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Part I

Cryptosystem
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Cryptosystem

The traditional main goal of cryptography is to preserve secrecy of the
message, i.e. to transform it in the way that no unauthorized person
can read the message while it is easily readable by authorized persons.

First applications of message secrecy are known from ancient times
and served to keep secret military and diplomatic secrets,
craftsmanship methods and also love letters.

Craftsmanship secrets on earthen tablets in Ancient Summer.

Secret love letters in Kamasutra.

Spartian Scytale.

Secrets hidden in a wax table or under hair of a slave.

Caesar cipher.
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Cryptosystem

Definition

A encryption system (cipher) is a five-tuple (P,C,K,E,D), where

1 P is a finite set of possible plaintexts

2 C is a finite set of possible ciphertexts

3 K is a finite set of possible keys

4 For each k ∈ K there is an encryption rule ek ∈ E and a
corresponding decryption rule dk ∈ D. Each ek : P→ C and
dk : C→ P are functions such that dk(ek(x)) = x for every x ∈ P.
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Shift Cryptosystem

Example

Example is e.g. the shift cryptosystem, sometimes known as the Caesar
cipher. In this case P = C = K = Z26. For 0 ≤ k ≤ 25 we define

ek(x) = (x + k) mod 26 (1)

and
dk(y) = (y − k) mod 26 (2)

for x , y ∈ Z26.
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Perfect Secrecy

To derive a definition of perfect secret we assume that there is some a
priori distribution on plaintexts described by the random variable X with
distribution P(X = x). The key is chosen independently from the plaintext
and described by the random variable K . Finally, ciphertext is described by
the random variable Y that will be derived from X and K . Also, for k ∈ K
we define Ck = {ek(x)|x ∈ X} as the set of all ciphertexts provided k is
the key.
Now we can explicitly calculate the probability distribution of Y as

P(Y = y) =
∑

k:y∈Ck

P(K = k)P(X = dk(y)). (3)

Another quantity of interest is the probability of a particular ciphertext
given a particular plaintex, easily derived as

P(Y = y |X = x) =
∑

k:x=dk (y)

P(K = k). (4)
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Perfect Secrecy

Definition

We say that the cryptosystem (P,C,K,E,D) achieves perfect
(unconditional) secrecy if and only if for every x ∈ X and y ∈ Y it holds
that

P(X = x |Y = y) = P(X = x). (5)

In words, the a posteriori probability distribution of plaintext given the
knowledge of ciphertext is the same as the a priori probability distribution
of the plaintext.

Following our previous analysis we calculate the conditional probability of a
(possibly insecure) cryptosystem as

P(X = x |Y = y) =
P(X = x)

∑
k:x=dk (y) P(K = k)∑

k:y∈Ck
P(K = k)P(X = dk(y))

. (6)
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Perfect Secrecy

Theorem

Suppose the 26 keys in the Shift cipher are used with equal probability
1/26. Then for any plaintext distribution the Shift cipher achieves perfect
secrecy.

Proof.

Recall that P = C = K = Z26. First we compute the distribution of
ciphertexts as

P(Y = y) =
∑

k∈Z26

P(K = k)P(X = dk(y))

=
∑

k∈Z26

1

26
P(X = y − k)

=
1

26

∑
k∈Z26

P(X = y − k).

(7)
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Perfect Secrecy

Proof.

For fixed y the values (y − k) mod 26 are a permutation of Z26 and we
have that ∑

k∈Z26

P(X = y − k) =
∑

x∈Z26

P(X = x) = 1. (8)

Thus for any y ∈ Y we have

P(Y = y) =
1

26
.

Next, we have that

P(Y = y |X = x) = P(K ≡ (y − x) (mod 26)) =
1

26

for every x and y .
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Perfect Secrecy

Proof.

Using the Bayes’ theorem we have

P(X = x |Y = y) =
P(X = x)P(Y = y |X = x)

P(Y = y)
=

P(X = x) 1
26

1
26

=p(X = x)

(9)

what completes the proof.

The previous result shows that the shift cipher is unbreakable provided we
use an independent key for each plaintext character.
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Perfect Secrecy

If P(X = x0) = 0 for some x0 ∈ P, then we trivially obtain
P(X = x0|Y = y) = P(X = x0). Therefore we consider only elements
such that P(X = x) > 0.

For such plaintexts we observe that P(X = x |Y = y) = P(X = x) is
equivalent to P(Y = y |X = x) = P(Y = y).

Let us suppose that P(Y = y) > 0 for all y ∈ C. Otherwise y can be
excluded from C since it is useless.

Fix x ∈ P. For each y ∈ C we have
P(Y = y |X = x) = P(Y = y) > 0. Therefore for each y ∈ C there
must be some key k ∈ K such that y = ek(x). It follows that
|K| ≥ |C|.
The encryption is injective giving |C| ≥ |P|.
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Perfect Secrecy

Theorem (Shannon)

Let (P,C,K,E,D) be a cryptosystem such that |P| = |C| = |K|. Then the
cryptosystem provides perfect secrecy if and only if every key is used with
equal probability 1/|K|, and for every x ∈ P and every y ∈ C, there is a
unique key k such that ek(x) = y.

Proof.

Let us suppose the given cryptosystem achieves a perfect secrecy. As
argued above for each x and y there must be at least one key such that
ek(x) = y . We have the inequalities

|C| = |{ek(x) : k ∈ K}| ≤ |K|. (10)
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Perfect Secrecy

Proof.

We assume that |C| = |K| and therefore

|{ek(x) : k ∈ K}| = |K|

giving there do not exist two different keys k1, k2 ∈ K such that
ek1(x) = ek2(x) = y . hence, for every x and y there is exactly one k such
that ek(x) = y .
Denote n = |K|, let P = {xi |1 ≤ i ≤ n} and fix a ciphertext element y .
We can name keys k1, k2, . . . , kn in the way that eki

(xi ) = y . Using Bayes’
theorem we have

P(X = xi |Y = y) =
P(Y = y |X = xi )P(X = xi )

P(Y = y)

=
P(K = ki )P(X = xi )

P(Y = y)
.

(11)
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Perfect Secrecy

Proof.

The perfect secrecy condition gives P(X = xi |Y = y) = P(X = xi ) and
we have P(K = ki ) = P(Y = y). This gives that all keys are used with
the same probability. Since there are |K| keys, the probability is 1/|K|.
Conversely, suppose the conditions are satisfied and we want to show
perfect secrecy. The proof is analogous to the proof of perfect secrecy of
the Shift cipher.
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Part II

Spurious Key and Unicity Distance
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Spurious Key

Theorem

Let (P,C,K,E,D) be a cryptosystem. Then

H(K |C ) = H(K ) + H(P)− H(C ).

Proof.

First observe that H(K , P, C ) = H(C |K , P) + H(K , P). Now, the key and
the plaintext determine the ciphertext uniquely, since y = ek(x). This
implies H(C |K , P) = 0. Hence, H(K , P, C ) = H(K , P), but K and P are
independent and we have

H(K , P, C ) = H(K , P) = H(K ) + H(P).
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Spurious Key

Proof.

Analogously, since the key and ciphertext determine the plaintext uniquely,
we have H(P|C , K ) = 0 and hence H(K , P, C ) = H(K , C ). We compute

H(K |C ) =H(K , C )− H(C )

=H(K , P, C )− H(C )

=H(K ) + H(P)− H(C )

(12)

what is the desired result.
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Spurious Key

Let us discuss now per symbol entropy of the plaintext.Let us consider that
our plaintext is an English text. As a first approximation of the entropy per
symbol we can take the entropy of the probability distribution of letters in
English text. This gives us entropy estimate around 4.19 However, letters
in an English text are not independent, their probability greatly varies
depending on their predecessors. Therefore we should consider probability
of all n-grams with n→∞ and divide it by n, much like in the case of the
entropy rate. As an approximation we can take .e.g bigrams or trigrams.
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Spurious Key

Definition

Let L be a natural language described by random variables P1, P2, . . . .
The entropy of the language is defined as

HL = lim
n→∞

H(P1, P2, . . . , Pn)

n

and the redundancy of the language is defined to be

RL = 1− HL

log2 |P|
,

where P here denotes =(PI ).
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Spurious Key

A random language would require entropy log2 |P| and the redundancy
therefore measures the fraction of ”excess” characters that we consider to
be redundant. Various experiments for the English language gave
1.0 ≤ Hl ≤ 1.5
Let us denote

P(n) = (P1, P2, . . . , Pn),

i.s. the random variable describing possible n-grams of plaintext. Given
probability distribution of P(n) and K we can compute the induced
probability on C (n), what is the random variable describing all possible
n-grams of ciphertext. For a given y ∈ =(C (n)) we define

Ky = {k ∈ K|∃x ∈ P(n) such that P(X = x) > 0 and ek(x) = y},

i.e. Ky is the set of keys such that y is an encryption of a meaningful
plaintext.
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Spurious Key

If we observe the ciphertext y , we know that there is only one real key and
Ky is the set of possible candidates to the key. The other keys are said to
be spurious. Therefore for a particular y there are |Ky | − 1 spurious keys.
The average number of spurious keys over all possible ciphertexts of length
n is

sn =
∑
y∈Cn

P(C (n) = y)(|Ky | − 1)

=
∑
y∈Cn

P(C (n) = y)|Ky | −
∑
y∈Cn

P(C (n) = y)

=
∑
y∈Cn

P(C (n) = y)|Ky | − 1.

(13)

Using the theorem from the beginning of the section we have

H(K |C (n)) = H(K ) + H(P(n))− H(C (n)).
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Spurious Key

We can estimate for sufficiently large n

H(P(n)) ≈ nHL = n(1− RL) log2 |P|.

Obviously,
H(C (n)) ≤ n log2 |C|.

Then, if |C| = |P|, it follows that

H(K |C (n)) ≥ H(K )− nRL log2 |P|. (14)
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Spurious Key

Next, we want to relate H(K |C (n)) to the number of spurious keys sn. We
compute

H(K |C (n)) =
∑
y∈Cn

P(C (n) = y)H(K |C (n) = y)

≤
∑
y∈Cn

P(C (n) = y) log2 |Ky |

Jensen’s inequality
≤ log2

∑
y∈Cn

P(C (n) = y)|Ky |

= log2(sn + 1).

(15)

Combining with (14) we obtain

H(K )− nRL log2 |P| ≤ log2(sn + 1). (16)
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Spurious Key

In the case when keys are chosen with uniform probability we obtain

Theorem

Suppose (P,C,K,E,D) is a cryptosystem where |C| = |P| and keys are
chosen equiprobably. Let RL denotes the redundancy of the underlying
language. Then, given a ciphertext string of sufficient length n the
expected number of spurious keys satisfies

sn ≥
|K|
|P|nRl

− 1.

Note that the quantity sn approaches 0 exponentially quickly as n
increases. Also, the estimate may be not accurate for small values of n.
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Unicity distance

Definition

The unicity distance of a cryptosystem is the value n0 at which the
expected number of spurious keys becomes 0.

If we set sn = 0 and solve the equation we get the estimate

n0 ≈
log2 |K|

RL log2 |P|
. (17)

In case of the substitution cipher |P| = 26 and |K| = 26!. If we take
RL = 0.75 we obtain n0 ≈ 25.
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