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Part I

Motivation
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Motivation of the course

Probability is one of the central concepts of mathematics and also of
computer science

It allows us to model and study not only truly random processes, but
also situation when we have incomplete information about the
process.

It is important when studying average behavior of algorithms,
adversaries, . . .
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Applications of probability theory in computer science

Information theory

Coding theory

Cryptography

Random processes

Randomized algorithms

Complexity theory

and many more . . .
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Goals of probability theory

The main goal of the probability theory is to study random
experiments.

Random experiment is a model of physical or gedanken experiment,
where we are uncertain about outcomes of the experiment, regardless
whether the uncertainty is due to objective coincidences or our
ignorance. We should be able to estimate how ’likely’ respective
outcomes are.

Random experiment is specified by the set of possible outcomes and
probabilities that each particular outcome occurs. Probability specifies
how likely a particular outcome is to occur.
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Examples of random experiments

A typical example of a random experiment is the coin tossing.

Possible outcomes of this experiment are head and tail.

Probability of each of these outcomes depends on physical properties
of the coin, on the way it is thrown, dots

In case of a fair coin (and fair coin toss) the probability to obtain
head (tail) is 1/2.

In practice it is almost impossible to find unbiased coin, although
theoretically we would expect a randomly chosen coin to be biased.

Coin tossing is an important abstraction - analysis of the coin tossing
can be applied to many other problems.
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Examples of random experiments

Another example of a random experiment is throwing a six-sided die.

Possible outcomes of a this experiment are symbols ’1’–’6’
representing respective facets of the die.

Assuming the die is unbiased, the probability that a particular
outcome occurs is the same for all outcomes and equals to 1/6.
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Examples of random experiments: Three balls in three cells

In this experiment we have three cells and we sequentially and
independently put each ball randomly into one of the cells.

The atomic outcomes of this experiment correspond to positions of
respective balls. Let us denote the balls as a, b and c.

All atomic outcomes of this experiment are:

1.[abc][ ][ ] 10.[a ][ bc][ ] 19.[ ][a ][ bc]
2.[ ][abc][ ] 11.[ b ][a c][ ] 20.[ ][ b ][a c]
3.[ ][ ][abc] 12.[ c][ab ][ ] 21.[ ][ c][ab ]
4.[ab ][ c][ ] 13.[a ][ ][ bc] 22.[a ][ b ][ c]
5.[a c][ b ][ ] 14.[ b ][ ][a c] 23.[a ][ c][ b ]
6.[ bc][a ][ ] 15.[ c][ ][ab ] 24.[ b ][a ][ c]
7.[ab ][ ][ c] 16.[ ][ab ][ c] 25.[ b ][ c][a ]
8.[a c][ ][ b ] 17.[ ][a c][ b ] 26.[ c][a ][ b ]
9.[ bc][ ][a ] 18.[ ][ bc][a ] 27.[ c][ b ][a ]
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Examples of random experiments

Example

Let us consider a source emitting 16 bit messages with uniform probability.
This message is transmitted through a noisy channel that maps the first
bit of the message to ’0’ and preserves all consecutive bits.
Possible outcomes of this experiment are all 16 bit messages, however, all
messages starting with ’1’ have zero probability. On the other hand, all
messages starting with ’0’ have the same probability 2−15.
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Examples of random experiments

Example

Let us consider a pushdown automaton A accepting language L ⊆ Σ∗. We
choose randomly an n–symbol word w ∈ Σn with probability P(w) and
pass it to the automaton A as an input. Let us suppose that the
computation of A on w takes ]A,w steps. Then the average number of
steps taken by the automaton A on n symbol input is∑

w∈Σn

P(w)]A,w .
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Part II

Sample space, events and probability

Jan Bouda (FI MU) Lecture 1 - Introduction and basic definitions April 19, 2009 13 / 58



Random experiment

The (idealized) random experiment is the central notion of the
probability theory.

Any random event will be modeled using an appropriate random
experiment.

Random experiment is specified (from mathematical point of view) by
the set of possible outcomes and probabilities assigned to each of
these outcomes.

A single execution of a random experiment is called the trial.
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Sample space

Definition

The set of the possible outcomes of a random experiment is called the
sample space of the experiment and it will be denoted S. The outcomes
of a random experiment (elements of the sample space) are denoted
sample points.

Every thinkable outcome of a random experiment is described by one,
and only one, sample point.

In this course we will concentrate on random experiments with
countable sample space.
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Sample space - examples

The sample space of the

’coin tossing’ experiment is {head , tail}.
’throwing a six-sided die’ experiment is {1, 2, 3, 4, 5, 6}.
’single student exam from IV111’ is {A,B,C ,D,E ,F}.

Example

Let us consider the following experiment: we toss the coin until the ’head’
appears. Possible outcomes of this experiment are

H,TH,TTH,TTTH, . . . .

We may also consider the possibility that ’head’ never occurs. In this case
we have to introduce extra sample point denoted e.g. ⊥.
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Sample space - examples

Example (chess tournament)

Let us consider the chess tournament for three players Alice, Bob and
Charlie. The rules of the tournament are:

First Alice plays against Bob.

In the next round winner of the previous round plays against the
participant who did not play in the previous round.

A player wins the tournament if he wins two consecutive games,
otherwise the previous step is repeated.

If a particular game is not a winning game, the winning player plays
against the player who abstained from the last game.
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Sample space - examples

Example (chess tournament)

Possible outcomes of this experiment are (each letter denotes winner of a
particular game)

aa, acc , acbb, acbaa, . . .

bb, bcc, bcaa, bcabb, . . .

If we admit that the tournament may continue indefinitely we include two
more sample points ⊥a and ⊥b.
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Event

In addition to basic outcomes of a random experiment, we are often
interested in more complicated events that represent a number of
outcomes of a random experiment.
The event ’outcome is even’ in the ’throwing a six-sided die’ experiment
corresponds to atomic outcomes ’2’, ’4’, ’6’. Therefore, we represent an
event of a random experiment as a subset of its sample space.
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Event

Definition

An event of a random experiment with sample space S is any subset of S.

The event A ∼’throwing by two independent dice results in sum 6’ is
A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.
Similarly, the event B ∼’two odd faces’ is
B = {(1, 1), (1, 3), . . . (5, 5)}.
Every (atomic) outcome of an experiment is an event (single-element
subset).

Empty subset is an event.

Set of all outcomes S is an event.
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Event

Note that occurence of a particular outcome may imply a number of
events. In such a case these events occur simultaneously.

The outcome (3, 3) implies event ’the sum is 6’ as well as the event
’two odd faces’.

Events ’the sum is 6’ and ’two odd faces’ may occur simultaneously.

Every compound event can be decomposed into atomic events
(sample points), compound event is an aggregate of atomic events.
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Example of events: Three balls in three cells

The event A=’there is more than one ball in one of the cells’
corresponds to atomic outcomes 1-21. We say that the event A is an
aggregate of events 1-21.

The event B=’firts cell is not empty’ is an aggregate of sample points
1,4-15,22-27.

The event C is defined as ’both A and B occur’. It represents sample
points 1,4-15.

You may observe that each of 27 sample points of this experiment
occurs either in A or in B. Therefore the event ’either A or B or both
occur’ corresponds to the whole sample space and occurs with
certainty.

The event D=’A does not occur’ represents sample points 22-27 and
can be rewritten as ’no cell remains empty’.

The event ’first cell empty and no cell multiply occupied’ is impossible
since no sample point satisfies this condition.
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Algebra of events - notation

Let S be a sample space. We use the standard set notation as follows.

The fact that a sample point x ∈ S is contained in event A is denoted
x ∈ A.

The fact that two events A and B contain the same sample points is
denoted A = B.

We use A = ∅ to denote that event contains no sample points.

To every event A there exists an event ’A does not occur’. It is

denoted A
def
= {x ∈ S|x 6∈ A} and called the complementary

(negative) event.

The event ’both A and B occur’ is denoted A ∩ B.

The event ’either A or B or both occur’ is denoted A ∪ B.

The symbol A ⊆ B signifies that every point of A is contained in B.
We read it ’A implies B’ and ’B is implied by A’.
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Algebra of events - laws

E1 Commutative:
A ∪ B = B ∪ A, A ∩ B = B ∩ A

E2 Associative:

A ∪ (B ∪ C ) = (A ∪ B) ∪ C

A ∩ (B ∩ C ) = (A ∩ B) ∩ C

E3 Distributive:

A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

E4 Identity:
A ∪ ∅ = A, A ∩ S = A

E5 Complement:
A ∪ A = S, A ∩ A = ∅

Any relation valid in the algebra of events can be proved using these
axioms.
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Algebra of events - some relations

Using the previously introduced axioms we can derive e.g.

Idempotent laws:
A ∪ A = A, A ∩ A = A

Domination laws:
A ∪ S = S, A ∩ ∅ = ∅

Absorption laws:

A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A

de Morgan’s laws:

(A ∪ B) = A ∩ B, (A ∩ B) = A ∪ B

A = A

A ∪ (A ∩ B) = A ∪ B
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Events

Definition

Events A1,A2, . . . ,An are mutually exclusive if and only if

∀i 6= jAi ∩ Aj = ∅.

Definition

Events A1,A2, . . . ,An are collectively exhaustive if and only if

A1 ∪ A2 · · · ∪ An = S.

A set of events can be collectively exhaustive, mutually exclusive, both or
neither. Mutually exclusive and collectively exhaustive list is called a partition
of the sample space S.

Example

Let us define the list of events As = {s} for each sample point s ∈ S. Such a
list of events is a partition of S.
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Probability

To complete our specification of the random experiment (as a
mathematical model) we have to assign probabilities to sample points
in the sample space.

In many engineering application the so-called relative frequency is
used interchangeably with probability. This is insufficient for our
purposes, however, we may use the relative frequency as an
approximation of probability in case we can perform a number of
trials of the experiment, but we do not have theoretical description of
a random experiment.

Definition

Let us suppose that we perform n trials of a random experiment and we
obtain an outcome ls ∈ S k times. Then the relative frequency of the
outcome s is k/n.
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Definition of Probability

By the symbol P(s) we denote the probability of the sample point s.
Analogously, we use the symbol P(E ) to denote the probability of an event E .
The probability function must satisfy the Kolmogorov’s axioms:

A1 For any event A, P(A) ≥ 0.
A2 P(S) = 1.
A3 P(A ∪ B) = P(A) + P(B) provided that A and B are mutually exclusive

events (i.e. A ∩ B = ∅).

It is sufficient to assign probabilities to all sample points and we can calculate
the probability of any event using these rules. Using the the axiom (A3) we
can easily prove its generalized version for any finite number of events,
however, for a countable infinite sequence of events we need a modified
version of the axiom:

A3’ For any countable sequence of events A1,A2, . . . that are mutually
exclusive it holds that

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai ).
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Some relations

Using the Kolmogorov’s axioms and axioms of the algebra of events we obtain

Ra For any event A, P(A) = 1− P(A).
Rb If ∅ is the impossible event, P(∅) = 0.
Rc If A and B are (not necessarily exclusive) events then

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

Theorem (inclusion and exclusion)

If A1,A2, . . . ,An are any events, then (see the principle of inclusion and
exclusion of combinatorial mathematics)

P

(
n⋃

i=1

Ai

)
=P(A1 ∪ · · · ∪ An)

=
∑

i

P(Ai )−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<k≤n

P(Ai ∩ Aj ∩ Ak)

− · · ·+ (−1)n−1P(A1 ∩ a2 ∩ . . . an).
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Inclusion and exclusion - proof

inclusion and exclusion.

We use induction on the number of events n. For n = 1 we obtain the relation
immediately. Let us suppose the statement holds for any union of n − 1
events. Let us define the event B = A1 ∪ · · · ∪ An−1. Then

n⋃
i=1

Ai = B ∪ An.

Using the result (Rc) we have

P

(
n⋃

i−1

Ai

)
=P(B ∪ An)

=P(B) + P(An)− P(B ∩ An).

(1)

Now using the distributivity of intersection and union we have

B ∩ An = (A1 ∩ An) ∪ · · · ∪ (An−1 ∩ An)

is a union of n − 1 events and thus we can apply the inductive hypothesis to
obtain
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Inclusion and exclusion - proof continued

inclusion and exclusion.

P(B ∩ An) =P(A1 ∩ An) + · · ·+ P(An−1 ∩ An)

− P[(A1 ∩ An) ∩ (A2 ∩ An)]

− P[(A1 ∩ An) ∩ (A3 ∩ An)]

− . . .
+ P[(A1 ∩ An) ∩ (A2 ∩ An) ∩ (A3 ∩ An)]

+ · · · − . . .
+ (−1)n−2P[(A1 ∩ An) ∩ (A2 ∩ An) ∩ · · · ∩ (An−1 ∩ An)]

=P(A1 ∩ An) + P(A2 ∩ An) + . . .P(An−1 ∩ An)

− P(A1 ∩ A2 ∩ An)− P(A1 ∩ A3 ∩ An)− . . .
+ P(A1 ∩ A2 ∩ A3 ∩ . . .An) + . . .

− . . .
+ (−1)n−2P(A1 ∩ A2 ∩ · · · ∩ An).

(2)
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Inclusion and exclusion - proof continued

inclusion and exclusion.

Also, since B is a union of n − 1 events, the inductive hypothesis gives

P(B) =P(A1) + P(A2) + · · ·+ P(An−1)

− P(A1 ∩ a2)− P(A1 ∩ A3)− . . .
+ . . .

+ (−1)n−2P(A1 ∩ A2 ∩ · · · ∩ An−1).

(3)

Substituting (2) and (3) into (1) gives the desired result.
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The probability space

Definition

Let S be a countable set. Then F ⊆ 2S is a σ-field of subsets of S if and
only if it is closed under countable unions and complement.

Definition

A probability space is a triple (S,F ,P), where S is a set, F is a σ-field
of subsets of S and P is a probability on F satisfying axioms (A1)-(A3’).

In this formal definition S plays the role of the sample space, F is the set
of events on S and P is the function assigning probability to each event.
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Designing a random experiment

The design of a random experiment in a real situation is not of interest for
the theory of probability, however, it is one of the basic skills good
computer scientists need. Usually it is practical to follow this procedure:

Identify the sample space - set of mutually exclusive and collectively
exhaustive events. It is advised to choose the elements in the way
that they cannot be further subdivided. You can always define
aggregate events.

Assign probabilities to elements in S. This assignment must be
consistent with the axioms (A1)-(A3). Probabilities are usually either
result of a careful theoretical analysis, or based on estimates obtained
from past experience.

Identify events of interest - they are usually described by statements
and should be reformulated in terms of subsets of S.

Compute desired probabilities - calculate the probabilities of
interesting events using the axioms (A1)-(A3’).
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Balls and cells revisited

Example

Let us consider random placement of r balls into n cells. This
generalization of the original (three balls and three cells) experiment is
treated in an analogous manner, except that the number of sample points
increases rapidly with r and n. In example, for r = 4 and n = 3 we have
81 points, for r = n = 10 there are 1010 sample points.
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Balls and cells revisited

We described the experiments in terms of holes and balls, but this
experiment can be equivalently applied to a number of practical situations.
The only difference is the verbal description.

Birthdays: The possible configuration of birthdays of r people
corresponds to the random placement of r balls into n = 365 cells
(assuming every year has 365 days).

Elevator: Elevator starts with r passengers and stops in n floors.

Dice: A throw with r dice corresponds to placing r balls into 6 holes.
In case of a coin tosses we have n = 2 holes.

Exam from IV111: The exam from Probability in Computer Science
corresponds to placement of 37 (the number of students) balls into
n = 6 holes (A,B,C,D,E,F).
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Balls and cells revisited

Let us return to the first example with three balls and three cells and
suppose that the balls are not distinguishable, implying e.g. that we do
not distinguish atomic events 4, 5 and 6. Atomic events in the new
experiment (placing three indistinguishable balls into three cells) are

1.[***][ ][ ] 6.[ * ][** ][ ]
2.[ ][***][ ] 7.[ * ][ ][** ]
3.[ ][ ][***] 8.[ ][** ][ * ]
4.[** ][ * ][ ] 9.[ ][ * ][** ]
5.[** ][ ][ * ] 10.[ * ][ * ][ * ]

It is irrelevant for our theory whether the real balls are
indistinguishable or not.

Even if they are we may decide to treat them as indistinguishable, it
is often even preferable.

Dice may be colored to make them distinguishable, but it depends
purely on our decision whether we use this possibility or not.
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Balls and cells revisited

Another example is the exam from Probability in Computer Science.

Each student is distinguishable, but to judge statistical outcomes of
the exam, such as probability distribution of marks, it is useless to
complicate the experiment by distinguishing respective students.

The sample points of experiment with undistinguishable balls
correspond to aggregates of experiment with distinguishable balls. In
example, the atomic event 4. corresponds to aggregate event of
sample points 4-6 in the original experiment.

The concrete situation dictates this choice. Our theory begins after the
proper model has been chosen.
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Part III

Conditional probability, independent events and Bayes’
rule
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Conditional probability

Let us suppose that a random experiment was executed, but we did
not learn the outcome. The only information we are given is that a
particular event B occured.

Our goal is to determine the probability of event A, however, the
information that B occured may change our prediction of probability
that A occured.

We want to compute the conditional probability of the event A given
that the event B occurred, shortly the conditional probability of A
given B.
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Conditional probability

Given that B occurred we know that the outcome of the experiment
o ∈ B and o 6∈ B. For every atomic outcome s we derive

P(s|B) =

{
P(s)
P(B) if s ∈ B,

0 s ∈ B.

In this way the probabilities assigned to points in B are scaled up by
1/P(B). We obtain ∑

s∈B

P(s|B) = 1.

B is our ’sample space’ now.
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Conditional probability

The conditional probability of any event can be obtained by summing
probabilities of its sample points, using A = (A ∩ B) ∪ (A ∩ B) we have

P(A|B)
def
=
∑
s∈A

P(s|B)

=
∑

s∈A∩B

P(s|B) +
∑

s∈A∩B

P(s|B)

=
∑

s∈A∩B

P(s|B)

=
∑

s∈A∩B

P(s)

P(B)

=
P(A ∩ B)

P(B)
, P(B) 6= 0.
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Conditional probability

Definition

The conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)

if P(B) 6= 0 and is undefined otherwise.

In this way we directly obtain

P(A ∩ B) =


P(B)P(A|B) if P(B) 6= 0,

P(A)P(B|A) if P(A) 6= 0

0 otherwise.
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Conditional probability

Example

Four (distinguishable) balls are placed successively into four cells with all
44 outcomes being equally probable. Given that the first two balls are in
different cells (event B), what is the probability that one cell contains
exactly three balls (event A)? The number of sample points in events is
|B| = 12 · 42 and |A ∩ B| = 4 · 3 · 2 and therefore we obtain that
P(A|B) = 2/16 in contrast to P(A) = 3/16.
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Independence of events

If the probability of the event A does not change regardless of whether
event B occurred, i.e. P(A|B) = P(A), we conclude that events A and B
are independent.
Using the definition of the conditional probability for P(A) 6= 0 6= P(B) we
have

P(A ∩ B) = P(A)P(B|A) = P(B)P(A|B).

We obtain the standard definition of independents of events

Definition

Events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).
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Independence of events - remarks

This relation is symmetric in A and B as desired - when A is
independent of B, then also B is independent of A.

If A and B are mutually exclusive, then P(A ∩ B) = 0. If they are
also independent, we obtain either P(A) = 0 or P(B) = 0.

If an event A is independent on itself, due to re-normalization we
obtain that either P(A) = 0 or P(A) = 1. Equivalently,
P(A) = P(A ∩ A) = P(A)P(A) = [P(A)]2.

A and B are independent and B and C are independent does not
imply that A and C are independent. This relation is not transitive.

If A and B are independent, then also A and B, A and B, and A and
B are independent.
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Independence of events

Definition

Events A1,A2, . . .An are (mutually) independent if and only if for any
set i1, i2, . . . ik ∈ {1 . . . n} (2 ≤ k ≤ n) of distinct indices it holds that

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P(Ai1)P(Ai2) . . .P(Aik ) (4)

Provided that the Eq. (4) holds, we can replace any occurrence of Ai in
this expression by Ai and the new expression will be valid too.
Compare the properties of P(A1 ∩ A2 · · · ∩ An) when A1,A2, . . .An are
mutually independent and when they are mutually exclusive.
If the events A1,A2, . . .An are such that every pair is independent, then
such events are called pairwise independent. It does not imply that
events are mutually independent.
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Independence of events-example

Example

Consider the experiment with throwing two dice. Let the sample space be
S = {(i , j)|1 ≤ i , j ≤ 6}. We assign to each outcome the probability 1/36,
i.e. we assume the uniform probability distribution. Let us define the events

A=”first throw results in 1, 2 or 3.”
B=”first throw results in 3, 4 or 5.”
C=”the sum of both faces is 9.”

Then A ∩ B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}, A ∩ C = {(3, 6)},
B ∩ C = {(3, 6), (4, 5), (5, 4)}, and A ∩ B ∩ C = {(3, 6)}. We obtain the
probabilities

P(A ∩ B) =1/6 6= P(A)P(B) = 1/4

P(A ∩ C ) =1/36 6= P(A)P(C ) = 1/18

P(B ∩ C ) =1/12 6= P(B)P(C ) = 1/18.

On the other hand, P(A ∩ B ∩ C ) = 1/36 = P(A)P(B)P(C ).

Jan Bouda (FI MU) Lecture 1 - Introduction and basic definitions April 19, 2009 48 / 58



Bayes’ rule

Suppose that Events B and B partition the sample space S.

We can define S ′ = {B,B} and using the probabilities P(B) and
P(B) the set S ′ has properties similar to sample space, except that
there is many-to-one correspondence between outcomes of the
experiment and elements of S ′.

Such a space is called event space.

In general, any list of mutually exclusive and collectively exhaustive
events forms an event space.

Theorem (of total probability)

Let A be an event and S ′ = {B1, . . .Bn}. Then

P(A) =
n∑

i=1

P(A|Bi )P(Bi ).
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Bayes’ rule

The theorem of total probability is useful in the situation when we have
information that the event A occurred and we are interested in conditional
probabilities P(Bi |A). We obtain the Bayes’ rule

P(Bi |A) =
P(Bi ∩ A)

P(A)
=

P(A|Bi )P(Bi )∑
i P(A|Bi )P(Bi )

.

P(Bi |A) is called the a posteriori probability.
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Part IV

Repeated experiment execution - Bernoulli trials
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Bernoulli trials

Let us consider a random experiment with two possible outcomes,
e.g. ’success’ and ’failure’.

we assign to the outcomes probabilities p and q, respectively.
p + q = 1.

Consider a compound experiment which is composed of a sequence of
n independent executions (trials) of this experiment.

Such a sequence is called a sequence of Bernoulli trials.

Example

Consider the binary symmetric channel, i.e. model of a noisy channel which
transmits bit faithfully with probability p and inverts it with probability
q = 1− p. Probability of error on each transmitted bit is independent.
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Bernoulli trials

Let 0 denotes ’failure’ and 1 ’success’. Let Sn be a sample space of an
experiment involving n Bernoulli trials defined as

S1 ={0, 1}
S2 ={(0, 0), (0, 1), (1, 0), (1, 1)}
Sn ={2n ordered n-tuples of 0s and 1s}

We have the probability assignment over S1: P(0) = q ≥ 0,P(1) = p ≥ 0,
and p + q = 1. We would like to derive probabilities for Sn. Let Ai be the
event ’success on trial i ’ and Ai denote ’failure on trial i ’. Then P(Ai ) = p
and P(Ai ) = q. Let us consider an element s ∈ Sn such that

s = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0).
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Bernoulli trials

The elementary event {s} can be expressed as

{s} = A1 ∩ A2 ∩ · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An

with the probability

P({s}) =P(A1 ∩ A2 ∩ · · · ∩ Ak ∩ Ak+1 ∩ · · · ∩ An)

=P(A1)P(A2) . . .P(Ak)P(Ak+1) . . .P(An)

from independence. Finally,

P({s}) = pkqn−k .

Similarly, to any other sample point with k 1s and n − k 0s the same
probability is assigned.
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Bernoulli trials

There are
(n
k

)
such sample points and the probability of having exactly

k ∈ {1, . . . , n} successes in n trials is

p(k) =

(
n

k

)
pkqn−k .

It remains to verify that the probabilities sum to 1

n∑
k=0

p(k) =
n∑

k=0

(
n

k

)
pkqn−k binomial theorem

= (p + q)n = 1.

The set of events {B0,B1, . . .Bn}, where
Bk = {s ∈ Sn such that s has exactly k 1s and (n − k) 0s} defines a
mutually exclusive and collectively exhaustive set of events. It forms an
event space with (n + 1) events. It might be useful to examine this space
rather that Sn having 2n elements, especially in situation when we are
interested only in the number of successes (and not in their position).
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Bernoulli trials

Example

Let us consider an n bit codeword being transmitted through a binary
symmetric channel with probability of success being p. Let us suppose
that the code is capable to correct up to e errors. Assuming that error on
each transmitted bit is independent, the probability of successful word
transmission is

Pw =P(’e or fever errors in n trials’)

=
e∑

i=0

(
n

i

)
(1− p)ipn−i .
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Bernoulli trials

We can relax the definition of the Bernoulli trial to obtain the
nonhomogenous Bernoulli trials, where the probability of success is
different in each trial.
Generalized Bernoulli trials allow more than two outcomes in each trial.
On each trial the result is exactly one of k possible outcomes b1, . . . bk

occurring with probabilities p1, . . . pk , respectively. The sample space S
consists of all kn n–tuples with components b1, . . . bk . To a point s ∈ S

s = (

n1︷ ︸︸ ︷
b1, b1, . . . b1,

n2︷ ︸︸ ︷
b2, . . . b2, . . .

nk︷ ︸︸ ︷
bk , . . . bk),

k∑
i=1

ni = n

we assign the probability pn1
1 pn2

2 . . . pnk
k . The number of n tuples having ni

bi s, 0 ≤ i ≤ n, is given by the multinomial coefficient(
n

n1, n2, . . . nk

)
=

n!

n1!n2! . . . nk !
.
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Bernoulli trials

The probability of the event An1,n2,...nk
that each bi , 0 ≤ i ≤ k , occurs

exactly ni times is

P(An1,n2,...nk
) =

n!

n1!n2! . . . nk !
pn1

1 , . . . p
nk
k ,

and the probabilities sum to 1∑
ni≥0,

∑k
i=1 ni =n

P(An1,n2,...nk
) = (p1 + p2 + · · ·+ pk)n = 1.
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