Lecture 3 - Expectation, inequalities and laws of large numbers

Jan Bouda

FI MU

April 19, 2009

Part I

Functions of a random variable

Functions of a random variable

Given a random variable X and a function $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ we define the transformed random variable $Y=\Phi(X)$ as

- Random variables X and Y are defined on the same sample space, moreover, $\operatorname{Dom}(X)=\operatorname{Dom}(Y)$.
- $\boldsymbol{\operatorname { I m }}(Y)=\{\Phi(x) \mid x \in \operatorname{Im}(X)\}$.
- The probability distribution of Y is given by

$$
p_{Y}(y)=\sum_{x \in \operatorname{Im}(X) ; \Phi(x)=y} p_{X}(x) .
$$

In fact, we may define it by $\Phi(X)=\Phi \circ X$, where \circ is the usual function composition.

Part II

Expectation

Expectation

- The probability distribution or probability distribution function completely characterize properties of a random variable.
- Often we need description that is less accurate, but much shorter single number, or a few numbers.
- First such characteristic describing a random variable is the expectation, also known as the mean value.

Definition

Expectation of a random variable X is defined as

$$
E(X)=\sum_{i} x_{i} p\left(x_{i}\right)
$$

provided the sum is absolutely (!) convergent. In case the sum is convergent, but not absolutely convergent, we say that no finite expectation exists. In case the sum is not convergent the expectation has no meaning.

Median; Mode

- The median of a random variable X is any number x such that $P(X<x) \leq 1 / 2$ and $P(X>x) \geq 1 / 2$.
- The mode of a random variable X is the number x such that

$$
p(x)=\max _{x^{\prime} \in \operatorname{lm}(X)} p\left(x^{\prime}\right)
$$

Moments

- Let us suppose we have a random variable X and a random variable $Y=\Phi(X)$ for some function Φ. The expected value of Y is

$$
E(Y)=\sum_{i} \Phi\left(x_{i}\right) p_{X}\left(x_{i}\right)
$$

- Especially interesting is the power function $\Phi(X)=X^{k} . E\left(X^{k}\right)$ is known as the k th moment of X. For $k=1$ we get the expectation of X.
- If X and Y are random variables with matching corresponding moments of all orders, i.e. $\forall k \quad E\left(X^{k}\right)=E\left(Y^{k}\right)$, then X and Y have the same distributions.
- Usually we center the expected value to 0 - we use moments of $\Phi(X)=X-E(X)$.
- We define the k th central moment of X as

$$
\mu_{k}=E\left([X-E(X)]^{k}\right)
$$

Variance

Definition

The second central moment is known as the variance of X and defined as

$$
\mu_{2}=E\left([X-E(X)]^{2}\right) .
$$

Explicitly written,

$$
\mu_{2}=\sum_{i}\left[x_{i}-E(X)\right]^{2} p\left(x_{i}\right) .
$$

The variance is usually denoted as σ_{X}^{2} or $\operatorname{Var}(X)$.

Definition

The square root of σ_{X}^{2} is known as the standard deviation $\sigma_{X}=\sqrt{\sigma_{X}^{2}}$.
If variance is small, then X takes values close to $E(X)$ with high probability. If the variance is large, then the distribution is more 'diffused'.

Expectation revisited

Theorem
Let $X_{1}, X_{2}, \ldots X_{n}$ be random variables defined on the same probability space and let $Y=\Phi\left(X_{1}, X_{2}, \ldots X_{n}\right)$. Then

$$
E(Y)=\sum_{x_{1}} \sum_{x_{2}} \cdots \sum_{x_{n}} \Phi\left(x_{1}, x_{2}, \ldots x_{n}\right) p\left(x_{1}, x_{2}, \ldots x_{n}\right) .
$$

Theorem (Linearity of expectation)
Let X and Y be random variables. Then

$$
E(X+Y)=E(X)+E(Y)
$$

Linearity of expectation (proof)

Linearity of expectation.

$$
\begin{aligned}
E(X+Y) & =\sum_{i} \sum_{j}\left(x_{i}+y_{j}\right) p\left(x_{i}, y_{j}\right)= \\
& =\sum_{i} x_{i} \sum_{j} p\left(x_{i}, y_{j}\right)+\sum_{j} y_{j} \sum_{i} p\left(x_{i}, y_{j}\right)= \\
& =\sum_{i} x_{i} p_{X}\left(x_{i}\right)+\sum_{j} y_{j} p_{Y}\left(y_{j}\right)= \\
& =E(X)+E(Y) .
\end{aligned}
$$

Linearity of expectation

The linearity of expectation can be easily generalized for any linear combination of n random variables, i.e.

Theorem (Linearity of expectation)
Let $X_{1}, X_{2}, \ldots X_{n}$ be random variables and $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}$ constants.
Then

$$
E\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)
$$

Proof is left as a home exercise :-).

Expectation of independent random variables

Theorem
If X and Y are independent random variables, then

$$
E(X Y)=E(X) E(Y) .
$$

Proof.

$$
\begin{aligned}
E(X Y) & =\sum_{i} \sum_{j} x_{i} y_{j} p\left(x_{i}, y_{j}\right)= \\
& =\sum_{i} \sum_{j} x_{i} y_{j} p_{X}\left(x_{i}\right) p_{Y}\left(y_{j}\right)= \\
& =\sum_{i} x_{i} p_{X}\left(x_{i}\right) \sum_{j} y_{j} p_{Y}\left(y_{j}\right)= \\
& =E(X) E(Y) .
\end{aligned}
$$

Expectation of independent random variables

The expectation of independent random variables can be easily generalized for any n-tuple $X_{1}, X_{2}, \ldots X_{n}$ of mutually independent random variables:

$$
E\left(\prod_{i=1}^{n} X_{i}\right)=\prod_{i=1}^{n} E\left(X_{i}\right)
$$

If $\Phi_{1}, \Phi_{2}, \ldots \Phi_{n}$ are functions, then

$$
E\left[\prod_{i=1}^{n} \Phi_{i}\left(X_{i}\right)\right]=\prod_{i=1}^{n} E\left[\Phi_{i}\left(X_{i}\right)\right]
$$

Variance revisited

Theorem

Let σ_{X}^{2} be the variance of the random variable X. Then

$$
\sigma_{X}^{2}=E\left(X^{2}\right)-[E(X)]^{2} .
$$

Proof.

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left([X-E(X)]^{2}\right)=E\left(X^{2}-2 X E(X)+[E(X)]^{2}\right)= \\
& =E\left(X^{2}\right)-E[2 X E(X)]+[E(X)]^{2}= \\
& =E\left(X^{2}\right)-2 E(X) E(X)+[E(X)]^{2}
\end{aligned}
$$

Covariance

Definition

The quantity

$$
E([X-E(X)][Y-E(Y)])=\sum_{i, j} p_{x_{i}, y_{j}}\left[x_{i}-E(X)\right]\left[y_{j}-E(Y)\right]
$$

is called the covariance of X and Y and denoted $\operatorname{Cov}(X, Y)$.

Theorem

Let X and Y be independent random variables. Then the covariance of X and $Y \operatorname{Cov}(X, Y)=0$.

Covariance

Proof.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E([X-E(X)][Y-E(Y)])= \\
& =E[X Y-Y E(X)-X E(Y)+E(X) E(Y)]= \\
& =E(X Y)-E(Y) E(X)-E(X) E(Y)+E(X) E(Y)= \\
& =E(X) E(Y)-E(Y) E(X)-E(X) E(Y)+E(X) E(Y)=0
\end{aligned}
$$

- Covariance measures linear (!) dependence between two random variables.
- E.g. when $X=a Y, a \neq 0$, using $E(X)=a E(Y)$ we have

$$
\operatorname{Cov}(X, Y)=a \operatorname{Var}(Y)=\frac{1}{a} \operatorname{Var}(X)
$$

Covariance

In general it holds that

$$
0 \leq \operatorname{Cov}^{2}(X, Y) \leq \operatorname{Var}(X) \operatorname{Var}(Y)
$$

Definition

We define the correlation coefficient $\rho(X, Y)$ as the normalized covariance, i.e.

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

It holds that $-1 \leq \rho(X, Y) \leq 1$.

Covariance

It may happen that X is completely dependent on Y and yet the covariance is 0 , e.g. for $X=Y^{2}$ and a suitably chosen Y.

Variance

Theorem

 If X and Y are independent random variables, then$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) .
$$

Proof.

$$
\begin{aligned}
& \operatorname{Var}(X+Y)=E\left([(X+Y)-E(X+Y)]^{2}\right)= \\
= & E\left([(X+Y)-E(X)-E(Y)]^{2}\right)=E\left([(X-E(X))+(Y-E(Y))]^{2}\right)= \\
= & E\left([X-E(X)]^{2}+[Y-E(Y)]^{2}+2[X-E(X)][Y-E(Y)]\right)= \\
= & E\left([X-E(X)]^{2}\right)+E\left([Y-E(Y)]^{2}\right)+2 E([X-E(X)][Y-E(Y)])= \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 E([X-E(X)][Y-E(Y)])= \\
= & \operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) .
\end{aligned}
$$

Variance

- If X and Y are not independent, we obtain (see proof on the previous transparency)

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

- The additivity of variance can be generalized to a set $X_{1}, X_{2}, \ldots X_{n}$ of mutually independent variables and constants $a_{1}, a_{2}, \ldots a_{n} \in \mathbb{R}$ as

$$
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

Part III

Conditional Distribution and Expectation

Conditional probability

Using the derivation of conditional probability of two events we can derive conditional probability of (a pair of) random variables.

Definition

The conditional probability distribution of random variable Y given random variable X (their joint distribution is $p_{X, Y}(x, y)$) is

$$
\begin{align*}
p_{Y \mid X}(y \mid x) & =P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}= \\
& =\frac{p_{X, Y}(x, y)}{p_{X}(x)} \tag{1}
\end{align*}
$$

provided $p_{X}(x) \neq 0$.

Conditional distribution function

Definition

The conditional probability distribution function of random variable Y given random variable X (their joint distribution is $p_{X, Y}(x, y)$) is

$$
\begin{equation*}
F_{Y \mid X}(y \mid x)=P(Y \leq y \mid X=x)=\frac{P(Y \leq y \text { and } X=x)}{P(X=x)} \tag{2}
\end{equation*}
$$

for all values $P(X=x)>0$. Alternatively we can derive it from the conditional probability distribution as

$$
F_{Y \mid X}(y \mid x)=\frac{\sum_{t \leq y} p(x, t)}{p_{X}(x)}=\sum_{t \leq y} p_{Y \mid X}(t \mid x)
$$

Conditional expectation

We may consider $Y \mid(X=x)$ to be a new random variable that is given by the conditional probability distribution $p_{Y \mid X}$. Therefore, we can define its mean and moments.

Definition

The conditional expectation of Y given $X=x$ is defined

$$
\begin{equation*}
E(Y \mid X=x)=\sum_{y} y P(Y=y \mid X=x)=\sum_{y} y p_{Y \mid X}(y \mid x) \tag{3}
\end{equation*}
$$

Analogously can be defined conditional expectation of a transformed random variable $\Phi(Y)$, namely the conditional k th moment of Y : $E\left(Y^{k} \mid X=x\right)$. Of special interest will be the conditional variance

$$
\operatorname{Var}(Y \mid X=x)=E\left(Y^{2} \mid X=x\right)-[E(Y \mid X=x)]^{2}
$$

Conditional expectation

We can derive the expectation of Y from the conditional expectations. The following equation is known as the theorem of total expectation:

$$
\begin{equation*}
E(Y)=\sum_{x} E(Y \mid X=x) p_{X}(x) \tag{4}
\end{equation*}
$$

Analogously, the theorem of total moments is

$$
\begin{equation*}
E\left(Y^{k}\right)=\sum_{x} E\left(Y^{k} \mid X=x\right) p_{X}(x) \tag{5}
\end{equation*}
$$

Example: Random sums

Let N, X_{1}, X_{2}, \ldots be mutually independent random variables. Let us suppose that X_{1}, X_{2}, \ldots have identical probability distribution $p_{X}(x)$, mean $E(X)$, and variance $\operatorname{Var}(X)$. We also know the values $E(N)$ and $\operatorname{Var}(N)$. Let us consider the random variable defined as a sum

$$
T=X_{1}+X_{2}+\cdots+X_{N} .
$$

In what follows we would like to calculate $E(T)$ and $\operatorname{Var}(T)$. For a fixed value $N=n$ we can easily derive the conditional expectation of T by

$$
\begin{equation*}
E(T \mid N=n)=\sum_{i=1}^{n} E\left(X_{i}\right)=n E(X) \tag{6}
\end{equation*}
$$

Using the theorem of total expectation we get

$$
\begin{equation*}
E(T)=\sum_{n} n E(X) p_{N}(n)=E(X) \sum_{n} n p_{N}(n)=E(X) E(N) . \tag{7}
\end{equation*}
$$

Example: Random sums

It remains to derive the variance of T. Let us first compute $E\left(T^{2}\right)$. We obtain

$$
\begin{equation*}
E\left(T^{2} \mid N=n\right)=\operatorname{Var}(T \mid N=n)+[E(T \mid N=n)]^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(T \mid N=n)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=n \operatorname{Var}(X) \tag{9}
\end{equation*}
$$

since $(T \mid N=n)=X_{1}+X_{2}+\cdots+X_{n}$ and X_{1}, \ldots, X_{n} are mutually independent.
We substitute (6) and (9) into (8) to get

$$
\begin{equation*}
E\left(T^{2} \mid N=n\right)=n \operatorname{Var}(X)+n^{2} E(X)^{2} \tag{10}
\end{equation*}
$$

Example: Random sums

Using the theorem of total moments we get

$$
\begin{align*}
E\left(T^{2}\right) & =\sum_{n}\left(n \operatorname{Var}(X)+n^{2}[E(X)]^{2}\right) p_{N}(n) \\
& =\left(\operatorname{Var}(X) \sum_{n} n p_{N}(n)\right)+\left([E(X)]^{2} \sum_{n} p_{N}(n) n^{2}\right) \tag{11}\\
& =\operatorname{Var}(X) E(N)+E\left(N^{2}\right)[E(X)]^{2} .
\end{align*}
$$

Finally, we obtain

$$
\begin{align*}
\operatorname{Var}(T) & =E\left(T^{2}\right)-[E(T)]^{2}= \\
& =\operatorname{Var}(X) E(N)+E\left(N^{2}\right)[E(X)]^{2}-[E(X)]^{2}[E(N)]^{2}= \tag{12}\\
& =\operatorname{Var}(X) E(N)+[E(X)]^{2} \operatorname{Var}(N) .
\end{align*}
$$

Part IV

Inequalities

Markov inequality

It is important to derive as much information as possible even from a partial description of random variable. The mean value already gives more information than one might expect, as captured by Markov inequality.

Theorem (Markov inequality)

Let X be a nonnegative random variable with finite mean value $E(X)$. Then for all $t>0$ it holds that

$$
P(X \geq t) \leq \frac{E(X)}{t}
$$

Markov inequality

Proof.

Let us define the random variable $Y_{t}($ for fixed $t)$ as

$$
Y_{t}= \begin{cases}0 & \text { if } X<t \\ t & X \geq t\end{cases}
$$

Then Y_{t} is a discrete random variable with probability distribution $p_{Y_{t}}(0)=P(X<t), p_{Y_{t}}(t)=P(X \geq t)$. We have

$$
E\left(Y_{t}\right)=t P(X \geq t)
$$

The observation $X \geq Y_{t}$ gives

$$
E(X) \geq E\left(Y_{t}\right)=t P(X \geq t)
$$

what is the Markov inequality.

Chebyshev inequality

In case we know both mean value and variance of a random variable, we can use much more accurate estimation

Theorem (Chebyshev inequality)

Let X be a random variable with finite variance. Then

$$
P[|X-E(X)| \geq t] \leq \frac{\operatorname{Var}(X)}{t^{2}}, t>0
$$

or, alternatively, substituting $X^{\prime}=X-E(X)$

$$
P\left(\left|X^{\prime}\right| \geq t\right) \leq \frac{E\left(X^{\prime 2}\right)}{t^{2}}, t>0 .
$$

We can see that this theorem is in agreement with our interpretation of variance. If σ is small, then there is large probability of getting outcome close to $E(X)$, if σ is large, then there is large probability of getting outcomes farther from the mean.

Chebyshev inequality

Proof.

We apply the Markov inequality to the nonnegative variable $[X-E(X)]^{2}$ and we replace t by t^{2} to get

$$
P\left[(X-E(X))^{2} \geq t^{2}\right] \leq \frac{E\left([X-E(X)]^{2}\right)}{t^{2}}=\frac{\sigma^{2}}{t^{2}} .
$$

We obtain the Chebyshev inequality using the fact that the events $\left[(X-E(X))^{2} \geq t^{2}\right]=[|X-E(X)| \geq t]$ are the same.

Kolmogorov inequality

Theorem (Kolmogorov inequality)
Let $X_{1}, X_{2}, \ldots X_{n}$ be independent random variables. We put

$$
\begin{gather*}
S_{k}=X_{1}+\cdots+X_{k}, \tag{13}\\
m_{k}=E\left(S_{k}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{k}\right), \tag{14}\\
s_{k}^{2}=\operatorname{Var}\left(S_{k}\right)=\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{k}\right) . \tag{15}
\end{gather*}
$$

For every $t>0$ it holds that

$$
\begin{equation*}
P\left[\left|S_{1}-m_{1}\right|<t s_{n} \wedge\left|S_{2}-m_{2}\right|<t s_{n} \wedge \ldots\left|S_{n}-m_{n}\right|<t s_{n}\right] \geq 1-t^{-2} \tag{16}
\end{equation*}
$$

Kolmogorov inequality

Comparing to Chebyshev inequality we see that the Kolmogorov inequality is considerably stronger since Chebyshev inequality implies only

$$
\forall i=1 \ldots n \quad P\left(\left|S_{i}-m_{i}\right|<t s_{i}\right) \geq 1-t^{-2} .
$$

We used rewriting the Chebyshev inequality as

$$
P\left[|X-E(X)|<t^{\prime}\right] \geq 1-\frac{\operatorname{Var}(X)}{t^{\prime 2}}, t>0
$$

and the substitution $X=S_{i}, t^{\prime}=s_{i} t$.

Kolmogorov inequality

Proof.

We want to estimate the probability p that at least one of the terms in Eq. (16) does not hold (this is complementary event to Eq. (16)) and to verify the statement of the theorem, i.e. to test whether $p \leq t^{-2}$. Let us define n random variables $Y_{k}, k=1, \ldots, n$ as

$$
Y_{k}= \begin{cases}1 & \text { if }\left|S_{k}-m_{k}\right| \geq t s_{n} \text { and } \forall v=1,2 \ldots k-1,\left|S_{v}-m_{v}\right|<t s_{n} \tag{17}\\ 0 & \text { otherwise. }\end{cases}
$$

In words, Y_{k} equals 1 at those sample points in which the k th inequality of (16) is the first to be violated. For any sample point at most one of Y_{v} is one and the sum $Y_{1}+Y_{2}+\cdots+Y_{n}$ is either 0 or 1 . Moreover, it is 1 if and only if at least one of the inequalities (16) is violated.

Kolmogorov inequality

Proof.

Therefore,

$$
\begin{equation*}
p=P\left(Y_{1}+Y_{2} \cdots Y_{n}=1\right) \tag{18}
\end{equation*}
$$

We know that $\sum_{k} Y_{k} \leq 1$ and multiplying both sides of this inequality by $\left(S_{n}-m_{n}\right)^{2}$ gives

$$
\begin{equation*}
\sum_{k} Y_{k}\left(S_{n}-m_{n}\right)^{2} \leq\left(S_{n}-m_{n}\right)^{2} \tag{19}
\end{equation*}
$$

Through taking expectation of each side over S_{n} we get

$$
\begin{equation*}
\sum_{k=1}^{n} E\left[Y_{k}\left(S_{n}-m_{n}\right)^{2}\right] \leq s_{n}^{2} \tag{20}
\end{equation*}
$$

Kolmogorov inequality

Proof.

We introduce the substitution

$$
U_{k}=\left(S_{n}-m_{n}\right)-\left(S_{k}-m_{k}\right)=\sum_{v=k+1}^{n}\left[X_{v}-E\left(X_{v}\right)\right]
$$

to evaluate respective summands of the left-hand side of Eq. (20) as

$$
\begin{align*}
E\left[Y_{k}\left(S_{n}-m_{n}\right)^{2}\right] & =E\left[Y_{k}\left(U_{k}+S_{k}-m_{k}\right)^{2}\right]= \\
& =E\left[Y_{k}\left(S_{k}-m_{k}\right)^{2}\right]+2 E\left[Y_{k} U_{k}\left(S_{k}-m_{k}\right)\right]+E\left(Y_{k} U_{k}^{2}\right) \tag{21}
\end{align*}
$$

Now, since U_{k} depends only on X_{k+1}, \ldots, X_{n} and Y_{k} and S_{k} depend only on X_{1}, \ldots, X_{k}, we have that U_{k} is independent of $Y_{k}\left(S_{k}-m_{k}\right)$. Therefore, $E\left[Y_{k} U_{k}\left(S_{k}-m_{k}\right)\right]=E\left[Y_{k}\left(S_{k}-m_{k}\right)\right] E\left(U_{k}\right)=0$ since $E\left(U_{k}\right)=0$.

Kolmogorov inequality

Proof.

Thus from Eq. (21) we get

$$
\begin{equation*}
E\left[Y_{k}\left(S_{n}-m_{n}\right)^{2}\right] \geq E\left[Y_{k}\left(S_{k}-m_{k}\right)^{2}\right] \tag{22}
\end{equation*}
$$

observing that $E\left(Y_{k} U_{k}^{2}\right) \geq 0$.
We know that $Y_{k} \neq 0$ only if $\left|S_{k}-m_{k}\right| \geq t s_{n}$, so that $Y_{k}\left(S_{k}-m_{k}\right)^{2} \geq t^{2} s_{n}^{2} Y_{k}$ and therefore

$$
\begin{equation*}
E\left[Y_{k}\left(S_{k}-m_{k}\right)^{2}\right] \geq t^{2} s_{n}^{2} E\left(Y_{k}\right) \tag{23}
\end{equation*}
$$

Kolmogorov inequality

Proof.

Combining (20), (22) and (23) we get

$$
\begin{align*}
s_{n}^{2} & \geq \sum_{k=1}^{n} E\left[Y_{k}\left(S_{n}-m_{n}\right)^{2}\right] \geq \sum_{k=1}^{n} E\left[Y_{k}\left(S_{k}-m_{k}\right)^{2}\right] \geq \tag{24}\\
& \geq \sum_{k=1}^{n} t^{2} s_{n}^{2} E\left(Y_{k}\right)=t^{2} s_{n}^{2} E\left(Y_{1}+\cdots+Y_{n}\right)
\end{align*}
$$

and from (18) using $P\left(Y_{1}+\cdots+Y_{n}=1\right)=E\left(Y_{1}+\cdots+Y_{n}\right)$ we finally obtain

$$
\begin{equation*}
p t^{2} \leq 1 . \tag{25}
\end{equation*}
$$

Part V

Laws of Large Numbers

(Weak) Law of Large Numbers

Theorem ((Weak) Law of Large Numbers)

Let X_{1}, X_{2}, \ldots be a sequence of mutually independent random variables with a common probability distribution. If the expectation $\mu=E\left(X_{k}\right)$ exists, then for every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{X_{1}+\cdots+X_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

In words, the probability that the average S_{n} / n differs from the expectation by less then arbitrarily small ϵ goes to 0 .

Proof.

WLOG we can assume that $\mu=E\left(X_{k}\right)=0$, otherwise we simply replace X_{k} by $X_{k}-\mu$. This induces only change of notation.

(Weak) Law of Large Numbers

Proof.

In the special case $\operatorname{Var}\left(X_{k}\right)$ exists, the law of large numbers is a direct consequence of the Chebyshev inequality; we substitute $X=X_{1}+\cdots+X_{n}=S_{n}$ to get

$$
\begin{equation*}
P\left(\left|S_{n}-\mu\right| \geq t\right) \leq \frac{\operatorname{Var}\left(X_{k}\right) n}{t^{2}} \tag{26}
\end{equation*}
$$

We substitute $t=\epsilon n$ and observe that with $n \rightarrow \infty$ the right-hand side tends to 0 to get the result. However, in case $\operatorname{Var}\left(X_{k}\right)$ exists, we can apply the more accurate central limit theorem. The proof without the assumption that $\operatorname{Var}\left(X_{k}\right)$ exists follows.

(Weak) Law of Large Numbers

Proof.

Let δ be a positive constant to be determined later. For each k we define a pair of random variables $(k=1 \ldots n)$

$$
\begin{array}{ll}
U_{k}=X_{k}, V_{k}=0 & \text { if }\left|X_{k}\right| \leq \delta n \\
U_{k}=0, V_{k}=X_{k} & \text { if }\left|X_{k}\right|>\delta n
\end{array}
$$

By this definition

$$
\begin{equation*}
X_{k}=U_{k}+V_{k} . \tag{29}
\end{equation*}
$$

(Weak) Law of Large Numbers

Proof.

To prove the theorem it suffices to show that both

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|U_{1}+\cdots+U_{n}\right|>\frac{1}{2} \epsilon n\right)=0 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left|V_{1}+\cdots+V_{n}\right|>\frac{1}{2} \epsilon n\right)=0 \tag{31}
\end{equation*}
$$

hold, because $\left|X_{1}+\cdots+X_{n}\right| \leq\left|U_{1}+\cdots+U_{n}\right|+\left|V_{1}+\cdots+V_{n}\right|$.
Let us denote all possible values of X_{k} by x_{1}, x_{2}, \ldots and the corresponding probabilities $p\left(x_{i}\right)$. We put

$$
\begin{equation*}
a=E\left(\left|X_{k}\right|\right)=\sum_{i}\left|x_{i}\right| p\left(x_{i}\right) \tag{32}
\end{equation*}
$$

(Weak) Law of Large Numbers

Proof.

The variable U_{1} is bounded by δn and X_{1} and therefore

$$
U_{1}^{2} \leq X_{1} \delta n
$$

Taking expectation on both sides gives

$$
\begin{equation*}
E\left(U_{1}^{2}\right) \leq a \delta n \tag{33}
\end{equation*}
$$

Variables $U_{1}, \ldots U_{n}$ are mutually independent and have the same probability distribution. Therefore,

$$
\begin{align*}
E\left[\left(U_{1}+\cdots+U_{n}\right)^{2}\right]- & {\left[E\left(U_{1}+\cdots+U_{n}\right)\right]^{2}=\operatorname{Var}\left(U_{1}+\cdots+U_{n}\right)=} \\
& =n \operatorname{Var}\left(U_{1}\right) \leq n E\left(U_{1}^{2}\right) \leq a \delta n^{2} . \tag{34}
\end{align*}
$$

(Weak) Law of Large Numbers

Proof.

On the other hand, $\lim _{n \rightarrow \infty} E\left(U_{1}\right)=E\left(X_{1}\right)=0$ and for sufficiently large n we have

$$
\begin{equation*}
\left[E\left(U_{1}+\cdots U_{n}\right)\right]^{2}=n^{2}\left[E\left(U_{1}\right)\right]^{2} \leq n^{2} a \delta \tag{35}
\end{equation*}
$$

and for sufficiently large n we get from Eq. (34) that

$$
\begin{equation*}
E\left[\left(U_{1}+\cdots+U_{n}\right)^{2}\right] \leq 2 a \delta n^{2} . \tag{36}
\end{equation*}
$$

Using the Chebyshev inequality we get the result (30) observing that

$$
\begin{equation*}
P\left(\left|U_{1}+\cdots+U_{n}\right|>1 / 2 \epsilon n\right) \leq \frac{8 a \delta}{\epsilon^{2}} . \tag{37}
\end{equation*}
$$

By choosing sufficiently small δ we can make the right-hand side arbitrarily small to get (30).

(Weak) Law of Large Numbers

Proof.

In case of (31) note that

$$
\begin{equation*}
P\left(V_{1}+V_{2}+\cdots V_{n} \neq 0\right) \leq \sum_{i=1}^{n} P\left(V_{i} \neq 0\right)=n P\left(V_{1} \neq 0\right) \tag{38}
\end{equation*}
$$

For arbitrary $\delta>0$ we have

$$
\begin{equation*}
P\left(V_{1} \neq 0\right)=P\left(\left|X_{1}\right|>\delta n\right)=\sum_{\left|x_{i}\right|>\delta n} p\left(x_{i}\right) \leq \frac{1}{\delta n} \sum_{\left|x_{i}\right|>\delta n}\left|x_{i}\right| p\left(x_{i}\right) \tag{39}
\end{equation*}
$$

The last sum tends to 0 as $n \rightarrow \infty$ and therefore also the left side tends to 0 . This statement is even stronger than (31) and it completes the proof.

Central Limit Theorem

In case the variance exists, instead of the law of large numbers we can apply more exact central limit theorem.

Theorem (Central Limit Theorem)

Let X_{1}, X_{2}, \ldots be a sequence of mutually independent identically distributed random variables with a finite mean $E\left(X_{i}\right)=\mu$ and a finite variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then for every fixed β it holds that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}}<\beta\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\beta} e^{-\frac{1}{2} y} d y \tag{40}
\end{equation*}
$$

In case the mean does not exist, neither the central limit theorem nor the law of large number applies. Nevertheless, we still may be interested in a number of such cases, see e.g. (Feller, p. 246).

Law of Large Numbers, Central Limit Theorem and Variables with Different Distributions

- Let us make a small comment on the generality of the law of large numbers and the central limit theorem, namely we will relax the requirement that the random variables X_{1}, X_{2}, \ldots are identically distributed.
- Let us denote in the following transparencies

$$
\begin{equation*}
s_{n}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2} . \tag{41}
\end{equation*}
$$

- The law of large numbers holds if and only if X_{k} are uniformly bounded, i.e. there exists a constant A such that $\forall k\left|X_{k}\right|<A$.
- A sufficient condition (but not necessary) is that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{s_{n}}{n}=0 \tag{42}
\end{equation*}
$$

In this case our proof applies.

Law of Large Numbers, Central Limit Theorem and Variables with Different Distributions

Theorem (Lindeberg theorem)

The central limit theorem holds for any sequence of random variables $X_{1}, X_{2} \ldots$ with finite means μ_{1}, μ_{2}, \ldots and variance if and only if for every $\epsilon>0$ the random variables U_{k} defined by

$$
U_{k}= \begin{cases}X_{k}-\mu_{k} & \text { if }\left|X_{k}-\mu_{k}\right| \leq \epsilon S_{n} \tag{43}\\ 0 & \text { if }\left|X_{k}-\mu_{k}\right|>\epsilon S_{n}\end{cases}
$$

satisfy

$$
\begin{equation*}
\lim _{s_{n} \rightarrow \infty} \frac{1}{s_{n}^{2}} \sum_{k=1}^{n} E\left(U_{k}^{2}\right)=1 \tag{44}
\end{equation*}
$$

This theorem e.g. implies that every sequence of uniformly bounded random variables obeys the central limit theorem.

Strong Law of Large Numbers

The (weak) law of large number implies that large values $\left|S_{n}-m_{n}\right| / n$ occur infrequently. In many practical situation we require the stronger statement that $\left|S_{n}-m_{n}\right| / n$ remains small for all sufficiently large n.

Definition (Strong Law of Large Numbers)

We say that the sequence X_{1}, X_{2}, \ldots obeys the strong law of large numbers if to every pair $\epsilon>0, \delta>0$ there exists an $n \in \mathbb{N}$ such that

$$
P\left(\forall r: \frac{\left|S_{n}-m_{n}\right|}{n}<\epsilon \wedge \frac{\left|S_{n+1}-m_{n+1}\right|}{n+1}<\epsilon \wedge \ldots \frac{\left|S_{n+r}-m_{n+r}\right|}{n+r}<\epsilon\right) \geq 1-\delta .
$$

It remains to determine the conditions when the strong law of large numbers holds.

Strong Law of Large Numbers

Theorem (Kolmogorov criterion)
Let X_{1}, X_{2}, \ldots be a sequence of random variables with corresponding variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots$. Then the convergence of the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sigma_{k}^{2}}{k^{2}} \tag{46}
\end{equation*}
$$

is a sufficient condition for the strong law of large numbers to apply.

Strong Law of Large Numbers

Proof.

Let A_{v} be the event that for at least one n such that $2^{v-1}<n \leq 2^{v}$ the inequality

$$
\begin{equation*}
\frac{\left|S_{n}-m_{n}\right|}{n}<\epsilon \tag{47}
\end{equation*}
$$

does not hold. It suffices to prove that for all sufficiently large v and all r it holds that

$$
\begin{equation*}
P\left(A_{v}\right)+P\left(A_{v+1}\right)+\cdots+P\left(A_{v+r}\right)<\delta, \tag{48}
\end{equation*}
$$

i.e. the series $\sum P\left(A_{v}\right)$ converges. The event A_{v} implies that for some n in range $2^{v-1}<n \leq 2^{v}$

$$
\begin{equation*}
\left|S_{n}-m_{n}\right| \geq \epsilon n \geq \epsilon 2^{v-1} \tag{49}
\end{equation*}
$$

Strong Law of Large Numbers

Proof.

Using $s_{n}^{2} \leq s_{2 v}^{2}$ and Kolmogorov inequality with $t=\epsilon 2^{v-1} / s_{2 v}$ we get

$$
\begin{equation*}
P\left(A_{v}\right) \leq P\left(\left|S_{n}-m_{n}\right| \geq \epsilon 2^{v-1}\right) \leq 4 \epsilon^{-2} s_{2}^{2} 2^{-2 v} . \tag{50}
\end{equation*}
$$

Hence (observe that $\sum_{k=1}^{2^{v}} \sigma_{k}^{2}=s_{2 v}^{2}$)

$$
\begin{align*}
\sum_{v=1}^{\infty} P\left(A_{v}\right) & \leq \sum_{v=1}^{\infty} 4 \epsilon^{-2} s_{2}^{2} 2^{-2 v} \leq 4 \epsilon^{-2} \sum_{v=1}^{\infty} 2^{-2 v} \sum_{k=1}^{2^{v}} \sigma_{k}^{2} \\
& =4 \epsilon^{-2} \sum_{k=1}^{\infty} \sigma_{k}^{2} \sum_{2^{v} \geq k} 2^{-2 v} \leq 8 \epsilon^{-2} \sum_{k=1}^{\infty} \frac{\sigma_{k}^{2}}{k^{2}} . \tag{51}
\end{align*}
$$

Strong Law of Large Numbers

Before formulating our final criterion for the strong law of large numbers, we have to introduce two auxiliary lemmas we will use in the proof of the main theorem.

Lemma (First Borel-Cantelli lemma)

Let $\left\{A_{k}\right\}$ be a sequence of events defined on the same sample space and $a_{k}=P\left(A_{k}\right)$. If $\sum_{k} a_{k}$ converges, then to every $\epsilon>0$ it is possible to find an (sufficiently large) integer n such that for all integers r the probability

$$
\begin{equation*}
P\left(A_{n+1} \cap A_{n+2} \cap \cdots \cap A_{n+r}\right) \leq \epsilon . \tag{52}
\end{equation*}
$$

Strong Law of Large Numbers

Proof.

First it is important to determine n so that $a_{n+1}+a_{n+2}+\cdots \leq \epsilon$. This is possible since $\sum_{k} a_{k}$ converges. The lemma follows since

$$
\begin{equation*}
P\left(A_{r+1} \cap A_{r+2} \cap \cdots \cap A_{r+n}\right) \leq a_{r+1}+a_{r+2}+\cdots a_{r+n} \leq \epsilon \tag{53}
\end{equation*}
$$

Strong Law of Large Numbers

Lemma

For any $v \in \mathbb{N}^{+}$it holds that

$$
v \sum_{k=v}^{\infty} \frac{1}{k^{2}} \leq 2
$$

Strong Law of Large Numbers

Proof.

Let us consider the series $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$. Using $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$ we get that

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-\frac{1}{n+1} .
$$

We calculate the limit to get

$$
\sum_{k=2}^{\infty} \frac{1}{k(k-1)}=\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1 .
$$

Strong Law of Large Numbers

Proof.

We proceed to obtain

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\sum_{k=2}^{\infty} \frac{1}{k^{2}} \leq 1+\sum_{k=2}^{\infty} \frac{1}{k(k-1)}=2,
$$

and, analogously,

$$
2 \sum_{k=2}^{\infty} \frac{1}{k^{2}} \leq 2 \sum_{k=2}^{\infty} \frac{1}{k(k-1)}=2
$$

Strong Law of Large Numbers

Proof.

Finally, we get the result for $v>2$

$$
\begin{align*}
& v \sum_{k=v}^{\infty} \frac{1}{k^{2}} \leq v \sum_{k=v}^{\infty} \frac{1}{k(k-1)}=v\left(\left(\sum_{k=2}^{\infty} \frac{1}{k(k-1)}\right)-\left(\sum_{k=2}^{v-1} \frac{1}{k(k-1)}\right)\right)= \\
= & v\left(1-\left(\sum_{k=1}^{v-2} \frac{1}{k(k+1)}\right)\right)=\frac{v}{v-1} \leq 2 . \tag{55}
\end{align*}
$$

Strong Law of Large Numbers

Theorem

Let X_{1}, X_{2}, \ldots be a sequence of mutually independent random variables with common probability distribution $p\left(x_{i}\right)$ and the mean $\mu=E\left(X_{i}\right)$ exists. Then the strong law of large numbers applies to this sequence.

Proof.

Let us introduce two new sequences of random variables defined by

$$
\begin{array}{lc}
U_{k}=X_{k}, V_{k}=0 & \text { if }\left|X_{k}\right|<k \\
U_{k}=0, V_{k}=X_{k} & \text { if }\left|X_{k}\right| \geq k .
\end{array}
$$

U_{k} are mutually independent and we will show that they satisfy the Kolmogorov criterion.

Strong Law of Large Numbers

Proof.

For $\sigma_{k}^{2}=\operatorname{Var}\left(U_{k}\right)$ we get

$$
\begin{equation*}
\sigma_{k}^{2} \leq E\left(U_{k}^{2}\right)=\sum_{\left|x_{i}\right|<k} x_{i}^{2} p\left(x_{i}\right) \tag{58}
\end{equation*}
$$

Let us put for abbreviation

$$
\begin{equation*}
a_{v}=\sum_{v-1 \leq\left|x_{i}\right|<v}\left|x_{i}\right| p\left(x_{i}\right) . \tag{59}
\end{equation*}
$$

Strong Law of Large Numbers

Proof.

Then the serie $\sum_{v} a_{v}$ converges since $E\left(X_{k}\right)$ exists. Moreover, from (58)

$$
\begin{equation*}
\sigma_{k}^{2} \leq a_{1}+2 a_{2}+3 a_{3}+\cdots+k a_{k} \tag{60}
\end{equation*}
$$

observing that

$$
\sum_{v-1 \leq\left|x_{i}\right|<v}\left|x_{i}\right|^{2} p\left(x_{i}\right) \leq v \sum_{v-1 \leq\left|x_{i}\right|<v}\left|x_{i}\right| p\left(x_{i}\right)=v a_{v} .
$$

Strong Law of Large Numbers

Proof.

Thus

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\sigma_{k}^{2}}{k^{2}} \leq \sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{v=1}^{k} v a_{v}=\sum_{v=1}^{\infty} v a_{v} \sum_{k=v}^{\infty} \frac{1}{k^{2}} \stackrel{(*)}{<} 2 \sum_{v=1}^{\infty} a_{v}<\infty . \tag{61}
\end{equation*}
$$

To see $(*)$ recall that from the previous lemma for any $v=1,2, \ldots$ we have $2 \geq v \sum_{k=v}^{\infty} \frac{1}{k^{2}}$. Therefore, the Kolmogorov criterion holds for $\left\{U_{k}\right\}$.

Strong Law of Large Numbers

Proof.

Now,

$$
\begin{equation*}
E\left(U_{k}\right)=\mu_{k}=\sum_{\left|x_{i}\right|<k} x_{i} p\left(x_{i}\right), \tag{62}
\end{equation*}
$$

$\lim _{k \rightarrow \infty}=\mu$ and hence $\lim _{n \rightarrow \infty}\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right) / n=\mu$.
From the strong law of large numbers for $\left\{U_{k}\right\}$ we obtain that with probability $1-\delta$ or better

$$
\begin{equation*}
\forall n>N:\left|n^{-1} \sum_{k=1}^{n} U_{k}-\mu\right|<\epsilon \tag{63}
\end{equation*}
$$

provided N is sufficiently large. It remains to prove that the same statement holds when we replace U_{k} by X_{k}. It suffices to show that we can chose N sufficiently large so that with probability close to unity the event $U_{k}=X_{k}$ occurs for all $k>N$.

Strong Law of Large Numbers

Proof.

This holds if with probability arbitrarily close to one only finitely many variables V_{k} are different from zero, because in this case there exists k_{0} such that $\forall k>k_{0} V_{k}=0$ with probability 1 . By the first Borel-Cantelli lemma this is the case when the series $\sum P\left(V_{k} \neq 0\right)$ converges. It remains to verify the convergence. We have

$$
\begin{equation*}
P\left(V_{n} \neq 0\right)=\sum_{\left|x_{i}\right| \geq n} p\left(x_{i}\right) \leq \frac{a_{n+1}}{n}+\frac{a_{n+2}}{n+1}+\cdots \tag{64}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(V_{n} \neq 0\right) \leq \sum_{n=1}^{\infty} \sum_{v=n}^{\infty} \frac{a_{v+1}}{v}=\sum_{v=1}^{\infty} \frac{a_{v+1}}{v} \sum_{n=1}^{v} 1=\sum_{v=1}^{\infty} a_{v+1}<\infty \tag{65}
\end{equation*}
$$

since $E(X)$ exists. This completes our proof.

