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Markov chains

In the last lecture we introduced the Markov process, i.e.

Definition (Markov process)

A random process {X (t)|t ∈ T} is called a Markov process if for any
t0 < t1 < · · · < tn < t the conditional distribution of X (t) given the
values of X (t0), . . . ,X (tn) depends only on X (tn), i.e.

P[X (t) ≤ x |X (tn) = xn, . . . ,X (t0) = x0] = P[(X (t) = x |X (tn) = xn].
(1)

In this course we will examine only Markov processes with discrete state
space (known as Markov chains) and discrete parameter space (known as
discrete-state Markov processes). Combining, we are interested in
discrete-time Markov chains (DTMC).
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Transition probabilities

Since we are considering only discrete-time Markov chains, we will
denote the random variables forming the chain as X1,X2, . . . .

Let us denote by pn(j) the probability

pn(j) = P(Xn = xj)

and let
pnm(k |j) = P(Xn = xk |Xm = xj) 0 ≤ m ≤ n

denotes the probability that the process makes a transition from state
j at step m to state k at step n. pnm(k |j) is the transition
probability function of the Markov chain.

In our analysis we make another simplification – we will consider only
homogenous Markov chains, i.e. chains where the transition
probability distribution depends only on the number of steps, i.e.
n −m.
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Transition probabilities

We use the simpler notation

pn(k |j) = P(Xm+n = xk |Xm = xj)

to denote the n–step transition probability. pn(k|j) is the
probability that a process will move from state j to state k exactly in
n steps.

The one-step transition probability is

p(k |j) = p1(k|j) = P(Xn = xk |Xn−1 = xj).

For completeness we define also the zero-step transition probability as

p0(k |j) = δk,j .
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Transition probabilities

We can use the definition of the Markov process to derive the joint
probability distribution of the homogenous discrete-time Markov chain
after nth steps as

P(X0 = x0,X1 = x1, . . .Xn = xn) =

=P(Xn = xn|X0 = x0, . . .Xn−1 = xn−1)P(X0 = x0, . . .Xn−1 = xn−1) =

=P(Xn = xn|Xn−1 = xn−1)P(X0 = x0, . . .Xn−1 = xn−1) =

=p(n|n − 1)P(X0 = x0, . . .Xn−1 = xn−1) =

...

=p(n|n − 1) . . . p(1|0)p0(0).

(2)

Jan Bouda (FI MU) Lecture 5 - Markov processes April 19, 2009 5 / 25



Transition probabilities

Therefore, all joint probability distributions can be determined from the
initial probability distribution of the random variable X0. It is called the
initial probability vector and specified as

p0 = (p0(0), p0(1), . . . )T ,

where 0, 1, . . . denote all possible states and (· · · )T denotes a transpose of
a row vector, i.e. a column vector.
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Matrix and graph representation of HDTMC

The one-step transition probabilities are compactly specified in the form of
a transition matrix

P =


p(0|0) p(0|1) p(0|2) . . .
p(1|0) p(1|1) p(1|2) . . .

p(2|0) p(2|1)
. . .

...
...

. . .

 .

The entries of the matrix are nonnegative and all columns sum to one.
Any matrix with such properties is called the stochastic matrix.
Equivalent description of one-step transition probabilities are given by the
state transition diagram. The state transition diagram is an oriented
graph G = (V ,E , v), where E ⊆ V × V and v : E → [0, 1],
v [(i , j)] = p(j |i). We may observe that for any vertex i the values of
outgoing edges sum to one.
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HDTMC - example

Example

Let us consider a composite communication channel formed by a sequence
of homogenous binary communication channels. Let each of the channels
preserves 0 with probability 1− a and 1 with probability 1− b. Such a
composite channel is a two state Markov process (with states 0 and 1) and
the transition matrix reads

P =

(
1− a b

a 1− b

)
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Computing n step transition probabilities

Let us present a method how to derive the n step probabilities from single
step transition probabilities. Recall that pn(j |k) = P(Xm+n = j |Xm = k).
Also, the probability that the process is in state k at mth step provided
X0 = xi is pm(k|i). Using the Markov property the probabilities pn(j |k)
and pm(k |i) are independent. Therefore, to calculate the total transition
probability for (m + n) we use the theorem of total probability to get

pm+n(j |i) =
∑
k

pn(j |k)pm(k |i). (3)

Applying to the special case when n = 1 we get

pm+1(j |i) =
∑
k

p(j |k)pm(k |i). (4)
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Computing n step transition probabilities

Let Pn denotes the n-step transition matrix having the entries
(Pn)j ,i = pn(j |i). We express the matrix Pn as

Pn = PPn−1 = Pn

showing that all transition probabilities of HDTMC are completely
described by the single-step probabilities.
We can obtain the marginal probability distribution of Xn from the initial
vector and n-step transition probability as

pn(j) = P(Xn = xj) =
∑

i

P(X0 = xi )P(Xn = xj |X0 = xi ) =
∑

i

p0(i)pn(j |i).
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Computing n step transition probabilities

Let the probability distribution of Xn be pn = [pn(0), pn(1), . . . ]T . In
terms of vectors we obtain

pn = Pnp0 = Pnp0.

The step-dependent probabilities of a HDTMC are completely determined
by the one-step transition probabilities and the initial probability
distribution.
In case the state space of a Markov chain is finite, the computation of the
n step probabilities is relatively easy as well as the calculation of respective
Xn’s. For Markov chains with countable state space the computation is
problematic and therefore we have to use alternative methods that are out
of scope of this course.
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Computing n step transition probabilities

As an illustration we give explicit formula for n–step transition probabilities
in case of the channel with the one–step transition matrix

P =

(
1− a b

a 1− b

)
, 0 ≤ a, b ≤ 1.

In the following theorem we impose an extra restriction that
|1− a− b| < 1 what holds if and only if neither a = b = 0 nor a = b = 1.
The case when |1− a− b| = 1 will be treated separately.
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Computing n step transition probabilities

Theorem

Given a Markov process with the one-step transition matrix

P =

(
1− a b

a 1− b

)
, 0 ≤ a, b ≤ 1, |1− a− b| < 1

the n step transition matrix is

Pn =

(
b+a(1−a−b)n

a+b
b−b(1−a−b)n

a+b
a−a(1−a−b)n

a+b
a+b(1−a−b)n

a+b

)
.

Jan Bouda (FI MU) Lecture 5 - Markov processes April 19, 2009 13 / 25



Computing n step transition probabilities

Proof.

Note that

p1(0|0) = 1− a p1(0|1) = b

p1(1|0) = a p1(1|1) = 1− b.

Using the theorem of total probability we get

pn(0|0) = (1− a)pn−1(0|0) + bpn−1(1|0), n > 1. (5)

We use that the columns of Pn−1 sum to one and get

pn−1(1|0) = 1− pn−1(0|0),
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Computing n step transition probabilities

Proof.

and Eq. (5) transforms to

pn(0|0) = b + (1− a− b)pn−1(0|0), n > 1. (6)

This implies that

pn(0|0) =b + b(1− a− b) + b(1− a− b)2 + · · ·
+ b(1− a− b)n−2 + (1− a)(1− a− b)n−1

=b

[
n−2∑
k=0

(1− a− b)k

]
+ (1− a)(1− a− b)n−1.

(7)
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Computing n step transition probabilities

Proof.

Using the summing of geometric series we obtain

n−2∑
k=0

(1− a− b)k =
1− (1− a− b)n−1

1− (1− a− b)
=

1− (1− a− b)n−1

a + b
b

and thus

pn(0|0) =
b

a + b
+

a(1− a− b)n

a + b
.

We get pn(1|0) by subtracting pn(0|0) from unity. We obtain expression
for pn(0|1) and pn(1|1) in a similar way.
Alternatively we can use determinant. Using det(P) = 1− a− b,
det(Pn) = (1− a− b)n and the fact that Pn is a stochastic matrix we get

det(Pn) = pn(0|0)− pn(0|1)

and therefore
pn(0|1) = pn(0|0)− (1− a− b)n.

Finally,
pn(1|1) = 1− pn(0|1).
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Computing n step transition probabilities

Example

Let us again consider the sequence of binary channels with transition
matrix

P =

(
1− a b

a 1− b

)
and put a = 1/4 and b = 1/2. We can apply the previous theorem to get
n–step transition probability and observe the limit limn→∞ Pn. Solution at
exercises ;-).
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Closures and closed sets

We say that xk can be reached from xj if there exists some n ≥ 0 such
that pn(k |j) > 0.

Definition

A set C of states is closed if no state outside C can be reached from any
state in C . For any set of states C the smallest closed set containing C is
called the closure of C . A single state forming a closed set is called
absorbing. A Markov chain is irreducible if there exists no closed set
except the set of all states.

In other words, C is closed if and only if p(k |j) = 0 for all xj ∈ C and xk

outside C . It is easy to see that in this case pn(k |j) = 0 for every n.
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Closures and closed sets

Theorem

If in matrices Pn (n = 1, . . . ) all rows and columns corresponding to states
outside the closed set C are deleted, we get stochastic matrices Qn

obeying Qn = QQn−1.

In this way we obtain a Markov chain induced on C that can be studied
independently of the rest of the states. In case the state xk is absorbing,
we have p(k|k) = 1 and the theorem reduces to single element.
Markov chain is irreducible if and only if every state can be reached from
every other state.
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Classification of states

Definition

The state xj has period t > 1 if pn(j |j) = 0 unless n is a multiple of t and
t is the largest integer with this property. The state is aperiodic if no
such t exists.

We can turn a periodic state into an aperiodic in the way that we consider
only a subchain of trials number t, 2t, 3t, . . . . The new Markov chain has
transition probabilities p′(k |i) = pt(k|i).

Let f k,j
n be the probability that a process starting in xj enters xk first time

at the nth step. We put f k,j
0 = δk,j and

f k,j =
∞∑

n=1

f k,j
n (8a)

µj =
∞∑

n=1

nf j ,j
n . (8b)
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Classification of states

f k,j is the probability that starting from xj the system will ever reach xk

implying f k,j ≤ 1. When f k,j = 1, {f k,j
n }n is a probability distribution

known as first-passage probability distribution for xk . In particular, {f j ,j
n } is

the distribution of the recurrence times for xj . Equation (8b) has meaning
only if f j ,j = 1. In case µj is finite, it is the mean recurrence time for xj .
If the first passage through xk occurs at the v th trial (1 ≤ v ≤ n − 1) the
conditional probability at the nth trial is pn−v (k |k). Using p0(k |k) = 1 we
obtain

pn(k |j) =
n∑

v=1

f k,j
v pn−v (k |k). (9)

Evaluating sequentially for n = 1, 2, . . . we get f k,j
1 , f k,j

2 , . . . . Conversely, if

the f k,j
n are known for some pair k , j , then the equation determines all

transition probabilities pn(k |j).
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Classification of states

Interesting question is whether it is certain that process will return to a
particular state. If it is the case, we are interested whether the mean time
of recurrence is finite or not.

Definition

The state xj is persistent (recurrent) if f j ,j = 1 and transient otherwise.
A persistent state is called null state if µj =∞ and nonnull otherwise.

States of irreducible Markov chain are all of the same type, i.e. when one
state is aperiodic so are all other states and such a Markov chain is called
aperiodic.
n–step transition probabilities pn(j |i) of finite, irreducible, aperiodic
Markov chain become independent of i as n→∞.
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Classification of states

The limiting state probability is

vj = lim
n→∞

pn(j) = lim
n→∞

∑
i

p0(i)pn(j |i) =

=
∑

i

p0(i)
[

lim
n→∞

pn(j |i)
]

=

= lim
n→∞

pn(j |i)
∑

i

p0(i) =

= lim
n→∞

pn(j |i).

(10)

It holds that
∑

j vj ≤ 1 and either all vj = 0 or
∑

j vj = 1. We will
concentrate on the latter case.
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Classification of states

It is not difficult to see that the probabilities vj satisfy

vj =
∑

i

vip(j |i)

or, in matrix notation
~v = P~v .

~v is an eigenvector of P with the corresponding eigenvalue λ = 1 with the
property

vj ≥ 0,
∑

j

vj = 1.

In general, there can be more than one eigenvector with this property,
however, there is only one limiting vector.
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Classification of states

Theorem

For an aperiodic Markov chain the limiting probabilities vj exist.

Theorem

For a finite, irreducible, aperiodic Markov chain the limiting probability
vector is the only vector satisfying ~v = P~v.
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