Randomness extractors

Jan Bouda

FI MU

June 4, 2010

1 / 38

Part I

Extracting randomness

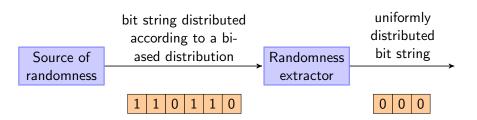
Random Numbers in Computer Science

- Random numbers are of crucial importance for a waste number of computer science applications.
- Cryptography is impossible without random numbers.
 - Cryptographic keys encryption, authentication, digital signatures
 - Random choices in cryptographic algorithms and protocols zero knowledge proofs
- Randomized algorithms
- Communication protocols

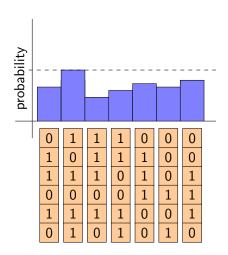
Practically all these applications

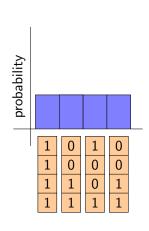
- inherently require randomness generated uniformly
- or their analysis is performed for uniform random numbers.

Randomness Extraction



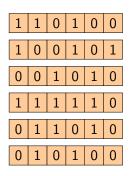
Randomness Extraction

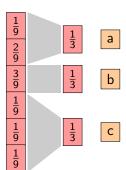




Extraction from Know Probability Distribution

- In contrast to our requirements, most available sources of randomness generate non-uniform output.
- We have to partition the set of outputs into set of constant probability.
- Depending on the output probability distribution, this may be impossible.





Extraction from Unknown Probability Distribution

- The probability distribution of the random number generator output may vary during the computation.
- This might be due to
 - low quality of the generator design,
 - external hard-to-control effects, such as temperature,
 - or an attack of an adversary.
- Non-uniform distribution models adversary's knowledge about the outcome of a (uniform) random number generator.
- Extraction is still possible, given some limitations on the output probability distributions.

Von Neumann Extractor

- Source produces a sequence of random bits, that are generated independently according to (an unknown) a fixed probability distribution.
- On each position the source generates independently

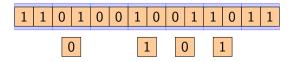
```
0 with probability p
1 with probability (1 - p).
```

 Von Neumann extractor divides the bit sequence into pairs and for each pair of bits it takes action depending on the value

```
00 outputs nothing
11 outputs nothing
01 outputs 0
10 outputs 1.
```

Von Neumann Extractor

 For the aforementioned source the output is always a sequence of independent and uniformly distributed bits.



9 / 38

Part II

Randomness Extractors

Towards Extractor Definition

- The purpose of an extractor is to transform an input (biased) probability distribution to a probability distribution that is (close to) uniform distribution.
- Assume we have a biased distribution X on X.
- A randomness extractor is function $e: \mathbf{X} \to \mathbf{Y}$, such that the distribution Y on \mathbf{Y} induced by the distribution X, i.e.

$$P(Y = y) = \sum_{x \in \mathbf{X}, e(x) = y} P(X = x),$$

is close (to be specified later) to the uniform distribution.

• Such an extractor has natural limitations, namely for a fixed e, and two distributions X_1 and X_2 mapped by e to uniform distribution, for each $y \in \mathbf{Y}$ it holds that

$$\sum_{x \in \mathbf{X}, e(x) = y} P(X_1 = x) = \sum_{x \in \mathbf{X}, e(x) = y} P(X_2 = x) = P(Y = y).$$

Jan Bouda (FI MU)

Randomness extractors

Randomness extractors

Randomness extractors

June 4, 2010

11 / 38

Towards extractor definition

This means that e partitions X to pre-images of elements of Y.

$$e: \mathbf{X} \to \mathbf{Y}$$
 $P(Y = a)$
 $0 0 0 0 0 0 0$
 a
 $0 0 0 0 0 1$
 $P(Y = b)$
 $0 0 0 0 1 1$
 \vdots
 $P(Y = f)$
 $1 1 1 1 1 1 1$
 f

Towards extractor definition

- We may overcome this limitation by allowing a (small) auxiliary uniform input Z.
- This would give us the seeded extractor $e: \mathbf{X} \times \mathbf{Z} \rightarrow \mathbf{Y}$.
- We naturally expect that the extractor should be useful, i.e. to produce some extra randomness. We require |Y| > |Z|.

Trace Distance of Probability Distributions

Definition

Let X and Y be random variables defined on the same sample space S with probability distributions p_X and p_Y , respectively. The **trace distance** (or L_1 **distance**) of random variables X and Y is

$$d(X,Y) = \frac{1}{2} \sum_{a \in S} |p_X(a) - p_Y(a)| = \max_{A \subseteq S} |P(X \in A) - P(Y \in A)|. \quad (1)$$

X and Y are ϵ -close in L_1 iff

$$d(X,Y) \le \epsilon. \tag{2}$$

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Extractor Definition

Definition

Let $\mathcal{P}(\mathbf{X})$ be the set of all probability distributions on \mathbf{X} , and $\mathcal{S} \subset \mathcal{P}(\mathbf{X})$. Then $e: \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (\mathcal{S}, ϵ) (seeded) **randomness extractor** iff for all $X \in \mathcal{S}$

$$d(e(X, U_Z), U_Y) \le \epsilon, \tag{3}$$

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.



Part III

Sources of Randomness

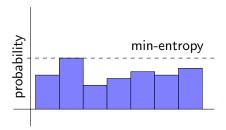
Randomness Extractor and min-entropy

Definition

The **min–entropy** of a probability distribution X is

$$H_{\infty}(X) = \min_{x \in \mathbf{X}} -\log P(X = x) = -\log \max_{x \in \mathbf{X}} P(X = x). \tag{4}$$

It is a good measure of the amount of randomness contained in the input probability distribution, as demonstrated by the next theorem.



Min-entropy Bounds Extractor Output

Theorem

Let X be a random variable with image $\mathbf{X}=\{0,1\}^n$ satisfying $H_{\infty}(X) \leq k-1$ for some $k \in \mathbb{N}$. Then there no $(\{X\},0)$ extractor with $\mathbf{Z}=\{0,1\}^d$ and $\mathbf{Y}=\{0,1\}^m$ such that $m \geq k+d$.

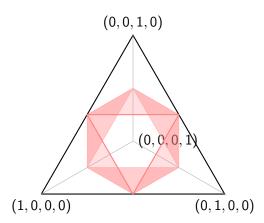
Proof.

The fact that $H_{\infty}(X) \leq k-1$ implies that there is some element x such that $P(X=x) \geq 2^{-(k-1)}$. Therefore, for any auxiliary input $z \in \mathbf{Z}$, the probability of the corresponding output e(x,z) is at least $2^{-(k-1)}2^{-d} = 2^{-(k+d-1)} > 2^{-m}$ and therefore the output probability distribution is not uniform and its distance from the uniform distribution is bounded by the min-entropy of the input.

Previous theorem shows us that the gain of randomness extraction is limited by the min–entropy of the source distribution.

Min-Entropy Source

A first example of an extractable set of probability distributions is the min-entropy source. We define the source with min-entropy k as $\mathcal{S} \subset \mathcal{P}(\mathbf{X})$ such that $\forall X \in \mathcal{S} \ H_{\infty}(X) \geq k$.



Min-Entropy Extractor

Definition

The function $e: \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (k, ϵ) (seeded) randomness extractor iff for all X with $H_{\infty}(X)$ it holds that

$$d(e(X, U_Z), U_Y) \le \epsilon, \tag{5}$$

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.

- Extractor is non-trivial if it extracts more randomness than it consumes as the auxiliary input, i.e. $|\mathbf{Y}| > |\mathbf{Z}|$.
- We want to extract as much randomness as possible, i.e. $|\mathbf{Y}| \longrightarrow 2^k |\mathbf{Z}|$.

Importance of Seed in Min-Entropy Extractor

Theorem

There is no function $e: \{0,1\}^n \to \{0,1\}$ giving a single random bit (uniform distribution on $\{0,1\}$) as an output for any input random variable X on n-bit strings satisfying $H_{\infty}(X) \ge n-1$.

Intuitively, an input distribution with min–entropy at least n-1 contains much more randomness than necessary to obtain a single random bit.

Proof.

For every function e there is a bit $b \in \{0,1\}$ such that $|\{x \in \{0,1\}^n | e(x) = b\}| \ge 2^{n-1}$ since there are 2^n inputs in the domain of e. Let us consider a random variable X uniformly distributed on the set $\{x \in \{0,1\}^n | e(x) = b\} \subset \{0,1\}^n$. Such a random variable obeys $H_{\infty}(X) \ge n-1$ and yet the output distribution e(X) is constant, i.e. P(e(X) = b) = 1.

Part IV

Carter-Wegman Hashing

22 / 38

Universal hashing

Definition

Let A and B be sets such that |A| > |B|. A family H of hash functions $h: A \to B$ is k-universal iff for any $x_1, x_2, \ldots, x_k \in A$ and a hash function $h \in H$ randomly and uniformly chosen from H it holds that

$$\mathcal{P}(h(x_1) = h(x_2) = \dots = h(x_k)) \le \frac{1}{|B|^{k-1}}.$$
 (6)

Definition

Let A and B be sets such that |A| > |B|. A family H of hash functions $h: A \to B$ is **strongly** k-universal iff for any $x_1 \neq x_2 \neq \cdots \neq x_k \in A$, any $y_1, y_2, \ldots, y_k \in B$ and a hash function $h \in H$ randomly and uniformly chosen from H it holds that

$$\mathcal{P}(h(x_1) = y_1 \wedge h(x_2) = y_2 \dots h(x_k) = y_k) \le \frac{1}{|B|^k}.$$
 (7)

Let $A=\{0,1,\ldots,m-1\}$ and $B=\{0,1,\ldots,n-1\}$ with $m\geq n$. Let $p\geq m$ be some prime. Consider the class of hash functions

$$h_{a,b}(x) = ((ax+b) \bmod p) \bmod n. \tag{8}$$

Let

$$H = \{h_{a,b} | 1 \le a \le p - 1, 0 \le b \le p\},\tag{9}$$

stressing that $a \neq 0$.

Theorem

H is 2-universal.

Proof.

We count the number of functions from H for which two fixed and distinct elements x_1 and x_2 from A collide. $x_1 \neq x_2$ implies

$$ax_1 + b \not\equiv ax_2 + b \pmod{p},$$

since the opposite occurs only if $a(x_1-x_2)\equiv 0\pmod p$. However, we know that neither $a\equiv 0\pmod p$ nor $x_1-x_2\equiv 0\pmod p$, what implies the equation.

Fixing x_1 and x_2 , for every pair $u \neq v \in B$ there exists exactly one pair a, b such that $ax_1 + b \equiv u \pmod{p}$ and $ax_2 + b \equiv v \pmod{p}$.

Proof.

Solving the system of two linear equations we obtain the unique solution

$$a = \frac{v - u}{x_2 - x_1} \bmod p \tag{10}$$

$$b = u - ax_1 \bmod p. \tag{11}$$

Since there is exactly one hash function for each pair (a, b), we have there is exactly one hash function in H such that

$$ax_1 + b \equiv u \pmod{p}$$
 and $ax_2 + b \equiv v \pmod{p}$.

We have that the number of collisions equals to the number of pairs (u, v) from $\{0, \ldots, p-1\}$ satisfying $u \neq v$ and $u \equiv v \pmod{n}$. For each choice of u there are at most $\lceil p/n \rceil - 1$ possible values of v.

Proof.

Together we have that there are at most

$$p(\lceil p/n \rceil - 1) \le p\left(\frac{p + (n-1)}{n} - \frac{n}{n}\right) = \frac{p(p-1)}{n}.$$

such pairs. Therefore, the collision probability is

$$P(h_{a,b}(x_1) = h_{a,b}(x_2)) \le \frac{p(p-1)/n}{p(p-1)} = \frac{1}{n}.$$

Part V

Extractors for Min-entropy Sources

Min-Entropy Strong Extractor

Definition

The function $e: \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$ is a (k, ϵ) (seeded) **strong randomness extractor** iff for all X with $H_{\infty}(X)$ it holds that

$$d([U_z, e(X, U_Z)], [U_Z, U_Y]) \le \epsilon, \tag{12}$$

where U_Z is the uniform distribution on **Z** and U_Y is the uniform distribution on **Y**.

- The advantage of the strong extractor is that the output is close to the uniform distribution even if the value of U_Z is known.
- Next we will show how to implement a strong extractor using Wegman-Carter hashing.

Min-Entropy Extractor

Theorem

Let X be a random variable defined on $\mathbf{X} = \{0,1\}^n$ with min-entropy $H_{\infty}(X) \geq k$, $H = \{h|h: \{0,1\}^n \rightarrow \{0,1\}^{k-2e}\}$ be a universal₂ class of hash functions. Let $x \in_R \mathbf{X}$ be randomly chosen from \mathbf{X} according to X and h be randomly and uniformly chosen from H. Then the distribution of (h,h(x)) is 2^{-e} close to the uniform distribution in the trace distance, i.e. application of a function randomly chosen from H is a $(k,2^{-e})$ strong randomness extractor.

Min-Entropy Extractor

Theorem

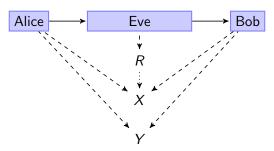
Let X_1, X_2, \ldots, X_l be independent identically distributed random variables each defined on $\mathbf{X} = \{0,1\}^n$ with min-entropy $H_\infty(X) \geq k$, $H = \{h|h: \{0,1\}^n \to \{0,1\}^{k-2e}\}$ be a universal₂ class of hash functions. Let $x_i \in_R \mathbf{X}$ be randomly chosen from \mathbf{X} according to X_i and h be randomly and uniformly chosen from H. Then the distribution of $(h,h(x_1),\ldots,h(x_l))$ is $l \, 2^{-e}$ close to the uniform distribution in the trace distance, i.e. l repeated applications of a fixed function randomly chosen from H is a $(k,l \, 2^{-e})$ strong randomness extractor.

Part VI

Privacy Amplification

Initial Situation

- Alice sends an information to Bob via a channel that can be (partially) observed by Eve.
- After the communication the information between Alice and Bob is perfectly preserved, described by a random variable X.
- Eve has a partial knowledge of X represented by a random variable R.
- Alice and Bob want to extract a shorter shared information Y, such that E contains no information about Y.



Eliminating Eve

Assuming Eve know's the value of R to be r, her knowledge about X is the conditional probability distribution

$$P(X = x | R = r).$$

- Alice and Bob agree publicly on a strong extractor $e: \mathbf{X} \times \mathbf{Z} \to \mathbf{Y}$.
- Alice sends $x \in \mathbf{X}$ to Bob (Eve learns partial information $r \in \mathbf{R}$).
- Alice chooses randomly and uniformly $z \in \mathbf{Z}$ and sends it via public and authenticated channel to Bob (Eve learns it).
- Both Alice and Bob compute y = e(x, z).

Eve has no information about y, her prediction is (almost) uniform distribution over \mathbf{Y} .

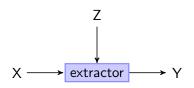
- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

Eliminating Eve

This is possible thanks to the properties of the strong extractor:

$$d([U_z, e(X, U_Z)], [U_Z, U_Y]) \le \epsilon, \tag{13}$$

We have to evaluate the min-entropy of the conditional probability distribution.



Part VII

More Extractors

Other Types of Sources and Generalized Extractors

- von Neumann sources: independence, fixed/limited bias
- Santha-Vazirani sources: possibly dependent, limited bias
- independent sources
 - one source vs. multi-source point of view
 - blenders
- bit-fixing sources
 - cryptographic application
 - model e.g. adversary's knowledge

Condensers - increase of min-entropy.

Thank You for Your Attention!