
Neural Networks
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(Primitive) Mathematical Model of Neuron
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Formal neuron
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▶ x1, . . . , xn real inputs

▶ x0 special input, always 1

▶ w0,w1, . . . ,wn real weights

▶ ξ = w0 +
∑n

i=1 wixi inner
potential;
In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

▶ y output defined by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g., linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.
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Formal Neuron vs Linear Models

▶ If σ is a linear threshold function

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

We obtained a linear classifier.

▶ If σ is identity, i.e., σ(ξ) = ξ, we obtain a linear (affine)
function.

▶ If σ(ξ) = 1/(1 + e−ξ) we obtain the logistic regression.

Also, other activation functions are used in neural networks!
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Activation Functions
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Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

▶ Neurons are organized in layers

(input layer, output layer, possibly
several hidden layers)

▶ Layers are numbered from 0;

The input is 0-th

▶ Neurons in the ℓ-th layer are connected
with all neurons in the ℓ+ 1-th layer

Intuition: The network computes a function: Assign input values to the

input neurons and 0 to the rest. Proceed upwards through the layers, one

layer per step. In the ℓ-th step consider output values of neurons in

ℓ− 1-th layer as inputs to neurons of the ℓ-th layer. Compute output

values of neurons in the ℓ-th layer.
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Example
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▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Example

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

7



Classical Example – ALVINN

▶ One of the first autonomous car
driving systems (in the 90s)

▶ ALVINN drives a car

▶ The net has 30× 32 = 960 input
neurons (the input space is R960).

▶ The value of each input captures
the shade of gray of
the corresponding pixel.

▶ Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html
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A Bit of History
▶ Perceptron (Rosenblatt et al., 1957)

▶ Single layer (i.e., no hidden layers), the activation function
linear threshold

(i.e., a bit more general linear classifier)

▶ Perceptron learning algorithm

▶ Used to recognize digits

▶ Adaline (Widrow & Hof, 1960)

▶ Single layer, the activation function identity

(i.e., a bit more linear function)

▶ Online version of the gradient descent

▶ Used a new circuitry element called memristor which was able
to ”remember” history of current in form of resistance

In both cases, the expressive power is somewhat limited- it can only

express linear decision boundaries and linear (affine) functions.
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A Bit of History

One of the famous (counter)-examples: XOR

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

x1

x2

No perceptron can distinguish between ones and zeros.
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XOR vs Multilayer Perceptron

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1
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(Here, σ is a linear threshold function.)

P1 : −1 + 2x1 + 2x2 = 0 P2 : 3− 2x1 − 2x2 = 0

The output neuron performs an intersection of half-spaces.
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Boolean functions

Activation function: unit step function σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT (x1)

−1

0

12



Boolean functions

Activation function: unit step function σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT (x1)

−1

0

12



Non-linear separation

x1 x2

y

▶ Consider a three-layer network; each neuron has
the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).

▶ The first (hidden) layer divides the input space
into half-spaces.

▶ The second layer may, e.g., make intersections
of the half-spaces ⇒ convex sets.

▶ The third layer may, e.g., make unions of some
convex sets.
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Example

Consider a triangle T in R2 determined by three vertices
(−1,−1), (1,−1), (−1, 2).

Give an example of a multilayer perceptron (MLP) with two input
neurons and a single output neuron computing the function
F : R2 → {0, 1} defined as follows:

F (x1, x2) = 1 iff (x1, x2) lies either inside, or on the border of T

All activation functions in the network should be

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

Homework: Consider F (x1, x2) = 1 iff (x1, x2) lies inside of T
(but not on the border)
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Expressive Power of MLP
Cybenko’s theorem:

▶ Two-layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
can

▶ approximate with arbitrarily small error any ”reasonable”
boundary
a given input is classified as 1 iff the output value of the network is

≥ 1/2.
▶ approximate with arbitrarily small error any ”reasonable”

function from [0, 1] to (0, 1).

Here, ”reasonable” means that it is pretty tough to find a function that is

not reasonable.

So, multilayer perceptrons are sufficiently powerful for any application.

But for a long time, at least throughout the 60s and 70s, nobody
well-known knew any efficient method for training multilayer networks!

An efficient way of using the gradient descent was published in 1986!
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MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ X set of input neurons

▶ Y set of output neurons

▶ Z set of all neurons (tedy X ,Y ⊆ Z )

▶ individual neurons are denoted by indices, e.g., i , j .

▶ ξj is the inner potential of the neuron j when the computation
is finished.

▶ yj is the output value of the neuron j when the computation
is finished.

(we formally assume y0 = 1)

▶ wji is the weight of the arc from the neuron i to the neuron j .

▶ j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

▶ j→ is the set of all neurons with edges from j .
(i.e. j→ is the layer directly above j)

17



MLP – Notation
▶ Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

▶ A value of a non-input neuron j ∈ Z \ X when the computation is
finished is

yj = σj(ξj)

Here σj is an activation function of the neuron j .

(yj is determined by weights w⃗ and a given input x⃗ , so it’s sometimes

written as yj [w⃗ ](x⃗) )

▶ Fixing weights of all neurons, the network computes a function
F [w⃗ ] : R|X | → R|Y | as follows: Assign values of a given vector
x⃗ ∈ R|X | to the input neurons, evaluate the network, then F [w⃗ ](x⃗)
is the vector of values of the output neurons.

Here, we implicitly assume a fixed ordering on input and output vectors.
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MLP – Learning
▶ Given a set D of training examples:

D =
{(

x⃗k , d⃗k

) ∣∣ k = 1, . . . , p
}

Here x⃗k ∈ R|X | and d⃗k ∈ R|Y |. We write dkj to denote the

value in d⃗k corresponding to the output neuron j .

▶ Error Function: E (w⃗) where w⃗ is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).
Example (Squared error):

E (w⃗) =

p∑
k=1

Ek(w⃗)

where

Ek(w⃗) =
1

2

∑
j∈Y

(yj [w⃗ ](x⃗k)− dkj)
2
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▶ Error Function: E (w⃗) where w⃗ is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression etc.).
Example (Squared error):

E (w⃗) =

p∑
k=1

Ek(w⃗)

where

Ek(w⃗) =
1

2

∑
j∈Y

(yj [w⃗ ](x⃗k)− dkj)
2
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MLP – Batch Gradient Descent

The algorithm computes a sequence of weights w⃗ (0), w⃗ (1), . . ..

▶ weights w⃗ (0) are initialized randomly close to 0

▶ in the step t + 1 (here t = 0, 1, 2 . . .) is w⃗ (t+1) computed as
follows:

w
(t+1)
ji = w

(t)
ji +∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(w⃗ (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning rate
in the step t + 1.

Note that ∂E
∂wji

(w⃗ (t)) is a component of ∇E , i.e., the weight change in the step

t + 1 can be written as follows: w⃗ (t+1) = w⃗ (t) − ε(t) · ∇E(w⃗ (t)).
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Illustration of Gradient Descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork

21



Stochastic Gradient Descent (SGD)
Assume that E (w⃗) =

∑p
k=1 Ek(w⃗) where Ek(w⃗) is an error w.r.t.

the single training example (x⃗k , d⃗k).

▶ weights in w⃗ (0) are randomly initialized to values close to 0

▶ in the step t + 1 (here t = 0, 1, 2 . . .), weights w⃗ (t+1) are computed
as follows:

▶ Choose (randomly) a set of training examples T ⊆ {1, . . . , p}
▶ Compute

w⃗ (t+1) = w⃗ (t) +∆w⃗ (t)

where

∆w⃗ (t) = −ε(t) ·
∑
k∈T

∇Ek(w⃗
(t))

▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1

▶ ∇Ek(w⃗
(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by

randomly shuffling all data and then choosing minibatches sequentially.
22



Comments on Training Algorithm

▶ Not guaranteed to converge to zero training error, may converge to
a local minimum or oscillate indefinitely.

▶ In practice, does converge to low error for many large networks on
(big) real data.

▶ Many epochs (thousands) may be required, hours or days of training
for large networks.

There are many issues concerning learning efficiency (data normalization,

selection of activation functions, weight initialization, learning rate,

efficiency of the gradient descent itself, etc.) – see PV021.
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Overfitting

▶ Due to their expressive power, neural networks are quite
sensitive to overfitting.

▶ Keep a hold-out validation set and test the error of the
network on this set after every epoch. Stop training when
additional epochs increase the validation error.
The validation error can be measured by completely different means than

the training error E .
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Hidden Neurons Representations
Trained hidden neurons can be seen as newly constructed features.
E.g., in a two-layer network used for classification, the hidden layer transforms

the input so that important features become explicit (and hence the result may

become linearly separable).

Consider a two-layer MLP, 64-2-3, for classifying letters (three output
neurons, each corresponding to one of the letters).
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Optimal Architecture?

▶ For MLP: Too few hidden neurons prevent the network from
adequately fitting the data. Too many hidden units can result
in overfitting.
(There are advanced methods that prevent overfitting even for rich

models, such as regularization, where the error function penalizes

overfitting – see PV021.)

▶ There are (almost) infinitely many types of architectures of
neural networks (convolutional, recurrent, transformers,
adversarial, etc.) suitable for various tasks.

▶ Transfer learning: Start with a known solution to a related
problem.

Simplified view: Preserve lower parts of the network trained to
solve the related problem (feature extractors). Add your top
part and then train only the new top part (or train the whole
network but carefully).
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How to Choose Activation Functions & Error

▶ Hidden neurons: ”Almost” linear activations such as (leaky)
ReLU (y = max(0, ξ))
Better than sigmoidal that saturate more often.

▶ Output neurons: Single output:
▶ Regression: Typically ”linear” output, i.e., no activation on the

output neuron.
▶ Binary classification: Logistic sigmoid y = 1/(1 + e−ξ)

▶ Error: Single output:
▶ Regression: (Mean) squared error
▶ Binary classification: Binary cross-entropy

For multiple outputs and classification, use softmax output and cross-entropy.
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Applications

▶ Image recognition, segmentation, etc.

▶ Machine translation and other text processing

▶ Text generation, image generation, movie generation, theatre
plays generation

▶ Text to Speech and vice versa

▶ Finance, business predictions, fraud detection

▶ Game playing (backgammon is a classic example, AlphaGo is
the famous one, computer games are the big ones, bridge is
the hard one)

▶ (artificial brain and intelligence)

▶ ...

Text and image processing are possibly the most advanced deep
learning applications.
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ALVINN
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ALVINN

▶ Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

▶ Inputs correspond to pixels.

▶ Sigmoidal activation function (logistic sigmoid).

▶ Direction corresponds to the center of gravity.

, I.e., output neurons are considered as points of mass evenly distributed

along a line. The weight of each neuron corresponds to its value.
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ALVINN – Training

Trained while driving.

▶ A camera captured the road from the front window, approx.
25 pictures per second

▶ Training examples (x⃗k , d⃗k) where
▶ x⃗k = image of the road
▶ d⃗k ≈ corresponding direction of the steering wheel set by the

driver

▶ the values d⃗k computed using Gaussian distribution:

dki = e−D
2
i /10

Where Di is the distance between the i-th output from the
one corresponding to the steering wheel’s real direction.

(The authors claimed this approach is better than the binary
output because similar road directions induce similar driver
reactions.)
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Selection of Training Examples

Naive approach: just take images from the camera.

Problems:
▶ A too-good driver never teaches the network how to solve

deviations from the right track. A couple of harsh solutions:
▶ turn the learning off momentarily, deviate from the right track,

then turn on the learning and let the network learn how to
solve the situation.

▶ let the driver go crazy! (a bit dangerous, expensive, unreliable)

▶ Images are very similar (the network sees the road from the
right lane), overfitting.
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Selection of Training Examples
Problems with too good driver were solved as follows:

▶ every image of the road has been has been transformed to 15
slightly different copies

The repetitiveness of images was solved as follows:

▶ the system has a buffer of 200 images (including the 15 copies of
the current one), in every round trains on these images

▶ afterward, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the buffer (10 with the smallest
training error, five randomly)
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ALVINN – Training

▶ gradient descent

▶ constant learning rate (possibly different for each neuron – see
PV021)

▶ some other optimizations (see PV021)

The result:

▶ Training took 5 minutes, and the speed was 4 miles per hour
(The speed was limited by the hydraulic controller of the steering wheel,

not the learning algorithm.)

▶ ALVINN was able to go through roads it had never ”seen”
and in different weather
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ALVINN – Weight Learning

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . , h5 are values of hidden neurons.
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Backpropagation
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How to Compute the Gradient?
To implement a single step of the gradient descent, we need to
compute the partial derivatives ∂E

∂wij
of E w.r.t. all weights wij .

To simplify consider for now a restricted case:

▶ Single element training set

D = {(x , d)}

where x ∈ R and d ∈ R are numbers
(i.e., not vectors as in the general case).

▶ The error function is the squared error.
▶ Assume that 1 is the output neuron,
▶ which means that y1 = y1[w⃗ ](x) is the output of the network

with weights w⃗ and the input x ,
▶ and the error on D is then

E (w⃗) =
1

2
(y1 − d)2
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σ′1(ξ1)y2

Here σ′1 is just the plain derivative of σ′ as a

function of a single variable
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σ′1(ξ1)y2

Here σ′1 is just the plain derivative of σ′ as a

function of a single variable

∂E

∂y1
= y1 − d

Note that if σ1 is identity, we obtain exactly the

gradient from the linear regression method.

Considering σ1 equal to the logistic sigmoid and E

the cross-entropy, we get the logistic regression

gradient.
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MLP – Gradient Computation
Under our simplifying assumptions D = {(x , d)} and E = (y1 − d)2

the gradient computaton proceeds as follows:

Applying the chain rule, we obtain

∂Ek

∂wji
=
∂Ek

∂yj
· σ′

j (ξj) · yi

where (after more applications of the chain rule)

∂Ek

∂y1
= y1 − d

Keep in mind that 1 is the only output neuron which means that y1 is the value

of the network.

∂Ek

∂yj
=
∑
r∈j→

∂Ek

∂yr
· σ′

r (ξr ) · wrj for j ∈ Z ∖ (Y ∪ X )

Here yr = y [w⃗ ](x) where w⃗ are the current weights and x is the example input.
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MLP – Gradient Computation – General!
Let us drop our simplifying assumptions!
▶ Given a set D of training examples:

D =
{(

x⃗k , d⃗k

) ∣∣ k = 1, . . . , p
}

Here x⃗k ∈ R|X | and d⃗k ∈ R|Y |. We write dkj to denote the

value in d⃗k corresponding to the output neuron j .

▶ Error Function: E (w⃗) where w⃗ is a vector of all weights in
the network. The choice of E depends on the solved task
(classification vs regression, etc.).
Example (Squared error):

E (w⃗) =

p∑
k=1

Ek(w⃗)

where

Ek(w⃗) =
1

2

∑
j∈Y

(yj [w⃗ ](x⃗k)− dkj)
2
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MLP – Gradient Computation
For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it suffices to compute ∂Ek

∂wji
, that is the error for a fixed training

example (x⃗k , d⃗k).

Applying the chain rule, we obtain

∂Ek

∂wji
=
∂Ek

∂yj
· σ′

j (ξj) · yi

where (more applications of the chain rule)

∂Ek

∂yj
is computed directly for the output neurons j ∈ Y

∂Ek

∂yj
=
∑
r∈j→

∂Ek

∂yr
· σ′

r (ξr ) · wrj for j ∈ Z ∖ (Y ∪ X )

(Here yr = y [w⃗ ](x⃗k) where w⃗ are the current weights and x⃗k is the input of the

k-th training example.)
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MLP – Backpropagation
Input: A training set D =

{(
x⃗k , d⃗k

) ∣∣ k = 1, . . . , p
}

and

the current vector of weights w⃗ .
Note that the backprop. is repeated in every iteration of the gradient descent!

▶ Evaluate all values yi of neurons using the standard bottom-up
procedure with the input x⃗k .

▶ For every training example (x⃗k , d⃗k) compute ∂Ek

∂yj
using

backpropagation through layers top-down :
▶ For all j ∈ Y compute ∂Ek

∂yj
by taking the derivative of the error.

e.g., in the case of the squared error, we have ∂Ek
∂yj

= yj − dkj .

▶ In the layer ℓ, assuming that ∂Ek

∂yr
has been computed for all

neurons r in the layer ℓ+ 1, compute

∂Ek

∂yj
=
∑
r∈j→

∂Ek

∂yr
· σ′

r (ξr ) · wrj

for all j from the ℓ-th layer. Here σ′
r is the derivative of σr .

▶ Put ∂Ek

∂wji
= ∂Ek

∂yj
· σ′

j (ξj) · yi

Output: ∂E
∂wji

=
∑p

k=1
∂Ek

∂wji
.
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MLP Learning Example
Training set:

D = {(x , d)} = {(1, 1)}

That is

y3 = x = 1

d = 1

Error cross-entropy:

E (w⃗) = −(d log(y1) + (1− d) log(1− y1))

= − log(y1)

Assume the initial weight vector

w⃗ (0) = (w
(0)
12 ,w

(0)
23 ) = (14 , 2).

Consider the learning rate ε = 0.5.
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MLP Learning Example – Gradient Descent

To make the gradient descent step:

w
(1)
12 = w

(0)
12 − ε

∂E

∂w12
(w⃗ (0))

w
(1)
23 = w

(0)
23 − ε

∂E

∂w23
(w⃗ (0))

we need to compute the partial derivatives
∂E
∂w12

and ∂E
∂w23

.
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MLP Learning Example – Forward Pass

We have x = 1,w
(0)
12 = 1/4,w

(0)
23 = 2

First, compute the forward pass

y3 = x = 1

ξ2 = w
(0)
23 y3 = 2y3 = 2

y2 = max{0, ξ2} = 2

ξ1 = w
(0)
12 y2 =

1

4
2 =

1

2

y1 = 1/(1 + e−ξ1) = 1/(1 + e−(1/2))

= 0.6225
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MLP Learning Example – Backward Pass
We have w

(0)
12 = 1/4,w

(0)
23 = 2, y1 =

0.6225, y2 = 2, y3 = 1.

Proceed with the backward pass:

∂E

∂y1
=
∂(− log(y1))

∂y1
= − 1

y1
= −1.6065

Since σ′1 = σ1(1− σ1)

∂E

∂y2
=
∂E

∂y1
σ′1(ξ1)w

(0)
12

=
∂E

∂y1
σ1(ξ1)(1− σ1(ξ1))w

(0)
12

=
∂E

∂y1
y1(1− y1)w

(0)
12

= −1.6065 · 0.6225 · 0.3775 · (1/4)
= −0.09438
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MLP Learning Example – The Gradient
We have
w

(0)
12 = 1/4,w

(0)
23 = 2, y1 = 0.6225, y2 =

2, y3 = 1, ∂E∂y1 = −1.6065, ∂E∂y2 = −0.09438.

Compute derivatives of E w.r.t. weights:

∂E

∂w12
=
∂E

∂y1
σ′1(ξ1)y2

=
∂E

∂y1
y1(1− y1)y2

= −0.755

∂E

∂w23
=
∂E

∂y2
σ′2(ξ2)y3

=
∂E

∂y2
y3

= −0.09438
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Backpropagation – Example – Summary

52



Backpropagation – Example – Summary

Note that WE HAVE NOT YET CHANGED ANY WEIGHTS! 52



MLP Learning Example – Gradient Descent Step

So ONLY NOW we can make the
learning step and change the weights:

w
(1)
12 = w

(0)
12 − ε

∂E

∂w12
(w⃗ (0))

=
1

4
− 0.5 · (−0.755)

= 0.627

w
(1)
23 = w

(0)
23 − ε

∂E

∂w23
(w⃗ (0))

= 2− 0.5 · (−0.09438)

= 2.047

We have made just a single gradient descent step!
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MLP Training Summary
▶ MLP are trained using the gradient descent algorithm

In practice, modifications of GD are typically used, but most of them

have strong roots in GD.

▶ The gradients are computed using the backpropagation
algorithm
the backpropagation is a universal method for automatic differentiation,

surpassing any use in neural networks.
▶ Training of neural networks in practice is tricky due to many

reasons comprising in particular
▶ highly complex non-linear shape of the error function,
▶ tendency to overfit very quickly,
▶ black-box nature, hard to see what the network does,
▶ huge hype around deep learning (which many people confuse

with AI) results in high expectations even in cases where no
(learning) algorithm may solve the given problem!

An advice: Always concentrate the main effort on the solved
problem formulation and, afterward, on the data you have at your
disposal (and honestly separate the Test set right at the
beginning).
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Deep Learning
▶ Cybenko’s theorem shows that two-layer networks are omnipotent –

such results nearly killed NN when support vector machines were
found to be easier to train in 00’s.

▶ Later, it has been shown (experimentally) that deep networks (with
many layers) have better representational properties.

▶ ... but how to train them? The gradient descent suffers from a
so-called vanishing gradient; intuitively, updates of weights in lower
layers are very slow.

▶ In 2006, a solution was found by Hinton et al.:
▶ Use unsupervised methods to initialize the weights layer by

layer to capture important data features.
More precisely: The lowest hidden layer learns patterns in data, the

second lowest learns patterns in data transformed through the first

layer, and so on.
▶ Then use a supervised learning algorithm to only fine tune

the weights to the desired input-output behavior.

▶ ... but the actual revolution started with convolutional networks
trained on several GPUs.
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Convolutional network
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ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC)

ImageNet database (16,000,000 color images, 20,000 categories)
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ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC)

Competition in classification over a subset of images from
ImageNet.

In 2012, training saw 1,200,000 images and 1000 categories.
Validation set 50,000, Test set 150,000.

Many images contain several objects → typical rule is top-5
highest probability assigned by the net.
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KSH śı̌t

ImageNet classification with deep convolutional neural networks, by Alex

Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Results:

▶ Accuracy 84.7% in top-5 (second best alg. at the time:
73.8%)

▶ 63.3% in ”perfect” classification (top-1)

59



ILSVRC 2014

The same set of images as in 2012, top-5 criterium.

GoogLeNet: deep convolutional net, 22 layers

Results:

▶ 93.33% in top-5

Superhuman power?

60



Superhuman GoogLeNet?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000
categories quickly turned out to be highly challenging, even for some friends in
the lab who have been working on ILSVRC and its classes for a while. First, we
thought we would put it up on [Amazon Mechanical Turk]. Then, we thought
we could recruit paid undergrads. Then, I organized a labeling party of intense
labeling effort only among the (expert labelers) in our lab. Then, I developed a
modified interface that used GoogLeNet predictions to prune the number of
categories from 1000 to only about 100. It was still too hard - people kept
missing categories and getting up to ranges of 13-15% error rates. In the end, I
realized that to get anywhere competitively close to GoogLeNet, it would be
most efficient if I sat down and went through the painfully long training process
and the subsequent careful annotation process myself. The labeling happened
at a rate of about 1 per minute, but this decreased over time... Some images
are easily recognized, while some pictures (such as those of fine-grained breeds
of dogs, birds, or monkeys) can require multiple minutes of concentrated effort.
I became very good at identifying breeds of dogs... Based on the sample of
images I worked on, the GoogLeNet classification error turned out to be 6.8%...
In the end, my error turned out to be 5.1%
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ILSVRC 2015

▶ Microsoft network ResNet: 152
layers, complex architecture

▶ Trained on 8 GPUs

▶ 96.43% accuracy in top-5
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ILSVRC
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ILSVRC 2016

Trumps-Soushen (The Third Research Institute of Ministry of
Public Security)

There is no new innovative technology or novelty by
Trimps-Soushen.

Ensemble of the pre-trained models from previous years.

Each model is strong at classifying some categories but weak at
categorizing others.

Test error: 2.99%
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Top-k accuracy analyzed

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd
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Top-20 typical errors

Out of 1458 misclassified images in Top-20:

https://towardsdatascience.com/review-trimps-soushen-winner-in-ilsvrc-2016-image-classification-dfbc423111dd
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Top-k accuracy analyzed
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Anomaly Detection
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What is an Anomaly?
Anomalies are hard to define in general.

Attempts at a generic definition include:
▶ Observations that seem to be generated by a different

mechanism.
▶ Data instances that occur rarely and whose features differ

significantly from most data.
▶ Outliers - observations that appear to be inconsistent (far

away) with the remainder of the data
However, inliers are not covered, that is, anomalous data that lie within

the normal data distribution (say 0 in measurement results that are very

likely non-zero but distributed around 0).

▶ Patterns in data that do not conform to a well-defined notion
of normal behavior(??)

This lecture presents algorithms detecting specific data instances
that may be anomalous w.r.t. the used algorithm.

It is up to the context-knowing user to decide whether such data
are anomalous.
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What is the Anomaly Detection Good For?

There are two main sources of motivation for anomaly detection in
machine learning:

▶ Modeling perspective: Many models are sensitive to
anomalous data.

▶ Application perspective: Many tasks are based on searching
for anomalies in data.
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Modeling Perspective

Recall the behavior of the linear model.

To train such a model properly, the outliers should be removed.

On the other hand, we will see that the sensitivity of some models
can be used to detect the anomalies.
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Applications Perspective

▶ Fraud Detection
▶ Analysis of purchasing behavior to detect credit card theft.
▶ Identification of theft through uncharacteristic buying patterns

and behavioral changes.

▶ Intrusion Detection
▶ Monitoring for attacks on computer systems and networks.
▶ Many attacks exhibit themselves as anomalous behavior.

▶ Ecosystem Disturbances
▶ Detect atypical natural world events.
▶ Prediction and understanding of hurricanes, floods, droughts,

heat waves, and fires.

▶ Medicine
▶ Unusual patient symptoms or test results may indicate health

problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...
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problems.
▶ Balancing the need for further tests with the potential costs

and risks.

▶ ...
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Causes of Anomalies in Data Preprocessing

Anomaly detection is a standard step in data preprocessing.

We typically search for anomalies from the following sources:

▶ Objects from different classes: Pear among apples.

▶ Natural variation: Abnormally tall person - not from a
different class (humans) but in the sense of an extreme
characteristic.

▶ Data measurement and collection error:
▶ Thermometer positioned on the direct sun (possibly a

measurement error)
▶ 40 kg infant is not usual among humans (possibly a data

collection error)

The anomalies mentioned above should be inspected by domain
experts and possibly corrected/removed.
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Approaches to Anomaly Detection
▶ Model-based techniques:

▶ Build a model of data.
▶ Anomalies should not fit the model very well.

For example, using a clustering model, an anomaly may lie far away

from larger clusters.
▶ Alternatively, removing anomalies should have the strongest

impact on the model parameters (more on this later).

▶ Proximity-based techniques: Given distance between objects,
anomalies are objects distant from others.

▶ Density-based techniques: Estimate the density distribution of
the objects. Anomalies would probably be outside of dense
regions.

I would count the most recent deep learning-based anomaly detection among

the model-based techniques even though a combination of the above

approaches is usually used.

We will make the above ideas more precise in the rest of this
lecture.
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Anomaly Detecion Learning
There are three approaches to anomaly detection based on
available information about data:

▶ Supervised: Given a training set distinguishing normal and
anomalous data. We may train a supervised learning classifier.
As anomalies are rare, approaches based on supervised learning are rare.

▶ Semi-supervised:
▶ We may know what instances are normal.

A tumor detection system trained on healthy people detects tumors

as anomalies.

In this case, we detect anomalies that are dissimilar to normal
instances. We may train a model representing the normal
instances and detect instances that do not fit the model.

▶ We may have information about (some) normal and some
anomalous instances. Here, we can use methods for
semi-supervised classification.

▶ Unsupervised: Create a model of all instances and hope that
anomalous instances will still be dissimilar to instances typical
for the model.
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Issues
Task-specific issues comprise:

▶ Single vs. multi-attribute anomaly: The question is whether
an object is anomalous due to a single attribute (200 kg
person) or a combination of attributes (100 kg person of 1
meter height).
This is especially important when data is high-dimensional. For example,

in genetic data, every sample is an anomaly(?)

▶ Global vs. local perspective: An object may be anomalous
w.r.t. all objects but not w.r.t. objects in its local
neighborhood (210 cm high basketball player).

▶ Degree of anomaly: Usually, anomalies are reported in a
binary fashion. However, we often want to measure how
anomalous an object is, similar to normal objects.

Another issue is evaluation: How can we determine how good an
anomaly detector is?
In the supervised case, we have a ground truth, but usually, we just observe

detected anomalies.
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Various Approaches to Anomaly Detection

We shall have a look at five approaches to the unsupervised
anomaly detection:

▶ Statistical

▶ Proximity-based

▶ Density-based

▶ Cluster-based

▶ Autoencoders

The above approaches are also used in the semi-supervised setting where we

have a dataset of normal instances. However, some issues discussed further will

not appear in this case.
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Statistical

Definition 1
An outlier is an object with a low probability in the probability
distribution of the data.

Suppose we knew the “true” probability distribution P on objects.
In that case, we may set up a threshold t (using an appropriate
training set) and say that every object A with P(A) < t is
anomalous.

However, in most cases, we do not know P and have to resort to a
model of P created using a dataset of feature vectors.

There are many more or less sophisticated tests based on models
of P in the literature.
Some use rather advanced statistical methods.

Let us have a look at a few simple examples.
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Box Plot

A simple method for outlier detection in the univariate case, that
is, for values of a single attribute.
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Univariate Gaussian Model
Consider a numeric attribute whose values x are normally
distributed with mean µ and standard deviation σ.
We write N(µ, σ2).

Given an attribute value x , we compute the z-score:

z = (x − µ)/σ

Then z has the distribution N(0, 1).

Now, choose c so the probability P(|z | ≥ c) is small enough for z
to be an outlier w.r.t. N(0, 1).

Given an attribute value x , we may decide whether x is an outlier
by deciding whether |z | = |(x − µ)/σ| ≥ c.
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Univariate Gaussian

Problem 1: The attribute does not have a normal distribution.

Before starting, use a normality test (observe the histogram, use a
specialized test such as Shapiro-Wilk).

Some transformations may sometimes succeed in normalizing an
attribute (Box-Cox transformation, etc.)

Different distributions can be used to model the attribute (Log Normal,

Weibull, etc.), but be aware of the assumptions of anomaly detection tests!
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Univariate Gaussian

Problem 2: We typically do not know the population mean µ and
the population variance σ2.

They can be estimated from a dataset by the sample mean and the
sample variance:

µ̄ =
1

p

p∑
i=1

xi s2 =
1

p − 1

p∑
i=1

(xi − µ̄)2

However, then z = (x − µ̄)/s does no longer have the distribution
N(0, 1).
The distribution of z is normal if x is sampled independently of the data

yielding µ̄ and s2.

Note that µ̄ and s2 are unbiased estimates of µ and σ2. Also, µ̄
converges to µ and s2 converges to σ2 with growing sample size.
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Univariate Gaussian Model

Problem 3: The outliers distort the estimates µ̄ and s2 of the
mean and the standard deviation.

For example, a millionaire would not look like an outlier in a group
containing a billionaire.
There is a circularity here: To get outliers using the normal distribution model,

we need to remove the outliers to have a good model.

One possible heuristic is to remove the outliers one by one, starting
from the most extreme, hoping the most extreme outlier will be
detected in every step.

One such heuristic is the Grubb’s test.
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Grubb’s Test
Consider a dataset D = {x1, . . . , xp} of values of a normally
distributed attribute and choose α > 0.

The Grubb’s statistic is defined by

G =
maxi=1,...,p |xi − x̄ |

s

Here x̄ is the sample mean and s sample standard deviation of D.

Now P(G ≥ cα,p) = α if

cα,p =
p − 1
√
p

√
t2

p − 2 + t

Here t is such a value that makes P(T ≥ t) = α/(2p) for T with
the t-distribution with p − 2 degrees of freedom.
For finding t we used to use tables.

Grubb’s test simply iteratively tests whether P(G ≥ cα,p) and, if
yes, removes an xi maximizing |xi − x̄ | from D.
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Multivariate Gaussian Model

Univariate tests cannot find all anomalies if the anomaly depends
on combinations of particular attribute values.

The univariate Gaussian approach can be generalized to the
multivariate Gaussian by considering the multivariate Gaussian
distribution.

Mahalanobis distance:

mahalanobis(x⃗ , z⃗) = (x⃗ − z⃗)Σ−1(x⃗ − z⃗)⊤

Here Σ is the covariance matrix of the data.

Intuitively, the Mahalanobis distance generalizes the squared
Euclidean distance:

(x⃗ − z⃗)(x⃗ − z⃗)⊤

By taking into account the “spread” of the data.
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Mahalanobis Distance

Here, we assume multivariate normal data distribution. The
covariance matrix is

Σ =

(
1.00 0.75
0.75 3.00

)
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Mahalanobis Distance

Notice that A has a larger Mahalanobis distance from the cluster’s center
than B even though it is closer in the Euclidean distance.

The reason is that the density function falls more rapidly in the direction

of A than in the direction of B.
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Likelihood-Based Detection

Assume that the dataset D contains objects from a mixture of two
probability distributions:

▶ M, the distribution of the majority of normal objects,

▶ A, the distribution of anomalous objects.

Let us choose α > 0, indicating how rare the anomalies should be.

Let us assume that we have M and A models to compute PM(x)
and PA(x) the likelihoods of generating x .
A is often considered uniform, and M is learned from the data (yes, distorted

by the outliers).

Now, we compute the total likelihood of the dataset before and
after removing each element. If the likelihood changes significantly,
we have probably eliminated an anomaly.
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Given a partition U,V of D we define

L(U,V ) =

(1− α)|U|
∏
xi∈U

PM(xi )

α|V | ∏
xi∈V

PA(xi )



This is the likelihood of generating D using the following random
process: Generate x1, x2, . . . , xp sequentially and independently
where each xi is generated as follows:
▶ Randomly choose between normal and anomaly, where the

probability of choosing anomaly is α.
▶ If normal has been chosen, choose xi from the distribution M.
▶ If anomaly has been chosen, choose xi from the distribution A.

To eliminate the “large” product, we consider the log-likelihood:

LL(U,V ) = log(L(U,V ))

= |U| log(1− α) +
∑
xi∈U

logPM(xi )

+ |V | logα+
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Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

93



Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

93



Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

93



Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).

93



Likelihood-Based Anomaly Detection
Start with sets M0 = D and A0 = ∅.

The algorithm computes M1,M2, . . . and A1,A2, . . . by moving
elements from Mk to Ak as follows:

▶ For every i = 1, . . . , p such that xi ∈ Mk compute

∆i = |LL(Mk ,Ak)− LL(Mk ∖ {xi},Ak ∪ {xi})|

▶ Consider i maximizing ∆i . If ∆i ≥ c , then

Mk+1 = Mk ∖ {xi} Ak+1 = Ak ∪ {xi}

Else, stop.
Here, c is a threshold we must set up.

Ultimately, the Ak will contain the anomalies the algorithm detects.
Note that we may also move all anomalies detected in a single iteration from

Mk to Ak . This would result in a different method (also valid).
93



Summary of Statistical Anomaly Detection

▶ Build on strong statistical foundations.

▶ Tests are very effective if the dataset is sufficiently large
(informative).

▶ Lots of tests for univariate data, the area has developed for a
long time.

▶ Fewer options for multivariate data and problematic for highly
dimensional data (curse of dimensionality).

The likelihood-based approach does not assume a particular
distribution shape: It can be used with arbitrary models of PM and
PA, including deep learning ones.
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Proximity-Based Methods
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Proximity-Based Outlier Detection

Assume a distance measure d . That is, given two feature vectors
x⃗ , z⃗ their distance is d(x⃗ , z⃗).
We consider the Euclidean distance for simplicity.

Definition 2
The outlier score of an object is given by the distance to its
k-nearest neighbor.

A threshold on the minimum distance of an outlier can be set on a
training set.
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Outlier Score

The outlier score is based on the distance to the fifth nearest
neighbor.
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Outlier Score

The outlier score is based on the distance to the first nearest
neighbor.
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Proximity-Based Approaches

▶ Conceptually simple and easy to implement.

▶ Time complexity typically O(p2) where p is the number of
feature vectors in the dataset.

▶ Sensitivity to the choice of parameters (the number of
neighbors).

▶ Density/compactness not taken explicitly into account.
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Density-Based Methods
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Density-Based Approaches

Definition 3
The outlier score of an object is the inverse of the density around
the object.

We consider the Local Outlier Factor (LOF) method:

A local density of an object corresponds to the inverse of the
average distance to its k-nearest neighbors.

Compute the LOF score for an object A by

▶ computing the local density DA of A,

▶ computing the average D̄ of the local densities of k-nearest
neighbors of A,

▶ dividing the average local density with the local density of A,
that is, compute D̄/DA.

The question is, how exactly can the local density be defined?
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LOF - Illustration

Here, the density around A is smaller than the densities around the
other points.
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LOF - Formally

Let us fix k ∈ N.

Define k-distance(A) as the distance of the k-th nearest neighbor.

Denote by Nk(A) the set of all objects in the distance from A up
to k-distance(A).
Note that if there are objects in the same distance from A, we may have more

than k elements in Nk(A).

Define

reachability-distancek(A,B) = max{k-distance(B), d(A,B)}

The reachability distance of A from B is the distance between A
and B but at least the distance from B to the k-nearest neighbor.
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Reachability Distance
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LOF
Define local reachability density

lrdk(A) =

(∑
B∈Nk (A)

reachability-distancek(A,B)

|Nk(A)|

)−1
That is the reciprocal of the average reachability distance of A
from its k-nearest neighbors.

We define local outlier factor of an object A by

LOFk(A) =

(∑
B∈Nk (A)

lrdk(B)

|Nk(A)|

)
/lrdk(A)

Now
▶ LOFk(A) ≈ 1 - similar density as the neighbors have
▶ LOFk(A) < 1 - higher density of neighbors than the neighbors

have (inlier?)
▶ LOFk(A) > 1 - smaller density of neighbors than the

neighbors have (outlier?)
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Comments on Density Based Methods

▶ As opposed to the distance-based methods, quantifies the
distance of the neighborhood of the (potential) outliers.

▶ Time complexity still O(p2) but may be reduced for low
dimensional data (to O(p log p)) using special data structures.

▶ Still need to determine the parameter k .
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Clustering-Based Methods
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Clustering Approach
Clustering is supposed to group similar objects.

Anomaly detection detects objects dissimilar to others.

So, clustering inherently solves similar problems.

But how do we detect anomalies based on clustering?

We may detect anomalies as elements of small clusters.
This approach is problematic as it strongly depends on the size/number of

clusters.

A better approach would be to asses how strongly objects belong
to clusters.

Definition 4
An object is a cluster-based outlier if the object does not strongly
belong to any cluster.

Depending on the particular clustering algorithm, we have (at least
some) information about the cohesion of objects.
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Anomaly Detection Using k-Means Clustering

In k-means, the clusters are represented by centroids.

We may measure the anomaly of a given object using the distance
to its cluster centroid.

This approach does not take into account the density of clusters.
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Anomaly Detection Using k-Means Clustering

Here, we compute the relative distance to the cluster center, that
is, the ratio of the object’s distance to the centroid and the median
distance of all objects of the same cluster to the centroid.
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Clustering Based Anomaly Detection
Other algorithms may provide different information (probability
density of the clusters, etc.).

The usual problem: Outliers have an impact on the clustering
itself.

Some algorithms can be modified to treat potential outliers
specially.
For example, during the k-means clustering, put objects very far away from the

current cluster centroids into a special category not used to move the

centroids. After every step, test whether some of these objects became close

enough to at least one centroid (in which case these objects will be removed

from the special category).

Setting the proper number of clusters is an issue as well.

For anomaly detection, a larger number of smaller clusters may be
beneficial as they may be more cohesive. If an object seems to be
an outlier with small clusters, it is probably an outlier.
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Comments on Clustering Based Methods

Some clustering methods have a sub-quadratic complexity.

Conceptually, clustering complements anomaly detection, so it is
natural to compute both together.

On the other hand, the results strongly depend on the number of
clusters, and anomalies may distort the clustering.
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Autoencoders as Anomaly Detectors
... just a short comment
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Neural Networks in Anomaly Detection

The previous approaches work well with (relatively)
low-dimensional data.

However, what should we do with data with high or even variable
dimensions?

▶ Images

▶ Text

▶ Video

▶ Semantic graphs

▶ ...

One way is to transform them into lower-dimensional data.

Train a neural network that takes the large input and returns a
smaller representation, which (hopefully) preserves crucial features
of the input.
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Autoencoders
An autoencoder consists of two parts:

▶ ϕ : Rn → Rm the encoder

▶ ψ : Rm → Rn the decoder

The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗ .

Training: Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ Rn for all i ∈ {1, . . . , n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i )))
2
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Autoencoders – neural networks
Both ϕ and ψ can be represented using MLP Mϕ and Mψ,
respectively.

Mϕ and Mψ can be connected into a single network.
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Autoencoders – Usage

▶ Compression/feature extraction – from x⃗ to h⃗.

▶ Dimensionality reduction – the latent representation h⃗ has a
smaller dimension.

▶ Generative versions – (roughly) generate h⃗ from a known
distribution, let Mψ generate realistic inputs/outputs x⃗

▶ Anomaly detection (see the next slide)
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Anomaly Detection with Autoencoders

Straightforward approach:

▶ Train the autoencoder on the normal data.

▶ Detect an anomaly using the large reconstruction error.
The idea is that an anomaly will not be properly reconstructed.

More general approach:

▶ Train the autoencoder and transform the normal data to their
low dimensional latent representations.

▶ Use one of the previous approaches to anomaly detection to
detect anomalies in the latent representations.
The assumption is that the latent representation of an anomaly will

substantially differ from the latent representations of normal instances.
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Summary of Anomaly Detection

▶ It is hard even to define an anomaly - context knowledge is
usually needed.

▶ Supervised anomaly detection reduces to classification.
▶ Unsupervised anomaly detection can be done in various ways;

we have seen the following:
▶ Statistical
▶ Proximity-based
▶ Density-based
▶ Cluster-based
▶ Autoencoders

▶ Semi-supervised anomaly detection is usually concerned with
data where the normal class is known.

▶ There are many more methods: One class SVM, isolation
forests, etc.
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