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Part I

Functions of a random variable
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Functions of a random variable

Given a random variable X and a function Φ : R→ R we define the
transformed random variable Y = Φ(X ) as

Random variables X and Y are defined on the same sample space,
moreover, Dom(X ) = Dom(Y ).

Im(Y ) = {Φ(x)|x ∈ Im(X )}.
The probability distribution of Y is given by

pY (y) =
∑

x∈Im(X );Φ(x)=y

pX (x).

In fact, we may define it by Φ(X ) = Φ ◦ X , where ◦ is the usual function
composition.
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Part II

Expectation
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Expectation

The probability distribution or probability distribution function
completely characterize properties of a random variable.
Often we need description that is less accurate, but much shorter -
single number, or a few numbers.
First such characteristic describing a random variable is the
expectation, also known as the mean value.

Definition

Expectation of a random variable X is defined as

E (X ) =
∑

i

xip(xi )

provided the sum is absolutely (!) convergent. In case the sum is
convergent, but not absolutely convergent, we say that no finite
expectation exists. In case the sum is not convergent the expectation has
no meaning.
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Median; Mode

The median of a random variable X is any number x such that
P(X < x) ≤ 1/2 and P(X > x) ≥ 1/2.

The mode of a random variable X is the number x such that

p(x) = max
x ′∈Im(X )

p(x ′).
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Moments

Let us suppose we have a random variable X and a random variable
Y = Φ(X ) for some function Φ. The expected value of Y is

E (Y ) =
∑

i

Φ(xi )pX (xi ).

Especially interesting is the power function Φ(X ) = X k . E (X k) is
known as the kth moment of X . For k = 1 we get the expectation of
X .
If X and Y are random variables with matching corresponding
moments of all orders, i.e. ∀k E (X k) = E (Y k), then X and Y have
the same distributions.
Usually we center the expected value to 0 – we use moments of
Φ(X ) = X − E (X ).
We define the kth central moment of X as

µk = E
(

[X − E (X )]k
)
.
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Variance

Definition

The second central moment is known as the variance of X and defined as

µ2 = E
(
[X − E (X )]2

)
.

Explicitly written,

µ2 =
∑

i

[xi − E (X )]2p(xi ).

The variance is usually denoted as σ2
X or Var(X ).

Definition

The square root of σ2
X is known as the standard deviation σX =

√
σ2

X .

If variance is small, then X takes values close to E (X ) with high
probability. If the variance is large, then the distribution is more ’diffused’.
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Expectation revisited

Theorem

Let X1,X2, . . .Xn be random variables defined on the same probability
space and let Y = Φ(X1,X2, . . .Xn). Then

E (Y ) =
∑
x1

∑
x2

· · ·
∑
xn

Φ(x1, x2, . . . xn)p(x1, x2, . . . xn).

Theorem (Linearity of expectation)

Let X and Y be random variables. Then

E (X + Y ) = E (X ) + E (Y ).
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Linearity of expectation (proof)

Linearity of expectation.

E (X + Y ) =
∑

i

∑
j

(xi + yj)p(xi , yj) =

=
∑

i

xi

∑
j

p(xi , yj) +
∑

j

yj

∑
i

p(xi , yj) =

=
∑

i

xipX (xi ) +
∑

j

yjpY (yj) =

=E (X ) + E (Y ).
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Linearity of expectation

The linearity of expectation can be easily generalized for any linear
combination of n random variables, i.e.

Theorem (Linearity of expectation)

Let X1,X2, . . .Xn be random variables and a1, a2, . . . an ∈ R constants.
Then

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE (Xi ).

Proof is left as a home exercise :-).
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Expectation of independent random variables

Theorem

If X and Y are independent random variables, then

E (XY ) = E (X )E (Y ).

Proof.

E (XY ) =
∑

i

∑
j

xiyjp(xi , yj) =

=
∑

i

∑
j

xiyjpX (xi )pY (yj) =

=
∑

i

xipX (xi )
∑

j

yjpY (yj) =

=E (X )E (Y ).
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Expectation of independent random variables

The expectation of independent random variables can be easily generalized
for any n–tuple X1,X2, . . .Xn of mutually independent random variables:

E

(
n∏

i=1

Xi

)
=

n∏
i=1

E (Xi ).

If Φ1,Φ2, . . .Φn are functions, then

E

[
n∏

i=1

Φi (Xi )

]
=

n∏
i=1

E [Φi (Xi )].
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Variance revisited

Theorem

Let σ2
X be the variance of the random variable X . Then

σ2
X = E (X 2)− [E (X )]2.

Proof.

σ2
X =E

(
[X − E (X )]2

)
= E

(
X 2 − 2XE (X ) + [E (X )]2

)
=

=E (X 2)− E [2XE (X )] + [E (X )]2 =

=E (X 2)− 2E (X )E (X ) + [E (X )]2.
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Covariance

Definition

The quantity

E
(
[X − E (X )][Y − E (Y )]

)
=
∑
i ,j

pxi ,yj [xi − E (X )] [yj − E (Y )]

is called the covariance of X and Y and denoted Cov(X ,Y ).

Theorem

Let X and Y be independent random variables. Then the covariance of X
and Y Cov(X ,Y ) = 0.
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Covariance

Proof.

Cov(X ,Y ) =E
(
[X − E (X )][Y − E (Y )]

)
=

=E [XY − YE (X )− XE (Y ) + E (X )E (Y )] =

=E (XY )− E (Y )E (X )− E (X )E (Y ) + E (X )E (Y ) =

=E (X )E (Y )− E (Y )E (X )− E (X )E (Y ) + E (X )E (Y ) = 0

Covariance measures linear (!) dependence between two random
variables.

E.g. when X = aY , a 6= 0, using E (X ) = aE (Y ) we have

Cov(X ,Y ) = aVar(Y ) =
1

a
Var(X ).
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Covariance

In general it holds that

0 ≤ Cov 2(X ,Y ) ≤ Var(X )Var(Y ).

Definition

We define the correlation coefficient ρ(X ,Y ) as the normalized
covariance, i.e.

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )
.

It holds that −1 ≤ ρ(X ,Y ) ≤ 1.
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Covariance

It may happen that X is completely dependent on Y and
yet the covariance is 0, e.g. for X = Y 2 and a suitably
chosen Y .
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Variance

Theorem

If X and Y are independent random variables, then

Var(X + Y ) = Var(X ) + Var(Y ).

Proof.

Var(X + Y ) = E
(
[(X + Y )− E (X + Y )]2

)
=

=E
(
[(X + Y )− E (X )− E (Y )]2

)
= E

(
[(X − E (X )) + (Y − E (Y ))]2

)
=

=E
(
[X − E (X )]2 + [Y − E (Y )]2 + 2[X − E (X )][Y − E (Y )]

)
=

=E
(
[X − E (X )]2

)
+ E

(
[Y − E (Y )]2

)
+ 2E

(
[X − E (X )][Y − E (Y )]

)
=

=Var(X ) + Var(Y ) + 2E
(
[X − E (X )][Y − E (Y )]

)
=

=Var(X ) + Var(Y ) + 2Cov(X ,Y ) = Var(X ) + Var(Y ).
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Variance

If X and Y are not independent, we obtain (see proof on the previous
transparency)

Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X ,Y ).

The additivity of variance can be generalized to a set X1,X2, . . .Xn of
mutually independent variables and constants a1, a2, . . . an ∈ R as

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi ).
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Part III

Conditional Distribution and Expectation
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Conditional probability

Using the derivation of conditional probability of two events we can derive
conditional probability of (a pair of) random variables.

Definition

The conditional probability distribution of random variable Y given
random variable X (their joint distribution is pX ,Y (x , y)) is

pY |X (y |x) =P(Y = y |X = x) =
P(Y = y ,X = x)

P(X = x)
=

=
pX ,Y (x , y)

pX (x)

(1)

provided pX (x) 6= 0.
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Conditional distribution function

Definition

The conditional probability distribution function of random variable Y
given random variable X (their joint distribution is pX ,Y (x , y)) is

FY |X (y |x) = P(Y ≤ y |X = x) =
P(Y ≤ y and X = x)

P(X = x)
(2)

for all values P(X = x) > 0. Alternatively we can derive it from the
conditional probability distribution as

FY |X (y |x) =

∑
t≤y p(x , t)

pX (x)
=
∑
t≤y

pY |X (t|x).

Jan Bouda (FI MU) Lecture 3 - Expectation, inequalities and laws of large numbersApril 19, 2009 23 / 67



Conditional expectation

We may consider Y |(X = x) to be a new random variable that is given by
the conditional probability distribution pY |X . Therefore, we can define its
mean and moments.

Definition

The conditional expectation of Y given X = x is defined

E (Y |X = x) =
∑
y

yP(Y = y |X = x) =
∑
y

ypY |X (y |x). (3)

Analogously can be defined conditional expectation of a transformed
random variable Φ(Y ), namely the conditional kth moment of Y :
E (Y k |X = x). Of special interest will be the conditional variance

Var(Y |X = x) = E (Y 2|X = x)− [E (Y |X = x)]2.
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Conditional expectation

We can derive the expectation of Y from the conditional expectations.
The following equation is known as the theorem of total expectation:

E (Y ) =
∑
x

E (Y |X = x)pX (x). (4)

Analogously, the theorem of total moments is

E (Y k) =
∑
x

E (Y k |X = x)pX (x). (5)
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Example: Random sums

Let N,X1,X2, . . . be mutually independent random variables. Let us
suppose that X1,X2, . . . have identical probability distribution pX (x),
mean E (X ), and variance Var(X ). We also know the values E (N) and
Var(N). Let us consider the random variable defined as a sum

T = X1 + X2 + · · ·+ XN .

In what follows we would like to calculate E (T ) and Var(T ). For a fixed
value N = n we can easily derive the conditional expectation of T by

E (T |N = n) =
n∑

i=1

E (Xi ) = nE (X ). (6)

Using the theorem of total expectation we get

E (T ) =
∑
n

nE (X )pN(n) = E (X )
∑
n

npN(n) = E (X )E (N). (7)
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Example: Random sums

It remains to derive the variance of T . Let us first compute E (T 2). We
obtain

E (T 2|N = n) = Var(T |N = n) + [E (T |N = n)]2 (8)

and

Var(T |N = n) =
n∑

i=1

Var(Xi ) = nVar(X ) (9)

since (T |N = n) = X1 + X2 + · · ·+ Xn and X1, . . . ,Xn are mutually
independent.
We substitute (6) and (9) into (8) to get

E (T 2|N = n) = nVar(X ) + n2E (X )2. (10)
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Example: Random sums

Using the theorem of total moments we get

E (T 2) =
∑
n

(
nVar(X ) + n2[E (X )]2

)
pN(n)

=

(
Var(X )

∑
n

npN(n)

)
+

(
[E (X )]2

∑
n

pN(n)n2

)
=Var(X )E (N) + E (N2)[E (X )]2.

(11)

Finally, we obtain

Var(T ) =E (T 2)− [E (T )]2 =

=Var(X )E (N) + E (N2)[E (X )]2 − [E (X )]2[E (N)]2 =

=Var(X )E (N) + [E (X )]2Var(N).

(12)
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Part IV

Inequalities
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Markov inequality

It is important to derive as much information as possible even from a
partial description of random variable. The mean value already gives more
information than one might expect, as captured by Markov inequality.

Theorem (Markov inequality)

Let X be a nonnegative random variable with finite mean value E (X ).
Then for all t > 0 it holds that

P(X ≥ t) ≤ E (X )

t
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Markov inequality

Proof.

Let us define the random variable Yt (for fixed t) as

Yt =

{
0 if X < t

t X ≥ t.

Then Yt is a discrete random variable with probability distribution
pYt (0) = P(X < t), pYt (t) = P(X ≥ t). We have

E (Yt) = tP(X ≥ t).

The observation X ≥ Yt gives

E (X ) ≥ E (Yt) = tP(X ≥ t),

what is the Markov inequality.
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Chebyshev inequality

In case we know both mean value and variance of a random variable, we
can use much more accurate estimation

Theorem (Chebyshev inequality)

Let X be a random variable with finite variance. Then

P
[
|X − E (X )| ≥ t

]
≤ Var(X )

t2
, t > 0

or, alternatively, substituting X ′ = X − E (X )

P(|X ′| ≥ t) ≤ E (X ′2)

t2
, t > 0.

We can see that this theorem is in agreement with our interpretation of
variance. If σ is small, then there is large probability of getting outcome
close to E (X ), if σ is large, then there is large probability of getting
outcomes farther from the mean.
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Chebyshev inequality

Proof.

We apply the Markov inequality to the nonnegative variable [X − E (X )]2

and we replace t by t2 to get

P
[
(X − E (X ))2 ≥ t2

]
≤

E
(
[X − E (X )]2

)
t2

=
σ2

t2
.

We obtain the Chebyshev inequality using the fact that the events
[(X − E (X ))2 ≥ t2] = [|X − E (X )| ≥ t] are the same.
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Kolmogorov inequality

Theorem (Kolmogorov inequality)

Let X1,X2, . . .Xn be independent random variables. We put

Sk = X1 + · · ·+ Xk , (13)

mk = E (Sk) = E (X1) + · · ·+ E (Xk), (14)

s2
k = Var(Sk) = Var(X1) + · · ·+ Var(Xk). (15)

For every t > 0 it holds that

P
[
|S1−m1| < tsn∧|S2−m2| < tsn∧ . . . |Sn−mn| < tsn

]
≥ 1− t−2. (16)
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Kolmogorov inequality

Comparing to Chebyshev inequality we see that the Kolmogorov inequality
is considerably stronger since Chebyshev inequality implies only

∀i = 1 . . . n P(|Si −mi | < tsi ) ≥ 1− t−2.

We used rewriting the Chebyshev inequality as

P
[
|X − E (X )| < t ′

]
≥ 1− Var(X )

t ′2
, t > 0

and the substitution X = Si , t ′ = si t.
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Kolmogorov inequality

Proof.

We want to estimate the probability p that at least one of the terms in Eq.
(16) does not hold (this is complementary event to Eq. (16)) and to verify
the statement of the theorem, i.e. to test whether p ≤ t−2.
Let us define n random variables Yk , k = 1, . . . , n as

Yk =

{
1 if |Sk −mk | ≥ tsn and ∀v = 1, 2 . . . k − 1, |Sv −mv | < tsn,

0 otherwise.

(17)
In words, Yk equals 1 at those sample points in which the kth inequality of
(16) is the first to be violated. For any sample point at most one of Yv is
one and the sum Y1 + Y2 + · · ·+ Yn is either 0 or 1. Moreover, it is 1 if
and only if at least one of the inequalities (16) is violated.
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Kolmogorov inequality

Proof.

Therefore,
p = P(Y1 + Y2 · · ·Yn = 1). (18)

We know that
∑

k Yk ≤ 1 and multiplying both sides of this inequality by
(Sn −mn)2 gives ∑

k

Yk(Sn −mn)2 ≤ (Sn −mn)2. (19)

Through taking expectation of each side over Sn we get

n∑
k=1

E [Yk(Sn −mn)2] ≤ s2
n . (20)
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Kolmogorov inequality

Proof.

We introduce the substitution

Uk = (Sn −mn)− (Sk −mk) =
n∑

v=k+1

[Xv − E (Xv )]

to evaluate respective summands of the left-hand side of Eq. (20) as

E [Yk(Sn−mn)2] =E [Yk(Uk + Sk −mk)2] =

=E [Yk(Sk−mk)2]+2E [YkUk(Sk−mk)]+E (YkU2
k ).

(21)

Now, since Uk depends only on Xk+1, . . . ,Xn and Yk and Sk depend only
on X1, . . . ,Xk , we have that Uk is independent of Yk(Sk −mk). Therefore,
E [YkUk(Sk −mk)] = E [Yk(Sk −mk)]E (Uk) = 0 since E (Uk) = 0.
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Kolmogorov inequality

Proof.

Thus from Eq. (21) we get

E [Yk(Sn −mn)2] ≥ E [Yk(Sk −mk)2] (22)

observing that E (YkU2
k ) ≥ 0.

We know that Yk 6= 0 only if |Sk −mk | ≥ tsn, so that
Yk(Sk −mk)2 ≥ t2s2

nYk and therefore

E [Yk(Sk −mk)2] ≥ t2s2
nE (Yk). (23)
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Kolmogorov inequality

Proof.

Combining (20), (22) and (23) we get

s2
n ≥

n∑
k=1

E [Yk(Sn −mn)2] ≥
n∑

k=1

E [Yk(Sk −mk)2] ≥

≥
n∑

k=1

t2s2
nE (Yk) = t2s2

nE (Y1 + · · ·+ Yn)

(24)

and from (18) using P(Y1 + · · ·+ Yn = 1) = E (Y1 + · · ·+ Yn) we finally
obtain

pt2 ≤ 1. (25)
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Part V

Laws of Large Numbers
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(Weak) Law of Large Numbers

Theorem ((Weak) Law of Large Numbers)

Let X1,X2, . . . be a sequence of mutually independent random variables
with a common probability distribution. If the expectation µ = E (Xk)
exists, then for every ε > 0

lim
n→∞

P

(∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

In words, the probability that the average Sn/n differs from the
expectation by less then arbitrarily small ε goes to 0.

Proof.

WLOG we can assume that µ = E (Xk) = 0, otherwise we simply replace
Xk by Xk − µ. This induces only change of notation.
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(Weak) Law of Large Numbers

Proof.

In the special case Var(Xk) exists, the law of large numbers is a direct
consequence of the Chebyshev inequality; we substitute
X = X1 + · · ·+ Xn = Sn to get

P(|Sn − µ| ≥ t) ≤ Var(Xk)n

t2
. (26)

We substitute t = εn and observe that with n→∞ the right-hand side
tends to 0 to get the result. However, in case Var(Xk) exists, we can apply
the more accurate central limit theorem. The proof without the
assumption that Var(Xk) exists follows.
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(Weak) Law of Large Numbers

Proof.

Let δ be a positive constant to be determined later. For each k we define
a pair of random variables (k = 1 . . . n)

Uk = Xk ,Vk = 0 if |Xk | ≤ δn (27)

Uk = 0,Vk = Xk if |Xk | > δn (28)

By this definition
Xk = Uk + Vk . (29)
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(Weak) Law of Large Numbers

Proof.

To prove the theorem it suffices to show that both

lim
n→∞

P(|U1 + · · ·+ Un| >
1

2
εn) = 0 (30)

and

lim
n→∞

P(|V1 + · · ·+ Vn| >
1

2
εn) = 0 (31)

hold, because |X1 + · · ·+ Xn| ≤ |U1 + · · ·+ Un|+ |V1 + · · ·+ Vn|.
Let us denote all possible values of Xk by x1, x2, . . . and the corresponding
probabilities p(xi ). We put

a = E (|Xk |) =
∑

i

|xi |p(xi ). (32)
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(Weak) Law of Large Numbers

Proof.

The variable U1 is bounded by δn and X1 and therefore

U2
1 ≤ X1δn.

Taking expectation on both sides gives

E (U2
1 ) ≤ aδn. (33)

Variables U1, . . .Un are mutually independent and have the same
probability distribution. Therefore,

E [(U1 + · · ·+ Un)2]− [E (U1 + · · ·+ Un)]2 = Var(U1 + · · ·+ Un) =

= nVar(U1) ≤ nE (U2
1 ) ≤ aδn2.

(34)

Jan Bouda (FI MU) Lecture 3 - Expectation, inequalities and laws of large numbersApril 19, 2009 46 / 67



(Weak) Law of Large Numbers

Proof.

On the other hand, limn→∞ E (U1) = E (X1) = 0 and for sufficiently large
n we have

[E (U1 + · · ·Un)]2 = n2[E (U1)]2 ≤ n2aδ (35)

and for sufficiently large n we get from Eq. (34) that

E [(U1 + · · ·+ Un)2] ≤ 2aδn2. (36)

Using the Chebyshev inequality we get the result (30) observing that

P(|U1 + · · ·+ Un| > 1/2εn) ≤ 8aδ

ε2
. (37)

By choosing sufficiently small δ we can make the right-hand side arbitrarily
small to get (30).
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(Weak) Law of Large Numbers

Proof.

In case of (31) note that

P(V1 + V2 + · · ·Vn 6= 0) ≤
n∑

i=1

P(Vi 6= 0) = nP(V1 6= 0). (38)

For arbitrary δ > 0 we have

P(V1 6= 0) = P(|X1| > δn) =
∑
|xi |>δn

p(xi ) ≤
1

δn

∑
|xi |>δn

|xi |p(xi ). (39)

The last sum tends to 0 as n→∞ and therefore also the left side tends to
0. This statement is even stronger than (31) and it completes the
proof.
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Central Limit Theorem

In case the variance exists, instead of the law of large numbers we can
apply more exact central limit theorem.

Theorem (Central Limit Theorem)

Let X1,X2, . . . be a sequence of mutually independent identically
distributed random variables with a finite mean E (Xi ) = µ and a finite
variance Var(Xi ) = σ2. Let Sn = X1 + · · ·+ Xn. Then for every fixed β it
holds that

lim
n→∞

P

(
Sn − nµ

σ
√

n
< β

)
=

1√
2π

∫ β

−∞
e−

1
2
y dy (40)

In case the mean does not exist, neither the central limit theorem nor the
law of large number applies. Nevertheless, we still may be interested in a
number of such cases, see e.g. (Feller, p. 246).
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Law of Large Numbers, Central Limit Theorem and
Variables with Different Distributions

Let us make a small comment on the generality of the law of large
numbers and the central limit theorem, namely we will relax the
requirement that the random variables X1,X2, . . . are identically
distributed.

Let us denote in the following transparencies

s2
n = σ2

1 + σ2
2 + · · ·+ σ2

n. (41)

The law of large numbers holds if and only if Xk are uniformly
bounded, i.e. there exists a constant A such that ∀k |Xk | < A.

A sufficient condition (but not necessary) is that

lim
n→∞

sn

n
= 0. (42)

In this case our proof applies.
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Law of Large Numbers, Central Limit Theorem and
Variables with Different Distributions

Theorem (Lindeberg theorem)

The central limit theorem holds for any sequence of random variables
X1,X2 . . . with finite means µ1, µ2, . . . and variance if and only if for every
ε > 0 the random variables Uk defined by

Uk =

{
Xk − µk if |Xk − µk | ≤ εSn

0 if |Xk − µk | > εSn

(43)

satisfy

lim
sn→∞

1

s2
n

n∑
k=1

E (U2
k ) = 1. (44)

This theorem e.g. implies that every sequence of uniformly bounded
random variables obeys the central limit theorem.
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Strong Law of Large Numbers

The (weak) law of large number implies that large values |Sn −mn|/n
occur infrequently. In many practical situation we require the stronger
statement that |Sn −mn|/n remains small for all sufficiently large n.

Definition (Strong Law of Large Numbers)

We say that the sequence X1,X2, . . . obeys the strong law of large
numbers if to every pair ε > 0, δ > 0 there exists an n ∈ N such that

P
(
∀r :
|Sn −mn|

n
< ε∧|Sn+1 −mn+1|

n + 1
< ε∧. . . |Sn+r −mn+r |

n + r
< ε
)
≥ 1−δ.

(45)

It remains to determine the conditions when the strong law of large
numbers holds.
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Strong Law of Large Numbers

Theorem (Kolmogorov criterion)

Let X1,X2, . . . be a sequence of random variables with corresponding
variances σ2

1, σ
2
2, . . . . Then the convergence of the series

∞∑
k=1

σ2
k

k2
(46)

is a sufficient condition for the strong law of large numbers to apply.
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Strong Law of Large Numbers

Proof.

Let Av be the event that for at least one n such that 2v−1 < n ≤ 2v the
inequality

|Sn −mn|
n

< ε (47)

does not hold. It suffices to prove that for all sufficiently large v and all r
it holds that

P(Av ) + P(Av+1) + · · ·+ P(Av+r ) < δ, (48)

i.e. the series
∑

P(Av ) converges. The event Av implies that for some n
in range 2v−1 < n ≤ 2v

|Sn −mn| ≥ εn ≥ ε2v−1 (49)
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Strong Law of Large Numbers

Proof.

Using s2
n ≤ s2

2v and Kolmogorov inequality with t = ε2v−1/s2v we get

P(Av ) ≤ P(|Sn −mn| ≥ ε2v−1) ≤ 4ε−2s2
2v 2−2v . (50)

Hence (observe that
∑2v

k=1 σ
2
k = s2

2v )

∞∑
v=1

P(Av ) ≤
∞∑

v=1

4ε−2s2
2v 2−2v ≤ 4ε−2

∞∑
v=1

2−2v
2v∑

k=1

σ2
k

=4ε−2
∞∑

k=1

σ2
k

∑
2v≥k

2−2v ≤ 8ε−2
∞∑

k=1

σ2
k

k2
.

(51)
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Strong Law of Large Numbers

Before formulating our final criterion for the strong law of large numbers,
we have to introduce two auxiliary lemmas we will use in the proof of the
main theorem.

Lemma (First Borel-Cantelli lemma)

Let {Ak} be a sequence of events defined on the same sample space and
ak = P(Ak). If

∑
k ak converges, then to every ε > 0 it is possible to find

an (sufficiently large) integer n such that for all integers r the probability

P(An+1 ∩ An+2 ∩ · · · ∩ An+r ) ≤ ε. (52)
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Strong Law of Large Numbers

Proof.

First it is important to determine n so that an+1 + an+2 + · · · ≤ ε. This is
possible since

∑
k ak converges. The lemma follows since

P(Ar+1 ∩ Ar+2 ∩ · · · ∩ Ar+n) ≤ ar+1 + ar+2 + · · · ar+n ≤ ε. (53)
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Strong Law of Large Numbers

Lemma

For any v ∈ N+ it holds that

v
∞∑

k=v

1

k2
≤ 2. (54)
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Strong Law of Large Numbers

Proof.

Let us consider the series
∑∞

k=1
1

k(k+1) . Using 1
k(k+1) = 1

k −
1

k+1 we get
that

sn =
n∑

k=1

1

k(k + 1)
= 1− 1

n + 1
.

We calculate the limit to get

∞∑
k=2

1

k(k − 1)
=
∞∑

k=1

1

k(k + 1)
= lim

n→∞
sn = lim

n→∞

(
1− 1

n + 1

)
= 1.
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Strong Law of Large Numbers

Proof.

We proceed to obtain

∞∑
k=1

1

k2
= 1 +

∞∑
k=2

1

k2
≤ 1 +

∞∑
k=2

1

k(k − 1)
= 2,

and, analogously,

2
∞∑

k=2

1

k2
≤ 2

∞∑
k=2

1

k(k − 1)
= 2.
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Strong Law of Large Numbers

Proof.

Finally, we get the result for v > 2

v
∞∑

k=v

1

k2
≤ v

∞∑
k=v

1

k(k − 1)
= v

(( ∞∑
k=2

1

k(k − 1)

)
−

(
v−1∑
k=2

1

k(k − 1)

))
=

=v

(
1−

(
v−2∑
k=1

1

k(k + 1)

))
=

v

v − 1
≤ 2.

(55)
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Strong Law of Large Numbers

Theorem

Let X1,X2, . . . be a sequence of mutually independent random variables
with common probability distribution p(xi ) and the mean µ = E (Xi )
exists. Then the strong law of large numbers applies to this sequence.

Proof.

Let us introduce two new sequences of random variables defined by

Uk = Xk ,Vk = 0 if |Xk | < k (56)

Uk = 0,Vk = Xk if |Xk | ≥ k . (57)

Uk are mutually independent and we will show that they satisfy the
Kolmogorov criterion.
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Strong Law of Large Numbers

Proof.

For σ2
k = Var(Uk) we get

σ2
k ≤ E (U2

k ) =
∑
|xi |<k

x2
i p(xi ). (58)

Let us put for abbreviation

av =
∑

v−1≤|xi |<v

|xi |p(xi ). (59)
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Strong Law of Large Numbers

Proof.

Then the serie
∑

v av converges since E (Xk) exists. Moreover, from (58)

σ2
k ≤ a1 + 2a2 + 3a3 + · · ·+ kak (60)

observing that ∑
v−1≤|xi |<v

|xi |2p(xi ) ≤ v
∑

v−1≤|xi |<v

|xi |p(xi ) = vav .
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Strong Law of Large Numbers

Proof.

Thus

∞∑
k=1

σ2
k

k2
≤
∞∑

k=1

1

k2

k∑
v=1

vav =
∞∑

v=1

vav

∞∑
k=v

1

k2

(∗)
< 2

∞∑
v=1

av <∞. (61)

To see (∗) recall that from the previous lemma for any v = 1, 2, . . . we
have 2 ≥ v

∑∞
k=v

1
k2 . Therefore, the Kolmogorov criterion holds for

{Uk}.
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Strong Law of Large Numbers

Proof.

Now,
E (Uk) = µk =

∑
|xi |<k

xip(xi ), (62)

limk→∞ = µ and hence limn→∞(µ1 + µ2 + · · ·+ µn)/n = µ.
From the strong law of large numbers for {Uk} we obtain that with
probability 1− δ or better

∀n > N :

∣∣∣∣∣n−1
n∑

k=1

Uk − µ

∣∣∣∣∣ < ε (63)

provided N is sufficiently large. It remains to prove that the same
statement holds when we replace Uk by Xk . It suffices to show that we
can chose N sufficiently large so that with probability close to unity the
event Uk = Xk occurs for all k > N.
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Strong Law of Large Numbers

Proof.

This holds if with probability arbitrarily close to one only finitely many
variables Vk are different from zero, because in this case there exists k0

such that ∀k > k0 Vk = 0 with probability 1. By the first Borel-Cantelli
lemma this is the case when the series

∑
P(Vk 6= 0) converges. It remains

to verify the convergence. We have

P(Vn 6= 0) =
∑
|xi |≥n

p(xi ) ≤
an+1

n
+

an+2

n + 1
+ · · · (64)

and hence

∞∑
n=1

P(Vn 6= 0) ≤
∞∑

n=1

∞∑
v=n

av+1

v
=
∞∑

v=1

av+1

v

v∑
n=1

1 =
∞∑

v=1

av+1 <∞, (65)

since E (X ) exists. This completes our proof.
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