Randomness extractors

Jan Bouda

FI MU

May 22, 2010

Jan Bouda (FI MU)

Randomness extractors

▲ ▲ 볼 ▶ 볼 ∽ ९ ୯ May 22, 2010 1 / 24

<ロ> (日) (日) (日) (日) (日)

Part I

Extracting randomness

Jan Bouda (FI MU)

Randomness extractors

May 22, 2010 2 / 24

<ロ> (日) (日) (日) (日) (日)

Random Numbers in Computer Science

- Random numbers are of crucial importance for a waste number of computer science applications.
- Cryptography is impossible without random numbers.
 - Cryptographic keys encryption, authentication, digital signatures
 - Random choices in cryptographic algorithms and protocols zero knowledge proofs
- Randomized algorithms
- Communication protocols
- Practically all these applications
 - inherently require randomness generated uniformly
 - or their analysis is performed for uniform random numbers.

(日) (同) (三) (三)

Extraction from Know Probability Distribution

- In contrast to our requirements, most available sources of randomness generate non-uniform output.
- We have to partition the set of outputs into set of constant probability.
- Depending on the output probability distribution, this may be impossible.

Jan Bouda (FI MU)

Randomness extractors

May 22, 2010 4 / 24

Extraction from Unknown Probability Distribution

- The probability distribution of the random number generator output may vary during the computation.
- This might be due to
 - low quality of the generator design,
 - external hard-to-control effects, such as temperature,
 - or an attack of an adversary.
- Extraction is still possible, given some limitations on the output probability distributions.

(人間) トイヨト イヨト

Von Neumann Extractor

- Source produces a sequence of random bits, that are generated independently according to (an unknown) a fixed probability distribution.
- On each position the source generates independently

0 with probability p1 with probability (1 - p).

• Von Neumann extractor divides the bit sequence into pairs and for each pair of bits it takes action depending on the value

00 outputs nothing 11 outputs nothing 01 outputs 0 11 outputs 1.

・ロン ・四 ・ ・ ヨン ・ ヨン

• For the aforementioned source the output is always a sequence of independent and uniformly distributed bits.

- 4 同 ト - 4 三 ト - 4 三

Part II Randomness Extractors

Jan Bouda (FI MU)

Randomness extractors

 Image: May 22, 2010
 Image: Solution of the solution o

イロト イヨト イヨト イヨト

Towards extractor definition

- The purpose of an extractor is to transform an input (biased) probability distribution to a probability distribution that is (close to) uniform distribution.
- Assume we have a biased distribution X on X.
- A randomness extractor is function e : X → Y, such that the distribution Y on Y induced by the distribution X, i.e.

$$P(Y = y) = \sum_{x \in \mathbf{X}, e(x) = y} P(X = x),$$

is close (to be specified later) to the uniform distribution.

• Such an extractor has natural limitations, namely for a fixed e, and two distributions X_1 and X_2 mapped by e to uniform distribution, it holds that

$$\forall y \in \mathbf{Y} \sum_{x \in \mathbf{X}, e(x)=y} P(X_1 = x) = P(Y = y) = \sum_{x \in \mathbf{X}, e(x)=y} P(X_2 = x).$$

Towards extractor definition

This means that e partitions **X** to pre-images of elements of **Y**.

イロト イポト イヨト イヨト 二日

Towards extractor definition

- We may overcome this limitation by allowing a (small) auxiliary uniform input Z.
- This would give us the seeded extractor $e: \mathbf{X} \times \mathbf{Z} \rightarrow \mathbf{Y}$.
- We naturally expect that the extractor should be useful, i.e. to produce some randomness. This is rephrased as |Y| > |Z|.

(日) (周) (三) (三)

Trace Distance of Probability Distributions

Definition

Let X and Y be random variables defined on the same sample space S with probability distributions p_X and p_Y , respectively. The **trace distance** (or L_1 **distance**) of random variables X and Y is

$$d(X,Y) = \frac{1}{2}\sum_{a\in\mathcal{S}} |p_X(a) - p_Y(a)| = \max_{A\subseteq\mathcal{S}} |P(X\in A) - P(Y\in A)|. \quad (1)$$

X and Y are ϵ -close in L_1 iff

$$d(X,Y) \le \epsilon. \tag{2}$$

(日) (周) (三) (三)

Jan Bouda ((FI MU)
-------------	--------	---

Definition

Let $\mathcal{P}(\mathbf{X})$ be the set of all probability distributions on \mathbf{X} , and $\mathcal{S} \subset \mathcal{P}(\mathbf{X})$. Then $e : \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (\mathcal{S}, ϵ) (seeded) **randomness extractor** iff for all $X \in \mathcal{S}$

$$d(e(X, U_Z), U_Y) \le \epsilon, \tag{3}$$

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.

イロト イポト イヨト イヨト 二日

Part III

Min-entropy

Jan Bouda (FI MU)

Randomness extractors

May 22, 2010 14 / 24

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Randomness Extractor and min-entropy

Definition

The **min-entropy** of a probability distribution X is

$$H_{\infty}(X) = \min_{x \in \mathbf{X}} -\log P(X = x) = -\log \max_{x \in \mathbf{X}} P(X = x).$$
(4)

It is a good measure of the amount of randomness contained in the input probability distribution, as demonstrated by the next theorem.

・ 何 ト ・ ヨ ト ・ ヨ ト

Requirements for Source of Randomness

Theorem

Let X be a random variable with image $\mathbf{X} = \{0,1\}^n$ satisfying $H_{\infty}(X) \leq k-1$ for some $k \in \mathbb{N}$. Then there no $(\{X\}, 0)$ extractor e with $\mathbf{Z} = \{0,1\}^d$ and $\mathbf{Y} = \{0,1\}^m$ such that $m \geq k + d$.

Proof.

The fact that $H_{\infty}(X) \leq k-1$ implies that there is some element x such that $P(X = x) \geq 2^{-(k-1)}$. Therefore, for any auxiliary input $z \in \mathbf{Z}$ the probability of the corresponding output e(x, z) is at least $2^{-(k-1)}2^{-d}d = 2^{-(k+d-1)} > 2^{-m}$ and therefore the output probability distribution is not uniform and its distance from the uniform distribution is bounded by the min-entropy of the input.

Previous theorem shows us that the gain of randomness extraction is limited by the min–entropy of the source distribution.

Jan Bouda (FI MU)

Randomness extractors

Part IV Sources of Randomness

Jan Bouda (FI MU)

Randomness extractors

May 22, 2010 17 / 24

3

<ロ> (日) (日) (日) (日) (日)

Min-Entropy Source

A first example of an extractable set of probability distributions is the min-entropy source. We define the source with min-entropy k as $S \subset \mathcal{P}(\mathbf{X})$ such that $\forall X \in S \ H_{\infty}(X) \geq k$.

Definition

The function $e : \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (k, ϵ) (seeded) randomness extractor iff for all X with $H_{\infty}(X)$ it holds that

$$d(e(X, U_Z), U_Y) \le \epsilon, \tag{5}$$

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Towards Definition of Extractor

Theorem

There is no function $e : \{0,1\}^n \to \{0,1\}$ giving a single random bit (uniform distribution on $\{0,1\}$) as an output for any input random variable X on n-bit strings satisfying $H_{\infty}(X) \ge n-1$.

Intuitively, an input distribution with min-entropy at least n-1 contains much more randomness than necessary to obtain a single random bit.

Proof.

For every function e there is a bit $b \in \{0,1\}$ such that $|\{x \in \{0,1\}^n | e(x) = b\}| \ge 2^{n-1}$ since there are 2^n inputs in the domain of e. Let us consider a random variable X uniformly distributed on the set $\{x \in \{0,1\}^n | e(x) = b\} \subset \{0,1\}^n$. Such a random variable obeys $H_{\infty}(X) \ge n-1$ and yet the output distribution e(X) is constant, i.e. P(e(X) = b) = 1.

Part V

Extractors for Min-entropy Sources

Jan Bouda (FI MU)

Randomness extractors

May 22, 2010 21 / 24

イロト イヨト イヨト イヨト

3

Min-Entropy Strong Extractor

Definition

The function $e : \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (k, ϵ) (seeded) strong randomness extractor iff for all X with $H_{\infty}(X)$ it holds that

$$d([U_z, e(X, U_Z)], [U_Z, U_Y]) \le \epsilon,$$
(6)

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.

- The advantage of the strong extractor is that the output is close to the uniform distribution even if the value of U_Z is known.
- Next we will show how to implement a strong extractor using Wegman-Carter hashing.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

Let X be a random variable defined on $\mathbf{X} = \{0,1\}^n$ with min-entropy $H_{\infty}(X) \ge k$, $H = \{h|h : \{0,1\}^n \rightarrow \{0,1\}^{k-2e}\}$ be a universal₂ class of hash functions. Let $x \in_R \mathbf{X}$ be randomly chosen from \mathbf{X} according to X and h be randomly and uniformly chosen from H. Then the distribution of (h, h(x)) is 2^{-e} close to the uniform distribution in the trace distance, i.e. application of a function randomly chosen from H is a $(k, 2^{-e})$ strong randomness extractor.

イロト 不得下 イヨト イヨト 二日

Min-Entropy Extractor

Theorem

Let $X_1, X_2, ..., X_l$ be independent identically distributed random variables each defined on $\mathbf{X} = \{0, 1\}^n$ with min-entropy $H_{\infty}(X) \ge k$, $H = \{h|h : \{0, 1\}^n \rightarrow \{0, 1\}^{k-2e}\}$ be a universal₂ class of hash functions. Let $x_i \in_R \mathbf{X}$ be randomly chosen from \mathbf{X} according to X_i and h be randomly and uniformly chosen from H. Then the distribution of $(h, h(x_1), \ldots, h(x_l))$ is $l 2^{-e}$ close to the uniform distribution in the trace distance, i.e. I repeated applications of a fixed function randomly chosen from H is a $(k, l 2^{-e})$ strong randomness extractor.

イロト 不得 トイヨト イヨト 二日