the behavior of the linear model.

To train such a model properly, the outliers should be removed.

On the other hand, we will see that the sensitivity of some models
can be used to detect the anomalies.

54

Modeling Perspective

Recall the behavior of the linear model.

To train such a model properly, the outliers should be removed.

On the other hand, we will see that the sensitivity of some models
can be used to detect the anomalies.

54

Applications Perspective

▶ Fraud Detection
▶ Analysis of purchasing behavior to detect credit card theft.
▶ Identification of theft through uncharacteristic buying patterns

and behavioral changes.

▶ Intrusion Detection
▶ Monitoring for attacks on computer systems and networks.
▶ Many attacks exhibit themselves as anomalous behavior.

▶ Ecosystem Disturbances
▶ Detect atypical natural world events.
▶ Prediction and understanding of hurricanes, floods, droughts,

heat waves, and fires.

▶ Medicine
▶ Unusual patient symptoms or test results may indicate health

problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...

55

Applications Perspective

▶ Fraud Detection
▶ Analysis of purchasing behavior to detect credit card theft.
▶ Identification of theft through uncharacteristic buying patterns

and behavioral changes.

▶ Intrusion Detection
▶ Monitoring for attacks on computer systems and networks.
▶ Many attacks exhibit themselves as anomalous behavior.

▶ Ecosystem Disturbances
▶ Detect atypical natural world events.
▶ Prediction and understanding of hurricanes, floods, droughts,

heat waves, and fires.

▶ Medicine
▶ Unusual patient symptoms or test results may indicate health

problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...

55

Applications Perspective

▶ Fraud Detection
▶ Analysis of purchasing behavior to detect credit card theft.
▶ Identification of theft through uncharacteristic buying patterns

and behavioral changes.

▶ Intrusion Detection
▶ Monitoring for attacks on computer systems and networks.
▶ Many attacks exhibit themselves as anomalous behavior.

▶ Ecosystem Disturbances
▶ Detect atypical natural world events.
▶ Prediction and understanding of hurricanes, floods, droughts,

heat waves, and fires.

▶ Medicine
▶ Unusual patient symptoms or test results may indicate health

problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...

55

Applications Perspective

▶ Fraud Detection
▶ Analysis of purchasing behavior to detect credit card theft.
▶ Identification of theft through uncharacteristic buying patterns

and behavioral changes.

▶ Intrusion Detection
▶ Monitoring for attacks on computer systems and networks.
▶ Many attacks exhibit themselves as anomalous behavior.

▶ Ecosystem Disturbances
▶ Detect atypical natural world events.
▶ Prediction and understanding of hurricanes, floods, droughts,

heat waves, and fires.

▶ Medicine
▶ Unusual patient symptoms or test results may indicate health

problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...

55

Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.

56

Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.

56

Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.

56

Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.

56

Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.

56

Approaches to Anomaly Detection
▶ Model-based techniques:

▶ Build a model of data.
▶ Anomalies should not fit the model very well.

For example, using a clustering model, an anomaly may lie far away

from larger clusters.
▶ Alternatively, removing anomalies should have the strongest

impact on the model parameters (more on this later).

▶ Proximity-based techniques: Given distance between objects,
anomalies are objects distant from others.

▶ Density-based techniques: Estimate the density distribution of
the objects. Anomalies would probably be outside of dense
regions.

I would count the most recent deep learning-based anomaly detection among

the model-based techniques even though a combination of the above

approaches is usually used.

We will make the above ideas more precise in the rest of this
lecture.

57

Approaches to Anomaly Detection
▶ Model-based techniques:

▶ Build a model of data.
▶ Anomalies should not fit the model very well.

For example, using a clustering model, an anomaly may lie far away

from larger clusters.
▶ Alternatively, removing anomalies should have the strongest

impact on the model parameters (more on this later).

▶ Proximity-based techniques: Given distance between objects,
anomalies are objects distant from others.

▶ Density-based techniques: Estimate the density distribution of
the objects. Anomalies would probably be outside of dense
regions.

I would count the most recent deep learning-based anomaly detection among

the model-based techniques even though a combination of the above

approaches is usually used.

We will make the above ideas more precise in the rest of this
lecture.

57

Approaches to Anomaly Detection
▶ Model-based techniques:

▶ Build a model of data.
▶ Anomalies should not fit the model very well.

For example, using a clustering model, an anomaly may lie far away

from larger clusters.
▶ Alternatively, removing anomalies should have the strongest

impact on the model parameters (more on this later).

▶ Proximity-based techniques: Given distance between objects,
anomalies are objects distant from others.

▶ Density-based techniques: Estimate the density distribution of
the objects. Anomalies would probably be outside of dense
regions.

I would count the most recent deep learning-based anomaly detection among

the model-based techniques even though a combination of the above

approaches is usually used.

We will make the above ideas more precise in the rest of this
lecture.

57

Anomaly Detecion Learning
There are three approaches to anomaly detection based on
available information about data:

▶ Supervised: Given a training set distinguishing normal and
anomalous data. We may train a supervised learning classifier.
As anomalies are rare, approaches based on supervised learning are rare.

▶ Semi-supervised:
▶ We may know what instances are normal.

A tumor detection system trained on healthy people detects tumors

as anomalies.

In this case, we detect anomalies that are dissimilar to normal
instances. We may train a model representing the normal
instances and detect instances that do not fit the model.

▶ We may have information about (some) normal and some
anomalous instances. Here, we can use methods for
semi-supervised classification.

▶ Unsupervised: Create a model of all instances and hope that
anomalous instances will still be dissimilar to instances typical
for the model.

58

Anomaly Detecion Learning
There are three approaches to anomaly detection based on
available information about data:

▶ Supervised: Given a training set distinguishing normal and
anomalous data. We may train a supervised learning classifier.
As anomalies are rare, approaches based on supervised learning are rare.

▶ Semi-supervised:
▶ We may know what instances are normal.

A tumor detection system trained on healthy people detects tumors

as anomalies.

In this case, we detect anomalies that are dissimilar to normal
instances. We may train a model representing the normal
instances and detect instances that do not fit the model.

▶ We may have information about (some) normal and some
anomalous instances. Here, we can use methods for
semi-supervised classification.

▶ Unsupervised: Create a model of all instances and hope that
anomalous instances will still be dissimilar to instances typical
for the model.

58

Anomaly Detecion Learning
There are three approaches to anomaly detection based on
available information about data:

▶ Supervised: Given a training set distinguishing normal and
anomalous data. We may train a supervised learning classifier.
As anomalies are rare, approaches based on supervised learning are rare.

▶ Semi-supervised:
▶ We may know what instances are normal.

A tumor detection system trained on healthy people detects tumors

as anomalies.

In this case, we detect anomalies that are dissimilar to normal
instances. We may train a model representing the normal
instances and detect instances that do not fit the model.

▶ We may have information about (some) normal and some
anomalous instances. Here, we can use methods for
semi-supervised classification.

▶ Unsupervised: Create a model of all instances and hope that
anomalous instances will still be dissimilar to instances typical
for the model.

58

Issues
Task-specific issues comprise:

▶ Single vs. multi-attribute anomaly: The question is whether
an object is anomalous due to a single attribute (200 kg
person) or a combination of attributes (100 kg person of 1
meter height).
This is especially important when data is high-dimensional. For example,

in genetic data, every sample is an anomaly(?)

▶ Global vs. local perspective: An object may be anomalous
w.r.t. all objects but not w.r.t. objects in its local
neighborhood (210 cm high basketball player).

▶ Degree of anomaly: Usually, anomalies are reported in a
binary fashion. However, we often want to measure how
anomalous an object is, similar to normal objects.

Another issue is evaluation: How can we determine how good an
anomaly detector is?
In the supervised case, we have a ground truth, but usually, we just observe

detected anomalies.

59

Issues
Task-specific issues comprise:

▶ Single vs. multi-attribute anomaly: The question is whether
an object is anomalous due to a single attribute (200 kg
person) or a combination of attributes (100 kg person of 1
meter height).
This is especially important when data is high-dimensional. For example,

in genetic data, every sample is an anomaly(?)

▶ Global vs. local perspective: An object may be anomalous
w.r.t. all objects but not w.r.t. objects in its local
neighborhood (210 cm high basketball player).

▶ Degree of anomaly: Usually, anomalies are reported in a
binary fashion. However, we often want to measure how
anomalous an object is, similar to normal objects.

Another issue is evaluation: How can we determine how good an
anomaly detector is?
In the supervised case, we have a ground truth, but usually, we just observe

detected anomalies.

59

Issues
Task-specific issues comprise:

▶ Single vs. multi-attribute anomaly: The question is whether
an object is anomalous due to a single attribute (200 kg
person) or a combination of attributes (100 kg person of 1
meter height).
This is especially important when data is high-dimensional. For example,

in genetic data, every sample is an anomaly(?)

▶ Global vs. local perspective: An object may be anomalous
w.r.t. all objects but not w.r.t. objects in its local
neighborhood (210 cm high basketball player).

▶ Degree of anomaly: Usually, anomalies are reported in a
binary fashion. However, we often want to measure how
anomalous an object is, similar to normal objects.

Another issue is evaluation: How can we determine how good an
anomaly detector is?
In the supervised case, we have a ground truth, but usually, we just observe

detected anomalies.

59

Issues
Task-specific issues comprise:

▶ Single vs. multi-attribute anomaly: The question is whether
an object is anomalous due to a single attribute (200 kg
person) or a combination of attributes (100 kg person of 1
meter height).
This is especially important when data is high-dimensional. For example,

in genetic data, every sample is an anomaly(?)

▶ Global vs. local perspective: An object may be anomalous
w.r.t. all objects but not w.r.t. objects in its local
neighborhood (210 cm high basketball player).

▶ Degree of anomaly: Usually, anomalies are reported in a
binary fashion. However, we often want to measure how
anomalous an object is, similar to normal objects.

Another issue is evaluation: How can we determine how good an
anomaly detector is?
In the supervised case, we have a ground truth, but usually, we just observe

detected anomalies.
59

Various Approaches to Anomaly Detection

We shall have a look at five approaches to the unsupervised
anomaly detection:

▶ Statistical

▶ Proximity-based

▶ Density-based

▶ Cluster-based

▶ Autoencoders

The above approaches are also used in the semi-supervised setting where we

have a dataset of normal instances. However, some issues discussed further will

not appear in this case.

60

Statistical

Definition 1
An outlier is an object with a low probability in the probability
distribution of the data.

Suppose we knew the “true” probability distribution P on objects.
In that case, we may set up a threshold t (using an appropriate
training set) and say that every object A with P(A) < t is
anomalous.

However, in most cases, we do not know P and have to resort to a
model of P created using a dataset of feature vectors.

There are many more or less sophisticated tests based on models
of P in the literature.
Some use rather advanced statistical methods.

Let us have a look at a few simple examples.

61

Statistical

Definition 1
An outlier is an object with a low probability in the probability
distribution of the data.

Suppose we knew the “true” probability distribution P on objects.
In that case, we may set up a threshold t (using an appropriate
training set) and say that every object A with P(A) < t is
anomalous.

However, in most cases, we do not know P and have to resort to a
model of P created using a dataset of feature vectors.

There are many more or less sophisticated tests based on models
of P in the literature.
Some use rather advanced statistical methods.

Let us have a look at a few simple examples.

61

Statistical

Definition 1
An outlier is an object with a low probability in the probability
distribution of the data.

Suppose we knew the “true” probability distribution P on objects.
In that case, we may set up a threshold t (using an appropriate
training set) and say that every object A with P(A) < t is
anomalous.

However, in most cases, we do not know P and have to resort to a
model of P created using a dataset of feature vectors.

There are many more or less sophisticated tests based on models
of P in the literature.
Some use rather advanced statistical methods.

Let us have a look at a few simple examples.

61

Statistical

Definition 1
An outlier is an object with a low probability in the probability
distribution of the data.

Suppose we knew the “true” probability distribution P on objects.
In that case, we may set up a threshold t (using an appropriate
training set) and say that every object A with P(A) < t is
anomalous.

However, in most cases, we do not know P and have to resort to a
model of P created using a dataset of feature vectors.

There are many more or less sophisticated tests based on models
of P in the literature.
Some use rather advanced statistical methods.

Let us have a look at a few simple examples.

61

Box Plot

A simple method for outlier detection in the univariate case, that
is, for values of a single attribute.

62

Univariate Gaussian Model
Consider a numeric attribute whose values x are normally
distributed with mean µ and standard deviation σ.
We write N(µ, σ2).

Given an attribute value x , we compute the z-score:

z = (x − µ)/σ
Then z has the distribution N(0, 1).

Now, choose c so the probability P(|z | ≥ c) is small enough for z
to be an outlier w.r.t. N(0, 1).

Given an attribute value x , we may decide whether x is an outlier
by deciding whether |z | = |(x − µ)/σ| ≥ c.

63

Univariate Gaussian Model
Consider a numeric attribute whose values x are normally
distributed with mean µ and standard deviation σ.
We write N(µ, σ2).

Given an attribute value x , we compute the z-score:

z = (x − µ)/σ
Then z has the distribution N(0, 1).

Now, choose c so the probability P(|z | ≥ c) is small enough for z
to be an outlier w.r.t. N(0, 1).

Given an attribute value x , we may decide whether x is an outlier
by deciding whether |z | = |(x − µ)/σ| ≥ c.

63

Univariate Gaussian Model
Consider a numeric attribute whose values x are normally
distributed with mean µ and standard deviation σ.
We write N(µ, σ2).

Given an attribute value x , we compute the z-score:

z = (x − µ)/σ
Then z has the distribution N(0, 1).

Now, choose c so the probability P(|z | ≥ c) is small enough for z
to be an outlier w.r.t. N(0, 1).

Given an attribute value x , we may decide whether x is an outlier
by deciding whether |z | = |(x − µ)/σ| ≥ c.

63

Univariate Gaussian

Problem 1: The attribute does not have a normal distribution.

Before starting, use a normality test (observe the histogram, use a
specialized test such as Shapiro-Wilk).

Some transformations may sometimes succeed in normalizing an
attribute (Box-Cox transformation, etc.)

Different distributions can be used to model the attribute (Log Normal,

Weibull, etc.), but be aware of the assumptions of anomaly detection tests!

64

Univariate Gaussian

Problem 1: The attribute does not have a normal distribution.

Before starting, use a normality test (observe the histogram, use a
specialized test such as Shapiro-Wilk).

Some transformations may sometimes succeed in normalizing an
attribute (Box-Cox transformation, etc.)

Different distributions can be used to model the attribute (Log Normal,

Weibull, etc.), but be aware of the assumptions of anomaly detection tests!
64

Univariate Gaussian

Problem 2: We typically do not know the population mean µ and
the population variance σ2.

They can be estimated from a dataset by the sample mean and the
sample variance:

µ̄ =
1

p

p∑
i=1

xi s2 =
1

p − 1

p∑
i=1

(xi − µ̄)2

However, then z = (x − µ̄)/s does no longer have the distribution
N(0, 1).
The distribution of z is normal if x is sampled independently of the data

yielding µ̄ and s2.

Note that µ̄ and s2 are unbiased estimates of µ and σ2. Also, µ̄
converges to µ and s2 converges to σ2 with growing sample size.

65

Univariate Gaussian

Problem 2: We typically do not know the population mean µ and
the population variance σ2.

They can be estimated from a dataset by the sample mean and the
sample variance:

µ̄ =
1

p

p∑
i=1

xi s2 =
1

p − 1

p∑
i=1

(xi − µ̄)2

However, then z = (x − µ̄)/s does no longer have the distribution
N(0, 1).
The distribution of z is normal if x is sampled independently of the data

yielding µ̄ and s2.

Note that µ̄ and s2 are unbiased estimates of µ and σ2. Also, µ̄
converges to µ and s2 converges to σ2 with growing sample size.

65

Univariate Gaussian

Problem 2: We typically do not know the population mean µ and
the population variance σ2.

They can be estimated from a dataset by the sample mean and the
sample variance:

µ̄ =
1

p

p∑
i=1

xi s2 =
1

p − 1

p∑
i=1

(xi − µ̄)2

However, then z = (x − µ̄)/s does no longer have the distribution
N(0, 1).
The distribution of z is normal if x is sampled independently of the data

yielding µ̄ and s2.

Note that µ̄ and s2 are unbiased estimates of µ and σ2. Also, µ̄
converges to µ and s2 converges to σ2 with growing sample size.

65

Univariate Gaussian Model

Problem 3: The outliers distort the estimates µ̄ and s2 of the
mean and the standard deviation.

For example, a millionaire would not look like an outlier in a group
containing a billionaire.
There is a circularity here: To get outliers using the normal distribution model,

we need to remove the outliers to have a good model.

One possible heuristic is to remove the outliers one by one, starting
from the most extreme, hoping the most extreme outlier will be
detected in every step.

One such heuristic is the Grubb’s test.

66

Univariate Gaussian Model

Problem 3: The outliers distort the estimates µ̄ and s2 of the
mean and the standard deviation.

For example, a millionaire would not look like an outlier in a group
containing a billionaire.
There is a circularity here: To get outliers using the normal distribution model,

we need to remove the outliers to have a good model.

One possible heuristic is to remove the outliers one by one, starting
from the most extreme, hoping the most extreme outlier will be
detected in every step.

One such heuristic is the Grubb’s test.

66

Grubb’s Test
Consider a dataset D = {x1, . . . , xp} of values of a normally
distributed attribute and choose α > 0.

The Grubb’s statistic is defined by

G =
maxi=1,...,p |xi − x̄ |

s

Here x̄ is the sample mean and s sample standard deviation of D.

Now P(G ≥ cα,p) = α if

cα,p =
p − 1
√
p

√
t2

p − 2 + t2

Here t is such a value that makes P(T ≥ t) = α/(2p) for T with
the t-distribution with p − 2 degrees of freedom.
For finding t we used to use tables.

Grubb’s test simply iteratively tests whether G ≥ cα,p and, if yes,
removes an xi maximizing |xi − x̄ | from D.

67

Grubb’s Test
Consider a dataset D = {x1, . . . , xp} of values of a normally
distributed attribute and choose α > 0.

The Grubb’s statistic is defined by

G =
maxi=1,...,p |xi − x̄ |

s

Here x̄ is the sample mean and s sample standard deviation of D.

Now P(G ≥ cα,p) = α if

cα,p =
p − 1
√
p

√
t2

p − 2 + t2

Here t is such a value that makes P(T ≥ t) = α/(2p) for T with
the t-distribution with p − 2 degrees of freedom.
For finding t we used to use tables.

Grubb’s test simply iteratively tests whether G ≥ cα,p and, if yes,
removes an xi maximizing |xi − x̄ | from D.

67

Grubb’s Test
Consider a dataset D = {x1, . . . , xp} of values of a normally
distributed attribute and choose α > 0.

The Grubb’s statistic is defined by

G =
maxi=1,...,p |xi − x̄ |

s

Here x̄ is the sample mean and s sample standard deviation of D.

Now P(G ≥ cα,p) = α if

cα,p =
p − 1
√
p

√
t2

p − 2 + t2

Here t is such a value that makes P(T ≥ t) = α/(2p) for T with
the t-distribution with p − 2 degrees of freedom.
For finding t we used to use tables.

Grubb’s test simply iteratively tests whether G ≥ cα,p and, if yes,
removes an xi maximizing |xi − x̄ | from D.

67

Grubb’s Test
Consider a dataset D = {x1, . . . , xp} of values of a normally
distributed attribute and choose α > 0.

The Grubb’s statistic is defined by

G =
maxi=1,...,p |xi − x̄ |

s

Here x̄ is the sample mean and s sample standard deviation of D.

Now P(G ≥ cα,p) = α if

cα,p =
p − 1
√
p

√
t2

p − 2 + t2

Here t is such a value that makes P(T ≥ t) = α/(2p) for T with
the t-distribution with p − 2 degrees of freedom.
For finding t we used to use tables.

Grubb’s test simply iteratively tests whether G ≥ cα,p and, if yes,
removes an xi maximizing |xi − x̄ | from D.

67

Multivariate Gaussian Model

Univariate tests cannot find all anomalies if the anomaly depends
on combinations of particular attribute values.

The univariate Gaussian approach can be generalized to the
multivariate Gaussian by considering the multivariate Gaussian
distribution.

Mahalanobis distance:

mahalanobis(x⃗ , z⃗) = (x⃗ − z⃗)Σ−1(x⃗ − z⃗)⊤

Here Σ is the covariance matrix of the data.

Intuitively, the Mahalanobis distance generalizes the squared
Euclidean distance:

(x⃗ − z⃗)(x⃗ − z⃗)⊤

By taking into account the “spread” of the data.

68

Multivariate Gaussian Model

Univariate tests cannot find all anomalies if the anomaly depends
on combinations of particular attribute values.

The univariate Gaussian approach can be generalized to the
multivariate Gaussian by considering the multivariate Gaussian
distribution.

Mahalanobis distance:

mahalanobis(x⃗ , z⃗) = (x⃗ − z⃗)Σ−1(x⃗ − z⃗)⊤

Here Σ is the covariance matrix of the data.

Intuitively, the Mahalanobis distance generalizes the squared
Euclidean distance:

(x⃗ − z⃗)(x⃗ − z⃗)⊤

By taking into account the “spread” of the data.

68

Multivariate Gaussian Model

Univariate tests cannot find all anomalies if the anomaly depends
on combinations of particular attribute values.

The univariate Gaussian approach can be generalized to the
multivariate Gaussian by considering the multivariate Gaussian
distribution.

Mahalanobis distance:

mahalanobis(x⃗ , z⃗) = (x⃗ − z⃗)Σ−1(x⃗ − z⃗)⊤

Here Σ is the covariance matrix of the data.

Intuitively, the Mahalanobis distance generalizes the squared
Euclidean distance:

(x⃗ − z⃗)(x⃗ − z⃗)⊤

By taking into account the “spread” of the data.

68

Multivariate Gaussian Model

Univariate tests cannot find all anomalies if the anomaly depends
on combinations of particular attribute values.

The univariate Gaussian approach can be generalized to the
multivariate Gaussian by considering the multivariate Gaussian
distribution.

Mahalanobis distance:

mahalanobis(x⃗ , z⃗) = (x⃗ − z⃗)Σ−1(x⃗ − z⃗)⊤

Here Σ is the covariance matrix of the data.

Intuitively, the Mahalanobis distance generalizes the squared
Euclidean distance:

(x⃗ − z⃗)(x⃗ − z⃗)⊤

By taking into account the “spread” of the data.

68

Mahalanobis Distance

Here, we assume multivariate normal data distribution. The
covariance matrix is

Σ =

(
1.00 0.75
0.75 3.00

)
69

Mahalanobis Distance

Notice that A has a larger Mahalanobis distance from the cluster’s center
than B even though it is closer in the Euclidean distance.

The reason is that the density function falls more rapidly in the direction

of A than in the direction of B.
70

Likelihood-Based Detection

Assume that the dataset D contains objects from a mixture of two
probability distributions:

▶ M, the distribution of the majority of normal objects,

▶ A, the distribution of anomalous objects.

Let us choose α > 0, indicating how rare the anomalies should be.

Let us assume that we have M and A models to compute PM(x)
and PA(x) the likelihoods of generating x .
A is often considered uniform, and M is learned from the data (yes, distorted

by the outliers).

Now, we compute the total likelihood of the dataset before and
after removing each element. If the likelihood changes significantly,
we have probably eliminated an anomaly.

71

Likelihood-Based Detection

Assume that the dataset D contains objects from a mixture of two
probability distributions:

▶ M, the distribution of the majority of normal objects,

▶ A, the distribution of anomalous objects.

Let us choose α > 0, indicating how rare the anomalies should be.

Let us assume that we have M and A models to compute PM(x)
and PA(x) the likelihoods of generating x .
A is often considered uniform, and M is learned from the data (yes, distorted

by the outliers).

Now, we compute the total likelihood of the dataset before and
after removing each element. If the likelihood changes significantly,
we have probably eliminated an anomaly.

71

Likelihood-Based Detection

Assume that the dataset D contains objects from a mixture of two
probability distributions:

▶ M, the distribution of the majority of normal objects,

▶ A, the distribution of anomalous objects.

Let us choose α > 0, indicating how rare the anomalies should be.

Let us assume that we have M and A models to compute PM(x)
and PA(x) the likelihoods of generating x .
A is often considered uniform, and M is learned from the data (yes, distorted

by the outliers).

Now, we compute the total likelihood of the dataset before and
after removing each element. If the likelihood changes significantly,
we have probably eliminated an anomaly.

71

Likelihood-Based Detection

Assume that the dataset D contains objects from a mixture of two
probability distributions:

▶ M, the distribution of the majority of normal objects,

▶ A, the distribution of anomalous objects.

Let us choose α > 0, indicating how rare the anomalies should be.

Let us assume that we have M and A models to compute PM(x)
and PA(x) the likelihoods of generating x .
A is often considered uniform, and M is learned from the data (yes, distorted

by the outliers).

Now, we compute the total likelihood of the dataset before and
after removing each element. If the likelihood changes significantly,
we have probably eliminated an anomaly.

71

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.
▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process:

Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.
▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:

▶ Randomly choose between normal and anomaly, where the
probability of choosing anomaly is α.

▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.

▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.
▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Given a partition U,V of D we define

L(U,V) =

(1− α)|U|
∏
xi∈U

PM(xi)

α|V |
∏
xi∈V

PA(xi)

This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.
▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V) = log(L(U,V))

= |U| log(1− α) +
∑
xi∈U

logPM(xi)

+ |V | logα+
∑
xi∈V

logPA(xi)

72

Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

73

Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

73

Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

73

Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

73

Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).
73

Summary of Statistical Anomaly Detection

▶ Build on strong statistical foundations.

▶ Tests are very effective if the dataset is sufficiently large
(informative).

▶ Lots of tests for univariate data, the area has developed for a
long time.

▶ Fewer options for multivariate data and problematic for highly
dimensional data (curse of dimensionality).

The likelihood-based approach does not assume a particular
distribution shape: It can be used with arbitrary models of PM and
PA, including deep learning ones.

74

Proximity-Based Methods

75

Proximity-Based Outlier Detection

Assume a distance measure d . That is, given two feature vectors
x⃗ , z⃗ their distance is d(x⃗ , z⃗).
We consider the Euclidean distance for simplicity.

Definition 2
The outlier score of an object is given by the distance to its
k-nearest neighbor.

A threshold on the minimum distance of an outlier can be set on a
training set.

76

Proximity-Based Outlier Detection

Assume a distance measure d . That is, given two feature vectors
x⃗ , z⃗ their distance is d(x⃗ , z⃗).
We consider the Euclidean distance for simplicity.

Definition 2
The outlier score of an object is given by the distance to its
k-nearest neighbor.

A threshold on the minimum distance of an outlier can be set on a
training set.

76

Outlier Score

The outlier score is based on the distance to the fifth nearest
neighbor.

77

Outlier Score

The outlier score is based on the distance to the fifth nearest
neighbor.

77

Outlier Score

The outlier score is based on the distance to the fifth nearest
neighbor.

77

Outlier Score

The outlier score is based on the distance to the first nearest
neighbor.

77

Proximity-Based Approaches

▶ Conceptually simple and easy to implement.

▶ Time complexity typically O(p2) where p is the number of
feature vectors in the dataset.

▶ Sensitivity to the choice of parameters (the number of
neighbors).

▶ Density/compactness not taken explicitly into account.

78

Density-Based Methods

79

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?

80

LOF - Illustration

Here, the density around A is smaller than the densities around the
other points.

81

LOF - Formally

Let us fix k ∈ N.

Define k-distance(A) as the distance of the k-th nearest neighbor.

Denote by Nk(A) the set of all objects in the distance from A up
to k-distance(A).
Note that if there are objects in the same distance from A, we may have more

than k elements in Nk(A).

Define

reachability-distancek(A,B) = max{k-distance(B), d(A,B)}

The reachability distance of A from B is the distance between A
and B but at least the distance from B to the k-nearest neighbor.

82

LOF - Formally

Let us fix k ∈ N.

Define k-distance(A) as the distance of the k-th nearest neighbor.

Denote by Nk(A) the set of all objects in the distance from A up
to k-distance(A).
Note that if there are objects in the same distance from A, we may have more

than k elements in Nk(A).

Define

reachability-distancek(A,B) = max{k-distance(B), d(A,B)}

The reachability distance of A from B is the distance between A
and B but at least the distance from B to the k-nearest neighbor.

82

LOF - Formally

Let us fix k ∈ N.

Define k-distance(A) as the distance of the k-th nearest neighbor.

Denote by Nk(A) the set of all objects in the distance from A up
to k-distance(A).
Note that if there are objects in the same distance from A, we may have more

than k elements in Nk(A).

Define

reachability-distancek(A,B) = max{k-distance(B), d(A,B)}

The reachability distance of A from B is the distance between A
and B but at least the distance from B to the k-nearest neighbor.

82

Reachability Distance

83

LOF
Define local reachability density

lrdk(A) =

(∑
B∈Nk (A)

reachability-distancek(A,B)

|Nk(A)|

)−1

That is the reciprocal of the average reachability distance of A
from its k-nearest neighbors.

We define local outlier factor of an object A by

LOFk(A) =

(∑
B∈Nk (A)

lrdk(B)

|Nk(A)|

)
/lrdk(A)

Now
▶ LOFk(A) ≈ 1 - similar density as the neighbors have
▶ LOFk(A) < 1 - higher density of neighbors than the neighbors

have (inlier?)
▶ LOFk(A) > 1 - smaller density of neighbors than the

neighbors have (outlier?)

84

LOF
Define local reachability density

lrdk(A) =

(∑
B∈Nk (A)

reachability-distancek(A,B)

|Nk(A)|

)−1

That is the reciprocal of the average reachability distance of A
from its k-nearest neighbors.

We define local outlier factor of an object A by

LOFk(A) =

(∑
B∈Nk (A)

lrdk(B)

|Nk(A)|

)
/lrdk(A)

Now
▶ LOFk(A) ≈ 1 - similar density as the neighbors have
▶ LOFk(A) < 1 - higher density of neighbors than the neighbors

have (inlier?)
▶ LOFk(A) > 1 - smaller density of neighbors than the

neighbors have (outlier?)

84

LOF
Define local reachability density

lrdk(A) =

(∑
B∈Nk (A)

reachability-distancek(A,B)

|Nk(A)|

)−1

That is the reciprocal of the average reachability distance of A
from its k-nearest neighbors.

We define local outlier factor of an object A by

LOFk(A) =

(∑
B∈Nk (A)

lrdk(B)

|Nk(A)|

)
/lrdk(A)

Now
▶ LOFk(A) ≈ 1 - similar density as the neighbors have
▶ LOFk(A) < 1 - higher density of neighbors than the neighbors

have (inlier?)
▶ LOFk(A) > 1 - smaller density of neighbors than the

neighbors have (outlier?)
84

Example

Consider a dataset

D = {A,B,C ,D} = {5, 2, 1, 0}

Consider k = 2 and the distance d(U,V) = |U − V |.

85

Example

Consider a dataset

D = {A,B,C ,D} = {5, 2, 1, 0}

Consider k = 2 and the distance d(U,V) = |U − V |.

Nk(A) = {B,C}

k-distance(.) d(A, .) reach-distk(A, .)

B 2 3 3
C 1 4 4

lrdk(A) =

(
1

2
(reach-distk(A,B) + reach-distk(A,C))

)−1

= 2/7

85

Example

Consider a dataset

D = {A,B,C ,D} = {5, 2, 1, 0}

Consider k = 2 and the distance d(U,V) = |U − V |.

Nk(B) = {C ,D}

k-distance(.) d(B, .) reach-distk(B, .)

C 1 1 1
D 2 2 2

lrdk(B) =

(
1

2
(reach-distk(B,C) + reach-distk(B,D))

)−1

= 2/3

85

Example

Consider a dataset

D = {A,B,C ,D} = {5, 2, 1, 0}

Consider k = 2 and the distance d(U,V) = |U − V |.

Nk(C) = {B,D}

k-distance(.) d(C , .) reach-distk(C , .)

B 2 1 2
D 2 1 2

lrdk(C) =

(
1

2
(reach-distk(C ,B) + reach-distk(C ,D))

)−1

= 1/2

85

Example

Consider a dataset

D = {A,B,C ,D} = {5, 2, 1, 0}

Consider k = 2 and the distance d(U,V) = |U − V |.

Nk(D) = {B,C}

k-distance(.) d(D, .) reach-distk(D, .)

B 2 2 2
C 1 1 1

lrdk(D) =

(
1

2
(reach-distk(D,B) + reach-distk(D,C))

)−1

= 2/3

85

Example

lrdk(A) = 2/7

lrdk(B) = 2/3

lrdk(C) = 1/2

lrdk(D) = 2/3

LOFk(A) =
1

2
(lrdk(B) + lrdk(C))/lrdk(A)

= (1/2)(2/3 + 1/2)/(2/7) = 2.041

LOFk(B) =
1

2
(lrdk(C) + lrdk(D))/lrdk(B)

= (1/2)(1/2 + 2/3)/(2/3) = 0.875

LOFk(C) =
1

2
(lrdk(B) + lrdk(D))/lrdk(B)

= (1/2)(2/3 + 2/3)/(2/3) = 1

LOFk(D) = 0.875

86

Example

lrdk(A) = 2/7

lrdk(B) = 2/3

lrdk(C) = 1/2

lrdk(D) = 2/3

LOFk(A) =
1

2
(lrdk(B) + lrdk(C))/lrdk(A)

= (1/2)(2/3 + 1/2)/(2/7) = 2.041

LOFk(B) =
1

2
(lrdk(C) + lrdk(D))/lrdk(B)

= (1/2)(1/2 + 2/3)/(2/3) = 0.875

LOFk(C) =
1

2
(lrdk(B) + lrdk(D))/lrdk(B)

= (1/2)(2/3 + 2/3)/(2/3) = 1

LOFk(D) = 0.875
86

Another Example

87

Yet Another Example

88

Comments on Density Based Methods

▶ As opposed to the distance-based methods, quantifies the
distance of the neighborhood of the (potential) outliers.

▶ Time complexity still O(p2) but may be reduced for low
dimensional data (to O(p log p)) using special data structures.

▶ Still need to determine the parameter k .

89

Clustering-Based Methods

90

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.

91

Anomaly Detection Using k-Means Clustering

In k-means, the clusters are represented by centroids.

We may measure the anomaly of a given object using the distance
to its cluster centroid.

This approach does not take into account the density of clusters.
92

Anomaly Detection Using k-Means Clustering

Here, we compute the relative distance to the cluster center, that
is, the ratio of the object’s distance to the centroid and the median
distance of all objects of the same cluster to the centroid.

93

Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.

94

Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.

94

Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.

94

Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.

94

Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.

94

Comments on Clustering Based Methods

Some clustering methods have a sub-quadratic complexity.

Conceptually, clustering complements anomaly detection, so it is
natural to compute both together.

On the other hand, the results strongly depend on the number of
clusters, and anomalies may distort the clustering.

95

Autoencoders as Anomaly Detectors
... just a short comment

96

Neural Networks in Anomaly Detection

The previous approaches work well with (relatively)
low-dimensional data.

However, what should we do with data with high or even variable
dimensions?

▶ Images

▶ Text

▶ Video

▶ Semantic graphs

▶ ...

One way is to transform them into lower-dimensional data.

Train a neural network that takes the large input and returns a
smaller representation, which (hopefully) preserves crucial features
of the input.

97

Neural Networks in Anomaly Detection

The previous approaches work well with (relatively)
low-dimensional data.

However, what should we do with data with high or even variable
dimensions?

▶ Images

▶ Text

▶ Video

▶ Semantic graphs

▶ ...

One way is to transform them into lower-dimensional data.

Train a neural network that takes the large input and returns a
smaller representation, which (hopefully) preserves crucial features
of the input.

97

Neural Networks in Anomaly Detection

The previous approaches work well with (relatively)
low-dimensional data.

However, what should we do with data with high or even variable
dimensions?

▶ Images

▶ Text

▶ Video

▶ Semantic graphs

▶ ...

One way is to transform them into lower-dimensional data.

Train a neural network that takes the large input and returns a
smaller representation, which (hopefully) preserves crucial features
of the input.

97

Autoencoders
An autoencoder consists of two parts:

▶ ϕ : Rn → Rm the encoder

▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗ .

Training: Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))2

98

Autoencoders
An autoencoder consists of two parts:

▶ ϕ : Rn → Rm the encoder

▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗ .

Training: Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))2

98

Autoencoders
An autoencoder consists of two parts:

▶ ϕ : Rn → Rm the encoder

▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗ .

Training: Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))2

98

Autoencoders
An autoencoder consists of two parts:

▶ ϕ : Rn → Rm the encoder

▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗ .

Training: Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))2

98

Autoencoders – neural networks
Both ϕ and ψ can be represented using MLPMϕ andMψ,
respectively.

Mϕ andMψ can be connected into a single network.

99

Autoencoders – Usage

▶ Compression/feature extraction – from x⃗ to h⃗.

▶ Dimensionality reduction – the latent representation h⃗ has a
smaller dimension.

▶ Generative versions – (roughly) generate h⃗ from a known
distribution, letMψ generate realistic inputs/outputs x⃗

▶ Anomaly detection (see the next slide)

100

Autoencoders – Usage

▶ Compression/feature extraction – from x⃗ to h⃗.

▶ Dimensionality reduction – the latent representation h⃗ has a
smaller dimension.

▶ Generative versions – (roughly) generate h⃗ from a known
distribution, letMψ generate realistic inputs/outputs x⃗

▶ Anomaly detection (see the next slide)

100

Autoencoders – Usage

▶ Compression/feature extraction – from x⃗ to h⃗.

▶ Dimensionality reduction – the latent representation h⃗ has a
smaller dimension.

▶ Generative versions – (roughly) generate h⃗ from a known
distribution, letMψ generate realistic inputs/outputs x⃗

▶ Anomaly detection (see the next slide)

100

Autoencoders – Usage

▶ Compression/feature extraction – from x⃗ to h⃗.

▶ Dimensionality reduction – the latent representation h⃗ has a
smaller dimension.

▶ Generative versions – (roughly) generate h⃗ from a known
distribution, letMψ generate realistic inputs/outputs x⃗

▶ Anomaly detection (see the next slide)

100

Anomaly Detection with Autoencoders

Straightforward approach:

▶ Train the autoencoder on the normal data.

▶ Detect an anomaly using the large reconstruction error.
The idea is that an anomaly will not be properly reconstructed.

More general approach:

▶ Train the autoencoder and transform the normal data to their
low dimensional latent representations.

▶ Use one of the previous approaches to anomaly detection to
detect anomalies in the latent representations.
The assumption is that the latent representation of an anomaly will

substantially differ from the latent representations of normal instances.

101

Anomaly Detection with Autoencoders

Straightforward approach:

▶ Train the autoencoder on the normal data.

▶ Detect an anomaly using the large reconstruction error.
The idea is that an anomaly will not be properly reconstructed.

More general approach:

▶ Train the autoencoder and transform the normal data to their
low dimensional latent representations.

▶ Use one of the previous approaches to anomaly detection to
detect anomalies in the latent representations.
The assumption is that the latent representation of an anomaly will

substantially differ from the latent representations of normal instances.

101

Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.
▶ Unsupervised anomaly detection can be done in various ways;

we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.

102

Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.

▶ Unsupervised anomaly detection can be done in various ways;
we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.

102

Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.
▶ Unsupervised anomaly detection can be done in various ways;

we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.

102

Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.
▶ Unsupervised anomaly detection can be done in various ways;

we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.

102

Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.
▶ Unsupervised anomaly detection can be done in various ways;

we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.

102

Ensemble Methods

103

Voting Classifiers

Train several models. They may differ in

▶ Structure (completely different models)

▶ Training data (subsample the training set)

104

Voting Classifiers

During the inference, ensemble the predictions. For binary
classifiers, you may do the following:
▶ Take the majority vote.
▶ Summarize the output probabilities (e.g., by averaging)
▶ If logistic regression or neural networks with logistic output

activation are used, summarize the outputs before the
application of the last logistic sigmoid.

105

The Ensemble Idea

An ensemble of weak classifiers may be a strong classifier.

Analogy: Assume a coin toss that has a 51 percent chance of
heads and 49 percent tails.

Try 1,000 tosses in a row. Do this repeatedly. In 75 percent of
cases, you get more heads than tails. With 10,000 tosses, it would
be 97 percent.

Intuitively, we might suspect that a voting ensemble of 1,000
sufficiently independent classifiers, each with an accuracy of
around 51 percent, would have an accuracy of around 70 percent.

The ensemble methods work best when the models are as
independent as possible.
Use different learning methods or independently chosen training sets (see later

slides).

Let us try to formalize the above intuition.

106

The Ensemble Idea

An ensemble of weak classifiers may be a strong classifier.

Analogy: Assume a coin toss that has a 51 percent chance of
heads and 49 percent tails.

Try 1,000 tosses in a row. Do this repeatedly. In 75 percent of
cases, you get more heads than tails. With 10,000 tosses, it would
be 97 percent.

Intuitively, we might suspect that a voting ensemble of 1,000
sufficiently independent classifiers, each with an accuracy of
around 51 percent, would have an accuracy of around 70 percent.

The ensemble methods work best when the models are as
independent as possible.
Use different learning methods or independently chosen training sets (see later

slides).

Let us try to formalize the above intuition.

106

The Ensemble Idea

An ensemble of weak classifiers may be a strong classifier.

Analogy: Assume a coin toss that has a 51 percent chance of
heads and 49 percent tails.

Try 1,000 tosses in a row. Do this repeatedly. In 75 percent of
cases, you get more heads than tails. With 10,000 tosses, it would
be 97 percent.

Intuitively, we might suspect that a voting ensemble of 1,000
sufficiently independent classifiers, each with an accuracy of
around 51 percent, would have an accuracy of around 70 percent.

The ensemble methods work best when the models are as
independent as possible.
Use different learning methods or independently chosen training sets (see later

slides).

Let us try to formalize the above intuition.

106

The Ensemble Idea

An ensemble of weak classifiers may be a strong classifier.

Analogy: Assume a coin toss that has a 51 percent chance of
heads and 49 percent tails.

Try 1,000 tosses in a row. Do this repeatedly. In 75 percent of
cases, you get more heads than tails. With 10,000 tosses, it would
be 97 percent.

Intuitively, we might suspect that a voting ensemble of 1,000
sufficiently independent classifiers, each with an accuracy of
around 51 percent, would have an accuracy of around 70 percent.

The ensemble methods work best when the models are as
independent as possible.
Use different learning methods or independently chosen training sets (see later

slides).

Let us try to formalize the above intuition.

106

The Ensemble Idea

An ensemble of weak classifiers may be a strong classifier.

Analogy: Assume a coin toss that has a 51 percent chance of
heads and 49 percent tails.

Try 1,000 tosses in a row. Do this repeatedly. In 75 percent of
cases, you get more heads than tails. With 10,000 tosses, it would
be 97 percent.

Intuitively, we might suspect that a voting ensemble of 1,000
sufficiently independent classifiers, each with an accuracy of
around 51 percent, would have an accuracy of around 70 percent.

The ensemble methods work best when the models are as
independent as possible.
Use different learning methods or independently chosen training sets (see later

slides).

Let us try to formalize the above intuition.

106

Bias/Variance Decomposition

Consider a random function g(x) + ε where g : R→ R and ε is
random noise with mean 0 and variance σ2.

Consider a dataset for regression:

D = {(x1, d1), . . . , (xp, dp)}

Here x1, . . . , xp are fixed inputs, and each dk = g(xk) + εk where
ε1, . . . , εp are independent samples from the noise ε.

We get different models for different samples of the training set D.

We may ask:

▶ How much do the models trained on different samples differ?

▶ How much do they differ (on average) from g?

Let us denote by hD : R→ R a model trained on the dataset D by
minimizing the squared error

∑p
k=1 (hD(xk)− dk)

2.

107

Bias/Variance Decomposition

Consider a random function g(x) + ε where g : R→ R and ε is
random noise with mean 0 and variance σ2.

Consider a dataset for regression:

D = {(x1, d1), . . . , (xp, dp)}

Here x1, . . . , xp are fixed inputs, and each dk = g(xk) + εk where
ε1, . . . , εp are independent samples from the noise ε.

We get different models for different samples of the training set D.

We may ask:

▶ How much do the models trained on different samples differ?

▶ How much do they differ (on average) from g?

Let us denote by hD : R→ R a model trained on the dataset D by
minimizing the squared error

∑p
k=1 (hD(xk)− dk)

2.

107

Bias/Variance Decomposition

Consider a random function g(x) + ε where g : R→ R and ε is
random noise with mean 0 and variance σ2.

Consider a dataset for regression:

D = {(x1, d1), . . . , (xp, dp)}

Here x1, . . . , xp are fixed inputs, and each dk = g(xk) + εk where
ε1, . . . , εp are independent samples from the noise ε.

We get different models for different samples of the training set D.

We may ask:

▶ How much do the models trained on different samples differ?

▶ How much do they differ (on average) from g?

Let us denote by hD : R→ R a model trained on the dataset D by
minimizing the squared error

∑p
k=1 (hD(xk)− dk)

2.

107

Bias/Variance Decomposition

Consider a random function g(x) + ε where g : R→ R and ε is
random noise with mean 0 and variance σ2.

Consider a dataset for regression:

D = {(x1, d1), . . . , (xp, dp)}

Here x1, . . . , xp are fixed inputs, and each dk = g(xk) + εk where
ε1, . . . , εp are independent samples from the noise ε.

We get different models for different samples of the training set D.

We may ask:

▶ How much do the models trained on different samples differ?

▶ How much do they differ (on average) from g?

Let us denote by hD : R→ R a model trained on the dataset D by
minimizing the squared error

∑p
k=1 (hD(xk)− dk)

2.

107

Bias/Variance Decomposition
Let us consider the expected value of the squared error:

E

(
p∑

k=1

(hD(xk)− dk)
2

)
=

p∑
k=1

E (hD(xk)− dk)
2

The expectation is computed over the distribution of the datasets D.

One can prove that
p∑

k=1

E (hD(xk)− dk)
2 =

p∑
k=1

E (hD(xk)− E[hD(xk)])2 + (E[hD(xk)]− g(xk))
2 + σ2

Here
▶ E (hD(xk)− E[hD(xk)])2 is the Variance of the model on xk

how much the model’s value jumps around its average on xk .

▶ E[hD(xk)]− g(xk) is the Bias of the model.
how much the average model’s value differs from the true values.

▶ σ2 is the noise variance.
108

109

B/V Decomposition Proof (Optional)

Let us study E (hD(xk)− dk)
2. To simplify notation we drop the

index k and write ED (hD(x)− d)2.

(hD(x)− d)2 = (hD(x)− E[hD(x)] + E[hD(x)]− d)2

= (hD(x)− E[hD(x)])2

+ (E[hD(x)]− d)2

+ 2 (hD(x)− E[hD(x)]) (E[hD(x)]− d)

Now, just apply E to both sides. As

E(d) = E(g(x) + ε) = g(x)

E(d2) = E(g(x)+ ε)2 = E(g(x)2+2εg(x)+ ε2) = g(x)2+σ2

We obtain ...

110

B/V Decomposition Proof (Optional)
... this

E (E[hD(x)]− d)2

= E
(
E[hD(x)]2 − 2dE[hD(x)] + d2

)
= E[hD(x)]2 − 2E(d)E[hD(x)] + Ed2

= E[hD(x)]2 − 2g(x)E[hD(x)] + g(x)2 + σ2

= E (E[hD(x)]− g(x))2 + σ2

and this

E [2 (hD(x)− E[hD(x)]) (E[hD(x)]− d)]

= E [2 (hD(x)− E[hD(x)]) (E[hD(x)]− g(x)− ε)]
= E [2 (hD(x)− E[hD(x)]) (E[hD(x)]− g(x))− 2 (hD(x)− E[hD(x)]) ε]
= E [2 (hD(x)− E[hD(x)]) (E[hD(x)]− g(x))]

= (E[hD(x)]− g(x))E [2 (hD(x)− E[hD(x)])]
= 0

Here, the third equality follows from the zero mean of ε.
111

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?
▶ The noise variance σ2 does not change.
▶ The Bias does not change (E[hDℓ

(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!

112

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?
▶ The noise variance σ2 does not change.
▶ The Bias does not change (E[hDℓ

(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!

112

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?

▶ The noise variance σ2 does not change.
▶ The Bias does not change (E[hDℓ

(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!

112

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?
▶ The noise variance σ2 does not change.

▶ The Bias does not change (E[hDℓ
(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!

112

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?
▶ The noise variance σ2 does not change.
▶ The Bias does not change (E[hDℓ

(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!

112

Ensemble Methods vs Bias/Variance
Suppose that we could somehow sample m independent datasets:
D1, . . . ,Dm.

We train m models hD1 , . . . , hDm and consider the ensemble model
hens(x) =

1
m

∑m
ℓ=1 hDℓ

(x).

Does the ensemble hens have a different bias-variance decomp.?
▶ The noise variance σ2 does not change.
▶ The Bias does not change (E[hDℓ

(xk)] is independent of ℓ):

E

[
1

m

m∑
ℓ=1

hDℓ
(xk)

]
− g(xk) = E[hDℓ

(xk)]− g(xk)

▶ Only the Variance changes, it is reduced:

E (hens(xk)− E[hens(xk)])2 =
1

m
E(hDℓ

(xk)−E[hDℓ
(xk)])

2

The equality follows from basic facts about the variance of sums of

independent variables.

Now, having m independently sampled datasets is a real luxury!
112

Bagging
In practice, we use sampled subsets of a given dataset.

One example of using different subsets of the training set is
bagging (Bootstrap Aggregating).

▶ Bootstrap sampling = sampling data subsets with replacement
▶ Aggregating = majority voting (classification) or averaging

(regression)

113

Bagging
In practice, we use sampled subsets of a given dataset.

One example of using different subsets of the training set is
bagging (Bootstrap Aggregating).

▶ Bootstrap sampling = sampling data subsets with replacement
▶ Aggregating = majority voting (classification) or averaging

(regression)
113

Bagging Decision Trees

Left: A single decision tree (overfit)
Right: A bagging ensemble of 500 trees

114

Summary of Bagging

▶ Reduces overfitting (variance)

▶ Can work with any type of classifier

▶ Easy to parallelize
Just train each model independently, inference can also be parallelized.

▶ Loses (some) interpretability even for interpretable models
(how could you read 500 decision trees?)

115

Random Forest

Random forest = bagging ensemble of decision trees.

Has all hyperparameters of decision trees + the number of trees

The random forest algorithm of scikit-learn introduces the
following randomness:
When searching for a split attribute, look only into a randomly
sampled subset of attributes (by default

√
n of n attributes).

This gives a greater diversity of the forests.

The notion of the feature importance can be easily generalized to
random forests (computed over all trees).

116

Random Forest

Random forest = bagging ensemble of decision trees.

Has all hyperparameters of decision trees + the number of trees

The random forest algorithm of scikit-learn introduces the
following randomness:
When searching for a split attribute, look only into a randomly
sampled subset of attributes (by default

√
n of n attributes).

This gives a greater diversity of the forests.

The notion of the feature importance can be easily generalized to
random forests (computed over all trees).

116

Random Forest

Random forest = bagging ensemble of decision trees.

Has all hyperparameters of decision trees + the number of trees

The random forest algorithm of scikit-learn introduces the
following randomness:
When searching for a split attribute, look only into a randomly
sampled subset of attributes (by default

√
n of n attributes).

This gives a greater diversity of the forests.

The notion of the feature importance can be easily generalized to
random forests (computed over all trees).

116

Random Forest

Random forest = bagging ensemble of decision trees.

Has all hyperparameters of decision trees + the number of trees

The random forest algorithm of scikit-learn introduces the
following randomness:
When searching for a split attribute, look only into a randomly
sampled subset of attributes (by default

√
n of n attributes).

This gives a greater diversity of the forests.

The notion of the feature importance can be easily generalized to
random forests (computed over all trees).

116

Random Forest

Random forest = bagging ensemble of decision trees.

Has all hyperparameters of decision trees + the number of trees

The random forest algorithm of scikit-learn introduces the
following randomness:
When searching for a split attribute, look only into a randomly
sampled subset of attributes (by default

√
n of n attributes).

This gives a greater diversity of the forests.

The notion of the feature importance can be easily generalized to
random forests (computed over all trees).

116

Boosting

An ensemble method in which weak learners are trained
sequentially.

Each new learner tries to correct the error of the current ensemble.

There are several variants of boosting. We just have a look at the
basic idea behind AdaBoost (adaptive boosting).

To implement this kind of learning algorithm, we need to be able
to train models on weighted datasets.

117

Boosting

An ensemble method in which weak learners are trained
sequentially.

Each new learner tries to correct the error of the current ensemble.

There are several variants of boosting. We just have a look at the
basic idea behind AdaBoost (adaptive boosting).

To implement this kind of learning algorithm, we need to be able
to train models on weighted datasets.

117

Boosting

An ensemble method in which weak learners are trained
sequentially.

Each new learner tries to correct the error of the current ensemble.

There are several variants of boosting. We just have a look at the
basic idea behind AdaBoost (adaptive boosting).

To implement this kind of learning algorithm, we need to be able
to train models on weighted datasets.

117

Weighted Training
We are going to use weights on samples.
Note that these are different from the weights used in neural-like models!

▶ Linear regression: Assume a given dataset
D = {(x⃗1, f1), . . . , (x⃗p, fp)} and weights a1, . . . , ap associated
to examples from D.

Let w⃗ be a vector of model weights. We minimize the
weighted mean squared error

E (w⃗) =
1

p

p∑
i=1

ai (w⃗ · xi − fi)
2

▶ Decision trees: Given dataset D with p samples, we have
weights a1, . . . , ap ∈ R (one weight for each example in D).

Given a class c ∈ C , we compute the class probability pc as

pc =
∑
{ai | i-th sample belongs to c} /

p∑
i=1

ai

Everything else (Gini impurity, etc.) is the same.

118

Weighted Training
We are going to use weights on samples.
Note that these are different from the weights used in neural-like models!

▶ Linear regression: Assume a given dataset
D = {(x⃗1, f1), . . . , (x⃗p, fp)} and weights a1, . . . , ap associated
to examples from D.

Let w⃗ be a vector of model weights. We minimize the
weighted mean squared error

E (w⃗) =
1

p

p∑
i=1

ai (w⃗ · xi − fi)
2

▶ Decision trees: Given dataset D with p samples, we have
weights a1, . . . , ap ∈ R (one weight for each example in D).

Given a class c ∈ C , we compute the class probability pc as

pc =
∑
{ai | i-th sample belongs to c} /

p∑
i=1

ai

Everything else (Gini impurity, etc.) is the same.

118

Weighted Training
We are going to use weights on samples.
Note that these are different from the weights used in neural-like models!

▶ Linear regression: Assume a given dataset
D = {(x⃗1, f1), . . . , (x⃗p, fp)} and weights a1, . . . , ap associated
to examples from D.

Let w⃗ be a vector of model weights. We minimize the
weighted mean squared error

E (w⃗) =
1

p

p∑
i=1

ai (w⃗ · xi − fi)
2

▶ Decision trees: Given dataset D with p samples, we have
weights a1, . . . , ap ∈ R (one weight for each example in D).

Given a class c ∈ C , we compute the class probability pc as

pc =
∑
{ai | i-th sample belongs to c} /

p∑
i=1

ai

Everything else (Gini impurity, etc.) is the same.

118

Weighted Training
We are going to use weights on samples.
Note that these are different from the weights used in neural-like models!

▶ Linear regression: Assume a given dataset
D = {(x⃗1, f1), . . . , (x⃗p, fp)} and weights a1, . . . , ap associated
to examples from D.

Let w⃗ be a vector of model weights. We minimize the
weighted mean squared error

E (w⃗) =
1

p

p∑
i=1

ai (w⃗ · xi − fi)
2

▶ Decision trees: Given dataset D with p samples, we have
weights a1, . . . , ap ∈ R (one weight for each example in D).

Given a class c ∈ C , we compute the class probability pc as

pc =
∑
{ai | i-th sample belongs to c} /

p∑
i=1

ai

Everything else (Gini impurity, etc.) is the same.

118

Weighted Training
We are going to use weights on samples.
Note that these are different from the weights used in neural-like models!

▶ Linear regression: Assume a given dataset
D = {(x⃗1, f1), . . . , (x⃗p, fp)} and weights a1, . . . , ap associated
to examples from D.

Let w⃗ be a vector of model weights. We minimize the
weighted mean squared error

E (w⃗) =
1

p

p∑
i=1

ai (w⃗ · xi − fi)
2

▶ Decision trees: Given dataset D with p samples, we have
weights a1, . . . , ap ∈ R (one weight for each example in D).

Given a class c ∈ C , we compute the class probability pc as

pc =
∑
{ai | i-th sample belongs to c} /

p∑
i=1

ai

Everything else (Gini impurity, etc.) is the same. 118

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,

▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,

▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.

119

AdaBoost Idea
▶ Train classifiers using weighted samples in the training dataset.

▶ Start with uniform weights, that is, each sample in the dataset
has the same weight.

▶ In k-th iteration:
▶ train a new classifier hk on weighted samples,
▶ obtain a coefficient αk > 0 of the classifier hk ,
▶ Consider the current ensemble classifier

hkens(x) = sign

(
k∑

ℓ=1

αℓhℓ(x)

)
Shift the weights so that the “most wrong” training instances
for the current ensemble have the largest weights.
Consider a training example (x , c) with c ∈ {−1, 1}. Then hk

ens

misclassifies x iff c ·
∑k

ℓ=1 αℓhℓ(x) < 0. The more negative this

number is, the more wrong the ensemble classifier is.

After K iterations, the ensemble classifier hKens is the output.

For details, see more advanced courses in Machine Learning.
119

Summary of Ensemble Methods

▶ Ensemble methods may improve “independently” trained
models by grouping them and letting them decide collectively.

▶ Technically, the ensembling decreases the model variance.
▶ There are several approaches to ensembling:

▶ Bagging - training of several models on bootstrap subsamples
of the training dataset (random forest is an example)

▶ Boosting - ensemble is built sequentially, the newly added
model possibly solves the hardest instances

▶ There are many more algorithms (gradient boosting, etc.)

120

Summary of Ensemble Methods

▶ Ensemble methods may improve “independently” trained
models by grouping them and letting them decide collectively.

▶ Technically, the ensembling decreases the model variance.

▶ There are several approaches to ensembling:
▶ Bagging - training of several models on bootstrap subsamples

of the training dataset (random forest is an example)
▶ Boosting - ensemble is built sequentially, the newly added

model possibly solves the hardest instances
▶ There are many more algorithms (gradient boosting, etc.)

120

Summary of Ensemble Methods

▶ Ensemble methods may improve “independently” trained
models by grouping them and letting them decide collectively.

▶ Technically, the ensembling decreases the model variance.
▶ There are several approaches to ensembling:

▶ Bagging - training of several models on bootstrap subsamples
of the training dataset (random forest is an example)

▶ Boosting - ensemble is built sequentially, the newly added
model possibly solves the hardest instances

▶ There are many more algorithms (gradient boosting, etc.)

120

THE END

121

