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Part I

Random Walk and the Ruin Problem
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Classical ruin problem

Consider a gambler who wins or loses a euro with probability p and
q = 1− p, respectively.

Let his initial capital be z and he plays against an adversary with
initial capital a− z , i.e. their combined capital is a.

The game continues until the gambler is ruined (his capital is 0) or he
wins, i.e. his capital grows to a. In other words, the game continues
until one of the players is ruined.

We are interested in the probability of gambler’s ruin and the
probability distribution of the duration of the game.

This is the classical ruin problem.
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Random walk

Physical applications include e.g. position of a particle on the x-axis.
This particle starts from the position z and moves in each step in
positive or negative direction.

The position of the particle after n steps is the gambler’s capital after
n trials.

The process terminates when the particle reaches first time position 0
or a.

We say that the particle performs a random walk with absorbing
barriers at 0 and a.

This random walk is restricted to positions 1, 2, . . . a− 1.

In the absence of barriers the random walk is called unrestricted.
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Random walk - generalizations

In the limiting case a→∞ we get a random walk on a semi-infinite
line (0,∞). In this case a particle starting at z > 0 performs a
random walk until the moment it reaches the origin first time. This is
called the first-passage time problem.

A possible generalization is to replace absorbing barrier by either
reflecting or elastic barrier.

When particle reaches position next to a reflecting barrier, say e.g.
1, then it has the probability p to move to 2 and the probability q to
stay at 1 (particle tries to go to 0, but is reflected back).

In gambling terminology this means that player is never ruined. His
adversary generously grants him one euro in case the player looses his
last one.
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Random walk - generalizations

An elastic barrier is a generalization uniting both absorbing and
reflecting barrier.

The elastic barrier at the origin works in the following way. From
position 1 the particle

I moves with probability p to position 2.
I stays in 1 with probability δq at 1.
I with probability (1− δ)q it moves to 0 and is absorbed (process

terminates).

For δ = 0 we get the absorbing barrier.

For δ = 1 we get the reflecting barrier.
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Classical ruin problem

Let us revisit the problem of the classical ruin. Let qz be the probability of
gambler’s ultimate ruin and pz of his winning, given his initial capital is z .
In the random walk terminology qz and pz are probabilities that particle is
absorbed at 0 or a, respectively. We will calculate these probabilities and
verify that they sum to 1 to rule out the possibility of an unending walk of
nonzero probability.
After the first trial the gambler’s capital is either z + 1 or z − 1 and
therefore

qz = pqz+1 + qqz−1 (1)

provided 1 < z < a− 1. Note that this equation is linear, i.e. for A,B ∈ R
and solutions qz and q′z of Eq. (1) Aqz + Bq′z is a solution of Eq. (1) too.
To complete our derivations, we observe that

q0 = 1 and qa = 0. (2)

Systems of equations of the form (1) are known as difference equations
and (2) represents boundary conditions on qz .
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Classical ruin problem

Suppose that p 6= q. It is easy to verify that the system of equations (1)
admits solutions qz = 1 and qz = (q/p)z (substitute these values to (1) to
verify). From linearity it follows that for any parameters A and B

qz = A + B

(
q

p

)z

(3)

is solution of (1). On the other hand, the previous equation describes all
possible solutions of the system of equations (1). To see this, observe that
any particular solution is fully defined by two values of qi , e.g. q0 and q1

(when we fix these two values we can calculate all remaining recursively).
We substitute (3) into two equations of the form (1) for two chosen values
of qi . This gives exactly one solution of eq. (3). Therefore, (3) specifies
all possible solution of the system of equations (1).
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Classical ruin problem

Using the boundary conditions (2) we get A + B = 1 and
A + B(q/p)a = 0. Combining with (3) we get

qz =
(q/p)a − (q/p)z

(q/p)a − 1
(4)

as a solution of (1) satisfying the boundary (2).
The previous derivation fails if p = q = 1/2 since probabilities qz = 1 and
qz = (q/p)z are identical. However, qz = z is a solution of Eq. (1) in this
case, and therefore, using analogous arguments as in the previous case,
qz = A + Bz are all solutions of the system (1). Using the boundary
conditions (2) we get

qz = 1− z

a
. (5)

The same solution we obtain from (4) by calculating the limit for p → 1/2.
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Classical ruin problem

The probability that player wins is equal to the probability that his
adversary is ruined and therefore we obtain it from equations (4) and (5)
when replacing p, q and z by q, p and a− z , respectively. It follows that
pz + qz = 1.
In this game gambler’s payoff is a random variable G attaining values a− z
and −z with probabilities 1− qz and qz , respectively. The expected gain is

E (G ) = a(1− qz)− z . (6)

Clearly, E (G ) = 0 if and only if p = q = 1/2. This means that using such
a sequence of games, a fair game remains fair and no unfair game can
become a fair one.
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Classical ruin problem - remarks

In case p = q the player having 999 euros has the probability 0.999 to
win one euro before loosing all his capital. With probabilities q = 0.6
and p = 0.4 the game is unfair, but still the probability of winning a
euro is around 2/3.

In general, a gambler with large capital z has a reasonable chance to
win a small amount a− z before being ruined.

Interpretation!

Example

A certain man used to visit Monte Carlo year after year and was always
successful to win enough to cover his vacations. He believed in a magical
power of his luck. Assuming that he started with ten time the cost of
vacation, he had chance 0.9 in each year to cover his vacations from the
wins. Is it really the ultimate way how to pay your vacations?
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Classical ruin problem - changing the stakes

Let us suppose that we have fixed capitals, i.e. z and a, and we are
changing the stakes, e.g. instead of one euro we bet in each trial 50 cents.
We obtain the corresponding probability of ruin q′z from (4) on replacing z
by 2z and a by 2a

q′z =
(q/p)2a − (q/p)2z

(q/p)2a − 1
= qz

(q/p)a + (q/p)z

(q/p)a + 1
. (7)

For q > p the last fraction is greater than unity and q′z > qz . Therefore, is
stakes are decreased, the probability of ruin increases for gambler with
p < 1/2. On contrary, if stakes are doubled, the probability of ruin
decreases for player with success probability p < 1/2 and increases for the
adversary.
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Classical ruin problem - changing the stakes

Example

Suppose that Alice owns 90 euros and Bob 10 and let p = 0.45 (the game
is unfavorable for Alice). In case in each trial the bet is 1 euro, the
probability of Alice’s ruin is appx. 0.866. If the same game is played with
bet 10 euros, then the probability of Alice’s ruin drops to 0.210. In
general, multiplying the bet by k results in equation where we replace z by
z/k and a by a/k .
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Classical ruin problem - rich adversary:-)

The case when a =∞ corresponds to the case when the adversary is
infinitely rich. Sending a→∞ in Equations (4) and (5) we get

qz =

{
1 if p ≤ q

(q/p)z if p > q.
(8)

qz is the probability of ultimate ruin of a gambler with initial capital z
playing against an infinitely rich adversary. In random walk terminology it
is the probability that the particle ever reaches the origin. Alternatively, it
is the probability that a random walk starting at the origin reaches the
position z > 0 (with no limitation towards −∞). Therefore, this
probability equals 1 if p ≥ q and (p/q)z when p < q.
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Classical ruin problem - expected duration of the game

Let us return to the original example with absorbing barriers at 0 and a.
Suppose the duration of the game (number of trials until one of the
barriers is reached) has a finite expectation (indeed it has) Dz . We would
like to calculate it.
If the first trial is success, the game continues as if it started from the
point z + 1 and analogously if it is a failure. The conditional expectation
assuming that the first trial was success is dz+1 + 1. Therefore the
expected duration satisfies the difference equation

Dz = pDz+1 + qDz−1 + 1 (9)

with the boundary conditions

D0 = 0 Da = 0. (10)
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Classical ruin problem - expected duration of the game

The term ’+1’ makes Equation (9) nonhomogenous and we cannot apply
the same solution as in the case of the ruin probability. If p 6= q, then
D ′z = z/(q − p) is a solution of (9).
Let Dz and D ′z be solutions of Eq. (9). We will examine the dependence
of ∆z = Dz − D ′z on ∆z−1 and ∆z+1. We get

∆z = Dz − D ′z = (pDz+1 + qDz−1 + 1)− (pD ′z+1 + qD ′z−1 + 1) =

= p(Dz+1 − D ′z+1) + q(Dz−1 − D ′z−1) = p∆z+1 + q∆z−1
(11)

We know that all solutions of this equation are of the form A + B(q/p)z .
For p 6= q all solutions of (9) are

z

q − p
+ ∆z = Dz =

z

q − p
+ A + B

(
q

p

)z

. (12)

The boundary conditions give that

A + B = 0 A + B(q/p)a = −a/(q − p). (13)
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Classical ruin problem - expected duration of the game

Solving for A and B we get

Dz =
z

q − p
− a

q − p

1− (q/p)z

1− (q/p)a
. (14)

It remains to perform an independent analysis for the case p = q = 1/2.
In this case we replace z/(q − p) by −z2 (as a solution of (9) for
p = q = 1/2). It follows that in this case all solutions of (9) are of the
form Dz = −z2 + A + Bz . Using the boundary conditions (10) we get the
solution (all solutions of ∆z are A + Bz)

Dz = z(a− z). (15)

Jan Bouda (FI MU) Lecture 4 - Random walk, ruin problems and random processesApril 19, 2009 17 / 30



Classical ruin problem - expected duration of the game

Example

Duration of the game may be considerably longer than one may expect.
Consider two players with 500 euros each. They toss the coin until one of
them is ruined. Average duration of the game is 250000 trials.

Example

In the limiting case a→∞ we get expected duration z/(q − p) for p < q,
but when q = p the expected duration is infinite. In case p > q the game
may go on forever and the average value has no sense.
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Part II

Random processes
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Random process

Definition (Random process)

A random process (or stochastic process) is a family of random
variables {X (t)|t ∈ T}, defined on a common probability space and
indexed by the parameter t, where t varies over an index set T.

The values assumed by the random variable X (t) (i.e. image) are called
states and the set of all possible values forms the state space of the
process. The state space is often denoted by I. Interpretation is that some
random process is in one of possible states I and this state is changing in
time.
Recalling that a random variable is a function defined on a sample space S
of the underlying experiment, the above defined family of random variables
is a family of real values {X (t, s)|s ∈ S , t ∈ T}. For a fixed value t1 ∈ T,
Xt1 = X (t1, s) is a random variable as s varies over S . For a fixed sample
point s1 ∈ S , the expression Xs1(t) = X (t, s1) is a function of time t,
called a sample function of a realization of the process.
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Classification of random processes

If the state space of a stochastic process is discrete, then it is called a
discrete-state process or chain. The state space is often assumed
to be {0, 1, 2 . . . }. If the state space is continuous, we have
continuous-state process.

If the index set T is discrete, we have a discrete-time (parameter)
process. Otherwise we have a continuous-time (parameter)
process.

A discrete time process is also called a stochastic sequence.
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Classification of random processes

For a fixed time t1, the term X (t1) denotes a random variable that
describes the state of the process at time t1. For a fixed number
x1 ∈ R the probability of the event [X (t1) ≤ x1] gives the distribution
function of X (t1) by

F (x1; t1) = FX (t1)(x1) = P[X (t1) ≤ x1].

F (x1; t1) is known as the first-order distribution of the process
{X (t)|t ∈ T}.
Given two fixed time instants t1, t2 ∈ T, X (t1) and X (t2) are two
random variables on the same probability space. Their joint
distribution is known as the second-order distribution of the process
and is given by

F (x1, x2; t1, t2) = P[X (t1) ≤ x1,X (t2) ≤ x2].
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Classification of random processes

In general, we define the n–th order joint distribution of the random
process {X (t)} by

F (~x ;~t) = P[X (t1) ≤ x1, . . . ,X (tn) ≤ xn]

for all ~x = (x1, . . . , xn) ∈ Rn and ~t = (t1, . . . , tn) ∈ Tn such that
t1 < t2 < · · · < tn

In practice we are interested in processes with more compact
description. For instance, the n–th order joint distribution is often
invariant under shifts of the time origin.
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Classification of random processes

Definition (Strictly stationary process)

A random process {X (t)|t ∈ T} is said to be stationary in the strict sense
if for all n ≥ 1 its n–th order joint distribution function satisfies

F (~x ;~t) = F (~x ;~t + τ)

for all vectors ~x ∈ Rn, all ~t ∈ Tn, and all scalars τ such that ti + τ ∈ T.
The notation ~t + τ means that τ is added to each component of ~t.

Let µ(t) = E [X (t)] denotes the time-dependent mean of the
stochastic process. It is often called the ensemble average of the
stochastic process.
Applying on the first-order distribution function of strictly stationary
process, we get F (x ; t) = F (x ; t + τ) or, equivalently, FX (t) = FX (t+τ)

for all τ . It follows that strict-sense stationary random process has a
time-independent mean, i.e. µ(t) = µ for all t ∈ T.
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Classification of random processes

Another possibility to simplify the joint distribution function is to
restrict the nature of dependence between random variables
{X (t)}t∈T. The simplest is the case of independent random variables.

Definition (Independent process)

A random process {X (t)|t ∈ T} is said to be an independent process
provided that its n–th order joint distribution function satisfies the
condition

F (~x ;~t) =
n∏

i=1

F (xi ; ti ) =
n∏

i=1

P[X (ti ) ≤ xi ]. (16)
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Classification of random processes

A special case of independent process is

Definition (Renewal process)

A renewal process is defined as the discrete-time independent process
{Xn|n = 1, 2, . . . }, where X1,X2, . . . are independent, identically
distributed, nonnegative random variables.

The assumption that random variables are mutually independent is often
too restrictive and more practical is the simplest form of dependence - the
first-order, or Markov dependence.
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Classification of random processes

Definition (Markov process)

A random process {X (t)|t ∈ T} is called a Markov process if for any
t0 < t1 < · · · < tn < t the conditional distribution of X (t) given the
values of X (t0), . . . ,X (tn) depends only on X (tn), i.e. for all x0, . . . , xn, x

P[X (t) ≤ x |X (tn) = xn, . . . ,X (t0) = x0] = P[(X (t) = x |X (tn) = xn].
(17)

In many interesting problems the conditional probability distribution (17)
is invariant with respect to the time origin:

P[(X (t) = x |X (tn) = xn] = P[(X (t − tn) = x |X (0) = xn] (18)

In this case the Markov chain is (time-)homogenous. Note that the
stationarity of the conditional distribution does not imply the stationarity
of the joint distribution function. A homogenous Markov process need not
be a stationary process.

Jan Bouda (FI MU) Lecture 4 - Random walk, ruin problems and random processesApril 19, 2009 27 / 30



Part III

Bernoulli and Binomial Process
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Bernoulli process

Definition (Bernoulli process)

Consider a sequence of Bernoulli trials and let the random variable Yi

denotes the result of the i–th trial (e.g. [Yi = 1] denotes success). Further
assume that the probability of success on the i–th trial P(Yi = 1) = p is
independent of i . Then {Yi |i = 1, 2, . . . } is a discrete-time, discrete-state
random process, which is stationary in the strict sense. It is known as the
Bernoulli process.

Recall that Yi is a Bernoulli random variable and therefore

E (Yi ) = p

E (Y 2
i ) = p

Var(Yi ) = p(1− p).

(19)
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Binomial process

Based on random variables Yi we can form another process by considering
the sequence of partial sums {Sn|n = 1, 2, . . . }, where
Sn = Y1 + Y2 + · · ·Yn. From the property Sn = Sn−1 + Yn it is easy to see
that {Sn} is a discrete-time, discrete-state Markov process, with

P(Sn = k |Sn−1 = k) = P(Yn = 0) = 1− p (20)

and
P(Sn = k |Sn−1 = k − 1) = P(Y = 1) = p.

Sn is a binomial random variable and therefore this random process is
called a binomial process.
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