
Chapter 6

Data Compression

Exercise 1

For a given random variable X with the probability distribution P(X = xi) = pi
and corresponding codeword lengths (li)i of a code C we define L♦C(X) =∑

i pil
100
i . For a fixed random variable X let L♦1 (X) = minC∈prefix L

♦
C(X) de-

notes the minimum of L♦C(X) over all prefix codes and L♦2 (X) = minC∈ud L
♦
C(X)

denotes the minimum of L♦C(X) over all uniquely decodable codes.

Compare the quantities L♦1 (X)?L♦2 (X), i.e. replace ’?’ with proper symbol,
e.g. <,≤, >, 6=,=,≥, not comparable, etc.

Answer of exercise 1

Any prefix code is uniquely decodable, therefore, the minimum L♦1 (X) is
taken over proper subset of uniquely decodable codes giving directly L♦1 (X) ≥
L♦2 (X).

However, from MacMillan and Kraft inequality we have that for any uniquely
decodable code C we can construct prefix code C ′ with the same codeword
lengths. Since the quantity L♦C(X) depends only on X and codeword lengths,

we have that for any C minimizing L♦2 (X) we can construct prefix C ′ such that
L♦C(X) = L♦C′(X) giving L♦1 (X) ≤ L♦2 (X).

Together we have L♦1 (X) = L♦2 (X).

Exercise 2

Let C be a prefix code over the alphabet D (d = |D|) with codeword lengths
l1, l2, . . . , lm that satisfy

m∑
i=1

d−li < 1. (6.1)

Show that there exists an arbitrarily long sequence in D∗ that cannot be decoded
into a sequence of codewords.

Answer of exercise 2

1

2 CHAPTER 6. DATA COMPRESSION

Consider the tree from the proof of Kraft inequality. Since
∑m

i=1 d
−li < 1,

we have that there is a path from the root to a leaf of depth lmax such that there
is no codeword on this path (otherwise all nodes in depth lmax are covered and
Inequality (6.1) turns into equality). Such a path specifies a sequence x ∈ D∗.
It holds that for any y ∈ D∗ and any prefix z of xy there is no codeword to be
prefix of z. Note that we can construct z of arbitrary length, what gives the
desired result.

Exercise 3

We say that C : Im(X)→ D∗ is a suffix code iff there are no x1, x2 ∈ Im(X)
such that C(x1) is a suffix of C(x2).

Show that for any suffix code C over alphabet D (with |D| = d), and any
random variable X, it holds that

LC(X) ≥ Hd(X).

Answer of exercise 3

This property holds for prefix codes (see lecture transparencies). It suffices
to show that for any suffix code C we may construct prefix code C ′ such that
LC(X) ≥ LC′(X).

Let xR denotes the reverse of the word x ∈ D∗. Given the suffix code
C we define the code C ′(x) = C(x)R. It is easy to see that C ′ is a prefix
code. Otherwise there are x1, x2 ∈ Im(X) such that C ′(x1) = C ′(x2)w, where
w ∈ D∗. However, this implies that C(x1) = C ′(x1)R = wRC ′(x2)R = wRC(x2)
and C is not a suffix code.

The equality LC(X) = LC′(X) follows directly since l(C(x)) = l(C(x)R).

Exercise 4

A code C is fix-free iff it is both prefix and suffix code.
Let l1, l2, . . . , lm be positive integers such that

m∑
k=1

2−lk ≤ 1

2
.

Show that there exists a binary fix-free code with codeword lengths l1, l2, . . . , lm.
Is the opposite implication true?

Answer of exercise 4

Let lmax = maxk=1,2,...,m lk. Let us consider two full binary trees of depth
lmax. Vertices of the first one will be labeled by words from D∗, where the
correspondence is the same as in the proof of the Kraft inequality (prefix tree).
Vertices in the second tree will be labeled in the reverse order, i.e. the codeword
will be written from the root to a leaf in the reverse order (suffix tree).

At the beginning all vertices in both trees are marked as ’free’. Let us
suppose that WLOG the codeword lengths are ordered as l1 ≤ l2 ≤ · · · ≤ lm.
Let us construct the code as follows. Take each lk sequentially (k = 1, 2, . . . ,m)
and

3

• Choose a vertex of depth lk (in the prefix tree) ’free’ both in the prefix
and suffix tree. Note that in the prefix tree the vertex is labeled by xk

and in the suffix tree it is labeled by xR
k (but is in the same depth lk).

• Mark it as ’codeword’ in both trees

• Mark all its successors as ’used’ in both trees.

Note that we never select a predecessor of a vertex already labeled as ’codeword’
in this way since the codewords are ordered according to their length.

Using such a procedure we can construct only code that is fixfree - it is
prefix because codewords have no codeword predecessors and successors in the
prefix tree and it is suffix because codewords have no codeword predecessors
and successors in the suffix tree.

It remains to verify whether we can always construct such a code, i.e.
whether we can always find a vertex of desired depth ’free’ both in the pre-
fix and suffix tree. When marking a specific vertex as a ’codeword’, we have
to label 2lmax−lk vertices of depth lmax as ’codeword’ or ’used’ both in prefix
and suffix tree. Note that these two sets can be disjoint (their intersection are
palindroms), but, when marking a single vertex as ’codeword’ we mark at most
2 × 2lmax−lk vertices as ’used’ in at least one tree. Therefore, after placing c
codewords, we have at least

2lmax − 2

c∑
k=1

2lmax−lk

codewords free in both trees.
If we find some vertex in depth lmax marked as ’free’ both in the prefix and

the suffix tree, then all vertices on the path from the root to the leaf are marked
as ’free’ and we may use them. Finally, we can always find vertex of dept lmax

free both in prefix and suffix tree, because

m∑
k=1

2−lk ≤ 1

2

giving

2

m∑
k=1

2lmax−lk ≤ 2lmax .

The opposite implication is not true, because the sets of vertices removed
at depth lmax from the prefix and suffix tree are not disjoint in general and
therefore we can construct fix-free code with codeword lengths exceeding the
1/2 bound. Example of such situation is e.g. if both x and xR are in C, for
some x. Such a pair consumes only one vertex in the prefix tree and one vertex
in the suffix tree.

Exercise 5

4 CHAPTER 6. DATA COMPRESSION

A random variable X takes on m = Im(X) values and has entropy H(X).
We have a prefix ternary code C for this source with the average length

LC(X) =
H(X)

log2 3
.

1. Show that each symbol of Im(X) has a d-adic probability distribution
equal to 3−i for some i ∈ N0.

2. Show that m is odd.

Answer of exercise 5

1. We know that the length LC(X) of any d-ary prefix code satisfies

H(X)

log2 d
= Hd(X) ≤ LC(X)

with equality if and only if the probability distribution of X is d-adic,
what gives that all probabilities are negative powers of d, in our specific
case negative powers of 3.

2. Let k = maxx∈Im(X)− log3 P (X = x). Then

1 =
∑

x∈Im(X)

P (X = x) = 3−k
∑

x∈Im(X)

3kP (X = x).

3kP (X = x) is an nonnegative integer power of 3 (because it holds that
P (X = x) ≥ 3−k), thus it is an odd integer. Sum of these integers must
equal to 3k, i.e. it is odd as well. Together we have that the number of
summands m must be odd as well.

6.1 Huffman coding

Exercise 6

Consider a random variable X taking values in the set Im(X) = {1, 2, 3, 4, 5}
with probabilities 0.25, 0.25, 0.2, 0.15, 0.15, respectively. Construct an optimal
prefix ternary code for this random variable and calculate the average length of
the codewords.

Answer of exercise 6

Huffman coding ...

Exercise 7

Prove that if p1 > 0.4, then the shortest codeword of a binary Huffman code
has length equal to 1. Then prove that the redundancy of such a Huffman code
is lower bounded by 1− hb(p1).

6.1. HUFFMAN CODING 5

Exercise 8

Consider the random variable

X x1 x2 x3 x4 x5 x6 x7

P(X = xi) 0.49 0.26 0.12 0.04 0.04 0.03 0.02

1. Find a binary Huffman code for X.

2. Find the expected code length for this encoding.

3. Find a 5-ary Huffman code for X.

Exercise 9

Find the binary Huffman code for the source with probabilities (1/3, 1/5, 1/5, 2/15, 2/15).
Argue whether this code is also optimal for the source with probabilities (1/5, 1/5, 1/5, 1/5, 1/5).

Exercise 10

Which of these codes cannot be Huffman codes for any probability assign-
ment?

1. {0, 10, 11}.
2. {00, 01, 10, 110}.
3. {01, 10}.

Exercise 11

Words like Run! Help! and Fire! are short, not because they are frequently
used, but perhaps because time is precious in the situations in which these words
are required. Suppose that [X = i] with probability pi, i = 1, 2, . . . ,m. Let li
be the length of the binary codeword associated with [X = i] in a particular
code C, and let ci denote the cost per symbol of the codeword when [X = i].
Thus, the average cost CC(X) of the description of X is

CC(X) =

m∑
i=1

picili.

1. Minimize CC(X) over all l1, l2, . . . , lm such that
∑m

i=1 2−li ≤ 1. Ignore
any implied integer constraints on li. Determine l∗1, l

∗
2, . . . , l

∗
m minimizing

CC(X), and find the associated minimum value C∗(X).

2. How would you use the Huffman code procedure to minimize CC(X) over
all uniquely decodable codes? Let Cud(X) denotes this minimum.

3. Show that

C∗(X) ≤ Cud(X) < C∗(X) +

m∑
i=1

pici.

Answer of exercise 11

6 CHAPTER 6. DATA COMPRESSION

1. Let n =
∑

i pici. Then the values pici
n form a probability distribution.

Moreover, n does not depend on the choice of li, and the quantities CC(X)
and CC(X)/n attain minimum for the same C, i.e. codeword lengths. It
remains to minimize

CC(X)/n =

m∑
i=1

pici
n

li.

This situation is analogous to the average length LC(X). However, in
this case the ’price we pay’ per each codeword symbol in each code-
word is not the original probability pi of the codeword, but the quantity
cipi/n. However, it is a probability distribution as well, so all theorems
for minimizing the average length apply.
We have that the minimal values are l∗i = − log(cipi/n) and the associ-
ated minimal value C∗(X) is the entropy of the probability distribution
(cipi/n)i multiplied by n, i.e.

C∗(X) = nH(N)

with N defined by P (N = i) = cipi/n.

2. Using the arguments in the Task 1, we construct Huffman code for the
distribution N , and have the value

Cud(X) = nLHuff(N).

3. Using the arguments from the Task 1 we know that

C∗(X)

n
= H(N) ≤ LHuff(N) =

Cud(X)

n
< H(N) + 1 =

C∗(X)

n
+ 1.

We multiply the equation by n to get the desired result

C∗(X) = nH(N) ≤ nLHuff(N) = Cud(X) < nH(N) + n = C∗(X) + n.

Exercise 12

Although the codeword lengths of an optimal variable length code are com-
plicated functions of the message probabilities (p1, p2, . . . , pm), it can be said
that less probable symbols are encoded into longer codewords. Suppose that
the message probabilities are given in decreasing order p1 > p2 ≥ · · · ≥ pm.

1. Prove that for any binary Huffman code, if the most probable message
symbol has the probability p1 > 2/5, then that symbol must be assigned
a codeword of length 1.

2. Prove that for any binary Huffman code, if the most probable message
symbol has probability p1 < 1/3, then that symbol must be assigned a
codeword of length ≥ 2.

6.2. LEMPEL-ZIV CODING 7

6.2 Lempel-Ziv coding

Exercise 13

Compress (10)10 using the LZ coding.

Answer of exercise 13

The string is parsed as 1, 0, 10, 101, 01, 010, 1010, 1010. We code it as
(000, 1), (000, 0), (001, 0), (011, 1), (010, 1), (101, 0), (100, 0), (100, 0).

Exercise 14

Decode the string 001000101010100 that was encoded using LZ coding.

Answer of exercise 14

Obviously, we can make string human readable by adding parentheses and
commas: (00, 1), (00, 0), (10, 1), (01, 0), (10, 0). We start building phrases: 1,
0, 01, 10, 00. We concatenate the phrases 10011000.

Exercise 15

Compress 110010 using the LZ coding.

Answer of exercise 15

The string is parsed as 1, 11, 111, 1111, 0, 00, 000, 0000. We code it as
(000, 1), (001, 1), (010, 1), (011, 1), (000, 0), (101, 0), (110, 0), (111, 0).

Exercise 16

Decode the string 00000010010001110001101111011011 that was encoded
using LZ coding.

Answer of exercise 16

Obviously, we can make string human readable by adding parentheses and
commas: (000, 0), (001, 0), (010, 0), (011, 1), (000, 1), (101, 1), (110, 1), (101, 1).
We start building phrases: 0, 00, 000, 0001, 1, 11, 111, 11. We concatenate the
phrases 0919.

