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Motivation and definition

Random variable - motivation

In many situation outcomes of a random experiment are numbers.

In other situations we want to assign to each outcome a number (in
addition to probability).

It may e.g. quantify financial or energetic cost of a particular
outcome.

We will define the random variable to to develop methods for studying
random experiments with outcomes that can be described numerically.

E.g. in case of Bernoulli trials we may be interested only in number of
’successes’ and not in actual sequence of ’successes’ and ’failures’.

Almost all real probabilistic computation is done using random
variables.
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Motivation and definition

Random variable - definition

A random variable is a rule that assigns a numerical value to each
outcome of an experiment.

Definition

A random variable X on a sample space S is a function X : S → R that
assigns a real number X(s) to each sample point s ∈ S.

We define the image of a random variable X as the set
Im(X) = {X(s)|s ∈ S}. This definition is similar to image of any other
function.
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Motivation and definition

Random variable - definition

A random variable partitions the sample space into a set of mutually
exclusive and collectively exhaustive events. For a random variable X and
a real number x we define the event Ax = ”X = x” (sometimes called the
inverse image of the set {x}) to be the set of all events from S to which
X assigns the value x

Ax = {s ∈ S|X(s) = x}.

Whenever you are not sure what some operation with random variable
means, always recall the basic definition of the random variable. In
example, the statement X ≤ Y means that X and Y are defined on the
same sample space S and for every sample point s ∈ S it holds that
X(s) ≤ Y(s).
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Motivation and definition

Random variable - definition

Obviously Ax ∩ Ay = ∅ iff x 6= y and⋃
x∈R

Ax = S .

Therefore the set of events {Ax}x∈R defines an event space and we will
often prefer to work in this event space rather than in the original sample
space. We usually abbreviate Ax as [X = x ].
The image of a discrete random variable (this is the case in this course) is
at most countable.
Following the definition of Ax = [X = x ] we calculate its probability as

P([X = x ]) = P({s|X (s) = x}) =
∑

X (s)=x

P(s).
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Motivation and definition

Random variable - probability distribution

Definition

Probability distribution of a random variable X is a function
pX : R→ [0, 1] satisfying the properties:

(p1) 0 ≤ pX (x) ≤ 1 for all x ∈ R
(p2) For a discrete random variable X , the set {x |pX (x) > 0} is a finite or

countable infinite subset of real numbers. Let us denote it by
{x1, x2, . . . }. We require that∑

i

pX (xi ) = 1.

A real valued function pX (x) defined on R is a probability distribution of
some random variable if it satisfies properties (p1)-(p3).
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Motivation and definition

Random variable - probability distribution

When the random variable is clear from the context, we denote the
probability distribution as p(x).
Do not mistake the probability distribution with the distribution
function, which is a non-decreasing function which tends to 0 as
x → −∞ and to 1 as x →∞.
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Motivation and definition

Distribution functions

We often are interested in computing the probability of the set
{s|X (s) ∈ A} for some subset A ⊆ R. We know that

{s|X (s) ∈ A} =
⋃

xi∈A

{s|X (s) = xi}
def
= [X ∈ A].

If −∞ < a < b <∞ and A is an interval A = (a, b), we usually write
P(a < X < b) instead of P(X ∈ (a, b)). If A = (a, b], then P(X ∈ A) will
be written as P(a < X ≤ b). Of special interest is the infinite interval
A = (−∞, x ] and we denote it by [X ≤ x ]. We calculate the probability of
A as

P(X ∈ A) =
∑
xi∈A

pX (xi ).
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Motivation and definition

Probability distribution function

Definition

The probability distribution function (or simply distribution function)
of a random variable X is

FX (t) = P(−∞ < X ≤ t) = P(X ≤ t) =
∑
x≤t

pX (x), −∞ < t <∞.

It follows that

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) = F (b)− F (a).

If X is an integer-valued random variable, then

F (t) =
∑

−∞<x≤btc

pX (x).
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Motivation and definition

Probability distribution function - properties

(F1) 0 ≤ F (x) ≤ 1 for −∞ < x <∞
(F2) F (x) is a monotone increasing function of x , that is if x1 ≤ x2, then

F (x1) ≤ F (x2). It is easy to see that (−∞, x1] ⊆ (−∞, x2] if x1 ≤ x2

and we have

P(−∞ < X ≤ x1) ≤ P(−∞ < X ≤ x2)

giving F (x1) ≤ F (x2).
(F3) limx→−∞ F (x) = 0, and limx→∞ F (x) = 1. If the random variable X

has a finite image, then there exist u, v ∈ R such that F (x) = 0 for all
x < u and F (x) = 1 for all x ≥ v .

(F4) F (x) has a positive increase equal to pX (xi ) at i = 1, 2, . . . and in the
interval [xi , xi+1) it has a constant value. Thus

F (x) = F (xi ) for xi ≤ x < xi+1

and
F (xi+1) = F (xi ) + pX (xi+1).

Jan Bouda (FI MU) Lecture 2 - Random Variables April 10, 2009 10 / 48



Motivation and definition

Probability distribution function

Any function satisfying properties (F1)-(F4) is the distribution
function of some discrete random variable.

In most cases we simply forget the theoretical background (random
experiment, sample space, events,. . . ) and examine random variables,
probability distributions and probability distribution functions.

Often the initial information is we have a random variable X with the
probability distribution pX (x). We can construct probability space
consistent with the random variable as follows. Let S = R, X (s) = s
for s ∈ S , F is a union of inverse images Ax of all subsets {x} and

P(A) =
∑
x∈A

pX (x).
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Part I

Examples of probability distributions
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Examples of probability distributions

Examples of probability distributions

In this part of the lecture we introduce the most common probability
distributions occurring in practical situations. In fact, we can always derive
the distributions and all related results ourselves, however, it is anyway
useful to remember these distributions and situations they describe both as
examples and to speed up our calculations. These probability distributions
are so important that they have specific names and sometimes also
notation.
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Examples of probability distributions

Constant random variable

For c ∈ R the function defined for all s ∈ S by X (s) = c is a discrete
random variable with P(X = c) = 1.

The probability distribution of this variable is

pX (x) =

{
1 if x = c

0 otherwise.

Such a random variable is called the constant random variable.

The corresponding distribution function is

FX (x) =

{
0 for x < c

1 for x ≥ c .
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Examples of probability distributions

Indicator random variable

Let us suppose that the event A partitions the sample space S , i.e.
A ∪ A = S .
The indicator of an event A is the random variable IA defined by

IA(s) =

{
1 if s ∈ A

0 if s 6∈ A

The event A occurs if and only if IA = 1.
The probability distribution is

pIA(0) = P(A) = 1− P(A)

pIA(1) = P(A).

The corresponding distribution function reads

FIA(x) =


0 for x < 0

P(A) for 0 ≤ x < 1

1 for x ≥ 1.
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Examples of probability distributions

Discrete uniform probability distribution

Let X be a discrete random variable with a finite image {x1, x2 . . . xn}
and let us assign to all elements of the image the same probability
pX (xi ) = p.

From the requirement that the probabilities must sum to 1 we have

1 =
n∑

i=1

pX (xi ) =
n∑

i=1

p = np

and the probability is

pX (xi ) =

{
1/n xi ∈ Im(X )

0 otherwise.

Such a random variable is said to have the uniform probability
distribution.

This concept cannot be extended to random variable with countably
infinite image.
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Examples of probability distributions

Discrete uniform probability distribution

If Im(X ) = {1, 2, . . . n} with pX (i) = 1/n, 1 ≤ i ≤ n, the probability
distribution function is

FX (x) =

bxc∑
i=1

pX (i) =
bxc
n
, 1 ≤ x ≤ n.
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Examples of probability distributions

Bernoulli probability distribution

The Bernoulli probability distribution of a random variable X origins
from the random experiment consisting of a single bernoulli trial (e.g.
a coin toss).

The only possible values of the random variable X are 0 and 1 (often
denoted as failure and success, respectively).

The distribution is given by

pX (0) =p0 = P(X = 0) = q

pX (1) =p1 = P(X = 1) = p = 1− q

The corresponding probability distribution function is

F (x) =


0 for x < 0

q for 0 ≤ x < 1

1 for x ≥ 1.
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Examples of probability distributions

Bernoulli probability distribution

Example

Let X be a Bernoulli random variable with parameter p and image {0, 1}.
X is the indicator of the event

A = {s|X (s) = 1}

and its probability distribution is pX (0) = 1− p and PX (1) = p.
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Examples of probability distributions

Binomial probability distribution

The Binomial probability distribution of a random variable Yn is the
number of successes (outcomes 1) in n consecutive Bernoulli trial
with the same fixed probability p of success in each trial.

The domain of the random variable Yn are all n–tuples of 0s and 1s.
The image is {0, 1, 2, . . . n}.
As already demonstrated in the previous lecture, the probability
distribution of Yn is

pk =P(Yn = k) = pYn(k)

=

{(n
k

)
pk(1− p)n−k for 0 ≤ k ≤ n

0 otherwise.

The binomial distribution is often denoted as b(k ; n, p) = p(k) and
represents the probability that there are k successes in a sequence of
n bernoulli trials with probability of success p.

In example, b(3; 5, 0.5) =
(5

3

)
(1/2)3(1/2)2 = 0.3125
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Examples of probability distributions

Binomial probability distribution

After specifying the distribution of a random variable we should verify that
this function is a valid probability distribution, i.e. to verify properties (p1)
and (p2). While (p1) is usually clear (it is easy to see that the function is
nonnegative), the property (p2) may be not so straightforward and should
be verified explicitly.
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Examples of probability distributions

Binomial probability distribution

The name ’binomial’ comes from the equation verifying that the
probabilities sum to 1

n∑
i=0

pi =
n∑

i=0

(
n

i

)
pi (1− p)n−i

=[p + (1− p)]n = 1.

The corresponding distribution function, denoted by B(t; n, p) is
given by

B(t; n, p) = FYn(t) =

btc∑
i=0

(
n

i

)
pi (1− p)n−i .
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Examples of probability distributions

Binomial probability distribution

We can apply the binomial model when the following conditions hold:

Each trial has exactly two mutually exclusive outcomes.

The probability of ’success’ is constant on each trial.

The outcomes of successive trials are mutually independent.

When n becomes very large, it is difficult to calculate the binomial
probability distribution, however, we can approximate it using the Laplace
(or normal) approximation, which states that when n approaches infinity

b(k ; n, p) ' 1√
2πnp(1− p)

e
−(k−np)2

2np(1−p) .

We omit proof of this statement.
The difference between the value of the normal approximation and the
binomial distribution depend both on values of n and p. For fixed n the
approximation is best when p = 0.5.
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Examples of probability distributions

Geometric probability distribution

The geometric probability distribution origins from Bernoulli trials as
well, but this time we count the number of trials until the first
’success’ occurs.

The sample space consists of binary strings of the form
S = {0i−11|i ∈ N}.
We define the random variable Z : {0i1|i ∈ N0} as Z (0i−11)

def
= i .

Z is the number of trials up to and including the first success.

The outcome 0i−11 arises from a sequence of independent Bernoulli
trials, thus we have

pZ (i) = (1− p)i−1p. (1)

We use the formula for the sum of geometric series to obtain (verify
property (p2))

∞∑
i=1

pZ (i) =
∞∑
i=1

p(1− p)i−1 =
p

1− (1− p)
=

p

p
= 1.

Jan Bouda (FI MU) Lecture 2 - Random Variables April 10, 2009 24 / 48



Examples of probability distributions

Geometric probability distribution

A random variable with the image {1, 2 . . . } and the probability
distribution (1) is said to have the geometric distribution.
The corresponding probability distribution function is defined by (for
t ≥ 0)

FZ (t) =

btc∑
i=1

p(1− p)i−1 = 1− (1− p)btc.

We are often interested in the number of failures before the first
success, let us denote this by the random variable X with the image
{0, 1, 2 . . . }.
The random variable X is said to have the modified geometric
distribution if the corresponding probability distribution is

pX (i) = p(1− p)i .

The distribution function is (for t ≥ 0)

FX (t) =

btc∑
i=0

p(1− p)i = 1− (1− p)bt+1c
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Examples of probability distributions

Negative binomial probability distribution

Let us observe the number of trials before the r–th success occurs (in
contrast to 1st success in geometric distribution).

Let Tr be the random variable representing this number.

Let us define the following events
I A =’Tr = n’.
I B =’Exactly (r − 1) successes occur in n − 1 trials.’
I C =’the nth trial results in a success.’

We have that A = B ∩ C , and B and C are independent giving
P(A) = P(B)P(C ).

Consider a particular sequence of n− 1 trials with r − 1 successes and
n − 1− (r − 1) = n − r failures. The probability associated with each
such sequence is pr−1(1− p)n−r and there are

(n−1
r−1

)
such sequences.

Therefore

P(B) =

(
n − 1

r − 1

)
pr−1(1− p)n−r .
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Examples of probability distributions

Negative binomial probability distribution

Since P(C ) = p we have

pTr (n) =P(Tr = n) = P(A)

=

(
n − 1

r − 1

)
pr (1− p)n−r , n = r , r + 1, r + 2, . . .

This can be rewritten (see e.g. Knuth: The art of computer
programming, vol. 1, p. 57) to

pTr (n) = pr

(
−r

n − r

)
(−1)n−r (1− p)n−r .

This formula holds for any r ∈ R, but the interpretation with the
number of successes is no longer valid.

The special case r = 1 gives the geometric distribution.
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Examples of probability distributions

Negative binomial probability distribution

To verify that the probabilities sum to 1 we use the Taylor expansion
of (1− t)−r for −1 < t < 1

(1− t)−r =
∞∑

n=r

(
−r

n − r

)
(−t)n−r .

The substitution t = (1− p) gives

p−r =
∞∑

n=r

(
−r

n − r

)
(−1)n−r (1− p)n−r

and the desired result is

1 =
∞∑

n=r

pr

(
−r

n − r

)
(−1)n−r (1− p)n−r .

Note that the summation from r is correct since clearly pTr (n) = 0
for n < r .
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Examples of probability distributions

Negative binomial probability distribution

There is also the modified negative binomial distribution describing the
number of failures until the r th success occurs. The probability distribution

pZ (n) =

(
n + r − 1

r − 1

)
pr (1− p)n, n ≥ 0.

For r = 1 we obtain the modified geometric distribution.
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Examples of probability distributions

Poisson probability distribution

Let us consider a time interval ∆t = (0, t] and observe the number of
messages received by a particular server. Depending on the usual
traffic we can expect that during the time interval ∆t there arrive
λ∆t messages, where λ is a parameter derived from the average
traffic on the server. It is clear that if ∆t is sufficiently small, there is
only a negligible probability that two messages arrive within the
interval ∆t.

Let us divide the interval into n parts of length t/n and suppose that
an arrival of a message in one time interval is independent of message
arrival in any other (non-overlapping) time interval. For sufficiently
large n we can consider n interval as constituting n Bernoulli trials
with the probability of success p = λt/n.
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Examples of probability distributions

Poisson probability distribution

Using this model the probability of k messages arriving in n intervals of a
duration t/n is approximately given by

b

(
k ; n,

λt

n

)
=

(
n

k

)(
λt

n

)k (
1− λt

n

)n−k

, k = 0, 1, . . . n.

Since the assumption that more than one message arrives in a given time
interval is reasonable only for large n we calculate the limit of probability
distribution as n approaches ∞. We start with

b

(
k; n,

λt

n

)
=

n(n − 1)(n − 2) . . . (n − k + 1)

k!nk
(λt)k

(
1− λt

n

)n−k

=
n

n
· n − 1

n
. . .

n − k + 1

n
· (λt)k

k!

(
1− λt

n

)−k (
1− λt

n

)n

.
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Examples of probability distributions

Poisson probability distribution

Let us now observe what happens when n goes to infinity. The first k
factors approach 1, the next factor is fixed, the next approaches 1 and the
last factor we rewrite as

lim
n→∞

[(
1− λt

n

)−n/(λt)
]−λt

.

Substituting −λt/n = h we have[
lim
h→0

(1 + h)1/h

]−λt

= e−λt

since the expression in the parentheses is the definition of euler constant e.
Thus the binomial probability distribution approaches

lim
n→∞

b

(
k; n,

λt

n

)
=

e−λt(λt)k

k!
, k = 0, 1, 2 . . .

Jan Bouda (FI MU) Lecture 2 - Random Variables April 10, 2009 32 / 48



Examples of probability distributions

Poisson probability distribution

By replacing λt by α we get the well known Poisson distribution

f (k ;α) = e−α
αk

k!
.

Following our derivations we can use the Poisson distribution to
approximate the binomial distribution when n is large and p is small
(compare to normal approximation):(

n

k

)
pk(1− p)n−k ' e−α

αk

k!
, where α = np.
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Examples of probability distributions

Poisson probability distribution

It remains to verify that the probabilities sum to 1 (they are obviously
positive)

∞∑
k=0

f (k ;α) =
∞∑

k=0

e−α
αk

k!
= e−α

∞∑
k=0

αk

k!
= e−αeα = 1,

since
∑∞

k=0
αk

k! is the Maclaurin expansion of eα.
The probabilities f (k;α) are easily calculable using

f (0;α) = e−α

and the recurrent relation

f (k + 1;α) =
αf (k;α)

k + 1
.
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Examples of probability distributions

Hypergeometric probability distribution

The Hypergeometric probability distribution is close in its
interpretation to the binomial probability distribution except that we
consider sampling without replacement.

Let us suppose we have two kinds of objects - e.g. r red and n − r
black socks in a basket. We have the probability r/n to select a red
sock in the first trial. However, the probability of selecting red sock in
the second trial is (r − 1)/(n − 1) if red sock was selected in the first
trial, or r/(n − 1) if black sock was selected in the first trial. It
follows that the assumption of constant probability of every outcome
in all trials, as required by the binomial distribution, does not hold.
Also, the trials are not independent.

In this case we are facing the hypergeometric distribution
h(k ; m, r , n) defined as the probability that k red objects in a set of m
object chosen randomly without replacement from n objects
containing r red objects.
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Examples of probability distributions

Hypergeometric probability distribution

There are
(n
m

)
sample points.

The k red socks can be selected from r red socks in
(r
k

)
ways and

m − k black socks can be selected from n − r in
( n−r
m−k

)
ways.

The sample of m socks with k red ones can be selected in
(r
k

)( n−r
m−k

)
ways.

Assuming uniform probability distribution on the sample space the
required probability is

h(k ; m, r , n) =

(r
k

)( n−r
m−k

)(n
m

) , k = 1, 2, . . .min{r ,m}

Good approximation of the hypergeometric distribution for large n is
the binomial distribution

h(k ; m, r , n) ' b(k ; m, r/n).
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Part II

Discrete random vectors
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Discrete random vectors

Suppose we want to study relationship between two or more random
variables defined on a given sample space.

Let X1,X2, . . .Xr be r discrete random variables defined on a sample
space S .

For each sample point s ∈ S , each of the random variables
X1,X2, . . .Xr takes on one of its possible values

X1(s) = x1,X2(s) = x2, . . .Xr (s) = xr .

The random vector X = (X1,X2, . . .Xr ) is an r -dimensional
vector-valued function X : S → Rr with X(s) = x = (x1, x2, . . . xr ).
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Discrete random vectors

Definition

The joint (or compound) probability distribution of a random vector X
is defined to be

pX(x) = P(X = x) = P(X1 = x1,X2 = x2, . . .Xr = xr ).

The properties of random vectors are

(j1) pX(x) ≥ 0, x ∈ Rr .

(j2) {x|px(x) 6= 0} is a finite or countably infinite subset of Rr , which will
be denoted as {x1, x2, . . . }.

(j3) P(X ∈ A) =
∑

x∈A pX(x).

(j4)
∑

i pX(xi ) = 1.
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Marginal probability distributions

In situation when we are examining more that one random variable,
the probability distribution of a single variable, e.g. pX (x), is referred
to as marginal probability distribution (in contrast to joint
probability distribution).
Considering joint probability distribution pX ,Y (x , y) of random
variables X and Y we can calculate the marginal probability
distribution of X as

pX (x) =P(X = x) = P

⋃
j

{X = x ,Y = yj}


=
∑

j

P(X = x ,Y = yj) =
∑

j

pX ,Y (x , yj).

Similarly we obtain the marginal probability distribution of Y

pY (y) =
∑

i

pX ,Y (xi , y).
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Marginal probability distributions

While it is relatively easy to calculate the marginal probability
distributions from the joint distribution, in general there is no way
how to determine the joint distribution from corresponding marginal
distributions.

The only exception are independent random variables (see below),
when the joint probability distribution is the product of marginal
distributions.
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Multinomial probability distribution

Interesting example of joint probability distribution is the multinomial
distribution.

Consider a sequence of n generalized bernoulli trials, where each of
them has a finite number r of outcomes having probabilities
p1, p2, . . . pr .

Let us define the random vector X = (X1,X2, . . .Xr ) such that Xi is
the number of trials that resulted in ith outcome.

Then the compound probability distribution of X is

pX(n) =P(X1 = n1,X2 = n2, . . .Xr = nr )

=

(
n

n1, n2, . . . nr

)
pn1

1 pn2
2 . . . pnr

r ,

where n = (n1, n2 . . . nr ) and
∑r

i=1 ni = n.

Jan Bouda (FI MU) Lecture 2 - Random Variables April 10, 2009 42 / 48



Multinomial probability distribution

The marginal probability distribution of Xi may be computed by

pXi
(ni ) =

∑
n:[(

∑
j 6=i nj)=n−ni ]

(
n

n1, n2 . . . nr

)
pn1

1 pn2
2 . . . pnr

r

=
n!pni

i

(n − ni )!ni !

∑
n:[(

∑
j 6=i nj)=n−ni ]

(n − ni )!pn1
1 . . . p

ni−1

i−1 p
ni+1

i+1 . . . p
nr
r

n1!n2! . . . ni−1!ni+1! . . . nr !

=

(
n

ni

)
pni
i (p1 + · · ·+ pi−1 + pi+1 + · · ·+ pr )n−ni

=

(
n

ni

)
pni
i (1− pi )

n−ni .
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Part III

Independent random variables
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Independent random variables

Definition

Two discrete random variables are independent provided their joint
probability distribution is a product of the marginal probability
distributions, i.e.

pX ,Y (x , y) = pX (x)pY (y) for all x and y .

If X and Y are two independent random variables, then for any two
subsets A,B ⊆ R the events X ∈ A and Y ∈ B are independent:

P(X ∈ A ∩ Y ∈ B) = P(X ∈ A)P(Y ∈ B)

To see this

P(X ∈ A ∩ Y ∈ B) =
∑
x∈A

∑
y∈B

pX ,Y (x , y)

=
∑
x∈A

∑
y∈B

pX (x)pY (y)

=
∑
x∈A

pX (x)
∑
y∈B

pY (y)

=P(X ∈ A)P(Y ∈ B).

Let us assume that on a particular performance of a random
experiment we observe the event [Y = y ]. Since X and Y are
independent, we obtain (as desired)

P(X = x |Y = y) =
P(X = x ∩ Y = y)

pY (y)
=

pX ,Y (x , y)

pY (y)

=
pX (x)pY (y)

pY (y)
= pX (x).
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Independent random variables

Definition

Let X1,X2, . . .Xr be discrete random variables with probability
distributions pX1 , pX2 , . . . pXr . These random variables are pairwise
independent if

∀1 ≤ i < j ≤ r , ∀xi ∈ Im(Xi ), xj ∈ Im(Xj), pXi ,Xj
(xi , xj) = pXi

(xi )pXj
(xj).

Definition

Let X1,X2, . . .Xr be discrete random variables with probability
distributions pX1 , pX2 , . . . pXr . These random variables are mutually
independent if for all x1 ∈ Im(X1), x2 ∈ Im(X2), . . . , xr ∈ Im(Xr )

pX1,X2,...Xr (x1, x2, . . . xr ) = pX1(x1)pX2(x2) . . . pXr (xr ).

Note that pairwise independence of a set of random variables does not
imply their mutual independence.
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Independent random variables

Let X and Y be non-negative independent random variables. Then
the probability distribution of the random variable Z = X + Y is

pZ (t) = pX+Y (t) =
t∑

x=0

pX (x)pY (t − x).

In case X and Y can also take negative values, the sum should go
from −∞ instead of 0.

Jan Bouda (FI MU) Lecture 2 - Random Variables April 10, 2009 47 / 48



Independent random variables

Theorem

Let X1,X2, . . .Xr be mutually independent

1 If Xi has the binomial distribution with parameters ni and p, then∑r
i=1 Xi has the binomial distribution with parameters

n1 + n2 + · · ·+ nr and p.
2 If Xi has the (modified) negative binomial distribution with parameters
αi and p, then

∑r
i=1 Xi has the (modified) negative binomial

probability distribution with parameters α1 + α2 + · · ·+ αr and p.
3 If Xi has the Poisson distribution with parameter αi , then

∑r
i=1 Xi has

the Poisson distribution with parameter
∑r

i=1 αi .
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