
Encryption and Authentication in SECOQC

Jan Bouda1∗, Oliver Maurhart2†, Thomas Themel2‡, Stephan Jank3§, Philipp Pluch3¶

Rajagopal Nagarajan1‖

1 Department of Computer Science

The University of Warwick

Coventry CV4 7AL

2ARC Seibersdorf research GmbH

Donau-City straße 1, 1220 Wien, Austria

3Department of Mathematics

Klagenfurt University, Universitystreet 65-65

9020 Klagenfurt - Austria

April 30, 2007

1 Introduction

The goal of this document is to describe and analyze cryptographic algorithms
and techniques used in SECOQC. The main priorities and evaluation points of
view of are (in the descending order of importance):

• Security

• Efficient usage of key

• Time and space complexity
∗bouda@fi.muni.cz
†oliver.maurhart@arcs.ac.at
‡thomas.themel@arcs.ac.at
§stephan.jank@uni-klu.ac.at
¶philipp.pluch@uni-klu.ac.at
‖R.Nagarajan@warwick.ac.uk

1



Directly following the motivation of the SECOQC project the security of
the whole system is of crucial importance and we can use only unconditionally
(information-theoretically) secure cryptographic primitives and techniques.

This determines the choice of the encryption algorithm to be the one-time
pad. This algorithm is also optimal from the key consumption point of view1

as proved by Shannon [8]. Finally, it is extremely efficient both from the time
and the memory point of view, since it is a simple XOR of two bit strings - the
message and the key.

The choice of the authentication algorithm is slightly less straightforward.
The requirement of unconditional security (together with the key-efficiency point
of view) restricts our choice to the Wegman-Carter [3] type authenticators. Let
us suppose that we want to send n messages and that the probability of forging
i–th message is at most pi. It has been proven [3, 4] that in this case the length
of the key is at least log2

1
p1p2...pn

. This limit can be asymptotically achieved
by Wegman-Carter authenticators using a special technique proposed already
in [3], we will discuss it in Subsection 4.2.

During the last twenty years there has been an extensive research in the area
of Wegman-Carter authenticators aiming mainly the computational efficiency.
To choose the most suitable authentication algorithm we followed results of
Shoup, Nevelsteen and Preneel [9, 7]. We considered also two extremely fast
algorithms develop after the tests of Shoup and Nevelsteen-Preneel, UMAC [1]
and GMAC [6].

Following the results [9] and [7] we have chosen the evaluation hash to be
the authentication algorithm for the SECOQC project. Main advantages are
a reasonable key consumption (depending on the length of the message), an
efficient computation and a possibility to authenticate messages of different
lengths. Let us suppose that we divide the message into blocks of length l bits
and that the maximal length of message is set to n×l bits. Then the probability
of forgery for evaluation hash is appx. n/2−l, while the asymptotical size of the
key used per message is l bits.

Another possible candidate is the generalized division hash [5, 9], which
should be implemented in a dedicated hardware device (most probably FCPGA
PCI card) in case the performance of the software implementation of the eval-
uation hash turns out to be insufficient. Note that the question of efficiency of
authentication algorithms from practical point of view might be complicated.

The evaluation hash is very efficient and easily exceeds 100 Mbits per second
already when implemented in C without any manual assembler optimisation.
This is by far exceeding SECOQC requirements, but the efficiency is necessary
rather to minimize the load of the processor than to achieve an extreme speed
of the authentication. The problem is that optimized versions of authentication
algorithms are strongly dependent on an efficient usage of the internal processor
cash and even processor registers. However, in real they will be running in a
multiprocess environment, that can prevent an efficient usage of processor cash

1The length of the key must be equal to the length of the message, or, more formally, the
entropy of the key must be at least as high as the entropy of the message.

2



and registers.
Therefore we leave open the possibility that a dedicated hardware will be

used to implement the authentication algorithm. The generalized division hash
seems to be more suitable for implementation in hardware.

Besides the two previous algorithms chosen according to tests of Shoup and
Nevelsteen and Preneel, we also considered two algorithms proposed after pub-
lishing of the Shoup-Nevelsteen-Preneel tests – UMAC and GMAC. Both of
them are extremely efficient, but their main purpose is computationally se-
cure authentication. Therefore in the original proposal they considered usage
of computationally secure cipher (e.g. AES) instead of one-time pad in the
Wegman-Carter scheme for authentication of multiple messages, see Subsection
4.2. It can be easily replaced by one-time pad to achieve the unconditional
security, however, the tag contributes to the security of the scheme only by half
of its leng. It means that to achieve security 2−64 we have to use tag of size
128 bits and therefore we have to use 128 bits of key per message, what is inef-
ficient. Therefore we decided not to consider these algorithms in the context of
SECOQC.

2 Definitions of Security

In this subsection we briefly review basic approaches to the security of classical
(and also quantum) cryptosystems.

The most strict type of security, called the unconditional (or information-
theoretical) security, must hold without any assumptions. Especially it means
that there is no way how the adversary can break the cryptosystem with prob-
ability higher than specified. In example, if we claim that the maximum proba-
bility of forging certain unconditionally secure authentication tag is 2−64, then
there is no way how to forge the tag with higher probability of success. In case
the length of the tag is 64 (there are such systems) it means that there is no
better way than to choose a random tag.

This type of security is the holy grail of cryptography, but there are only
few cryptographic problems we can solve with unconditional security. Moreover,
unconditionally secure solutions are usually inefficient namely from key usage
and communication complexity point of view (surprisingly, there are usually
computationally efficient). On the other hand, there is a number of problems
that were proved to have no unconditionally secure solution.

In order to solve problems where no (suitable) unconditionally solution exists
we introduce various assumptions. In this short introduction we discuss two such
assumptions. First possible assumption is that the adversary is computationally
limited, i.e. he has only limited time and resources to break the cryptosystem.
Note that this assumption may be pretty reasonable - e.g. ”the cryptosystem can
be broken only using all computers of the Earth for 264 years”. Nevertheless, this
is still an assumption since we can never be sure about actual computing power
of our enemy. This type of security is called complexity-theoretic security. This

3



assumption is usually formalized in the way that there is no BPP2 algorithm
able to break the cryptosystem.

The complexity-theoretic security is very reasonable, however, still rarely
used in practice. Whenever we encounter practically used cryptosystem, we
should expect that there are many more assumptions. The standard algorithms
are only computationally secure - it means they are hoped to be complexity-
theoretically secure. By the word ”hoped” we mean that there is no known BPP
algorithm breaking this cryptosystem, but it is not proven that there is none
such. To ensure reasonability of the assumption we usually require that the
cryptosystem is based3 on some well–established mathematical problem, that
remains intractable for a number of years.

The main motivation of SECOQC is to explore properties of quantum in-
formation to create communication with unconditionally secure encryption and
authentication of messages.

3 Encryption

By encryption we understand a process of transforming the message m using
knowledge of some secret information (key) k in the way that the new message
c gives to the adversary no additional information about m (comparing to his
a priori knowledge about m). Moreover, the original message can be easily
reconstructed by anyone knowing c and k.

Encryption scheme, or cipher, is a five-tuple (e, d,P,K,C), where P is the
set of possible plaintexts (input messages), K is set of possible keys, C is set of
possible ciphertexts (output messages) and e : M ×K → C is the encryption
function, and d : C×K → M is the decryption function satisfying the identity

∀ m ∈ M,∀k ∈ K d(e(m, k), k) = m.

In the case of SECOQC we are interested only in unconditionally secure
encryption. Therefore we use the one-time pad encryption system. Let us
consider both the plaintex and the key to be binary strings m[i] and k[i] of
the same length n. Encryption of the message m[i] is described in Algorithm 1.
Once the key is used, it must be discarded. It can be used neither for encryption
of another message nor for authentication. Encryption of a message of length n
consumes n bits of the key. Decryption is the same process as encryption except
that the ciphertext c is the input and the message m is the output.

2Class of algorithms computable in polynomial time using randomized algorithm with one-
side bounded error.

3The standard term ”based” denotes another assumption. E.g. RSA is based on inte-
ger factorization problem, that is not known to be outside BPP. Moreover, solving integer
factorization is sufficient to break RSA, but it is not known whether it is necessary or not.

4



Algorithm 1 One time pad
Input: message m[i], key k[i] (binary strings of length n)
Output: ciphertext c[i] (binary string of length n)
Goal: Sender wants to send the message m to the receiver in a secure way.

1: for i ← 0 . . . n− 1 do
2: c[i] ← m[i] XOR c[i]
3: end for

4 Authentication

The authentication scheme is a five-tuple (a, v,M,K,B), where M is the set
of possible messages, K is the set of possible keys and B is the set of possible
authenticated messages. There are two functions, the authenticating function
a : M×K → B and the verifying function v : B×K → M× {accept, reject}.
When Alice wants to send a message m ∈ M to Bob, she encodes it using
the authenticating function to obtain b ∈ B, b = a(m, k), where k ∈ K is
some secret key shared by Alice and Bob. When Bob receives b, he applies the
function v(b, k) to decide whether the message is authentic or not.

Regarding security of authentication schemes there are two basic security
scenarios depending on what information the adversary has. In the weaker
scenario the adversary knows only M, B, K, a and v and tries to send some
m′ in hope that it will be accepted as authentic. This attack is usually denoted
as impersonation.

More powerful is the attack when the adversary waits to receive an authentic
message (a number of authentic messages) b and then replaces it with a different
message while using possible advantage given by the knowledge of b. This attack
is often denoted as substitution. In our definition we concentrate on the
substitution when the adversary intercepted only single message. It is clearly at
least as strong as impersonation (the adversary can always ’forget’ the message
he received), on the other hand more intercepted messages give no advantage4 in
the scenario of universal hashing since independent key is used for each message.

Considering the substitution attack the correctness and security of the scheme
is defined as5

• If b = a(m, k) for some m ∈ M, then Prob(v(b, k) = (m, accept)) = 1.

• In case adversary replaces the message b by other message b′, then Prob(v(b′, k) =
(m′, accept)) ≤ ε for every m′ ∈ M and a small nonnegative ε.

Note that ε ≥ 2−h, where h is the binary Shannon entropy representing uncer-
tainty about the choice of the key k ∈ K, since the adversary can always simply
”guess” the key. In the case of SECOQC we require ε ≥ 2−64.

4We consider strongly universal2 hashing in this paper.
5For more formal ways how to capture simultaneous correctness and security see e.g. [2].

5



The aim of the authentication is to prove the origin of the message and its
integrity, i.e. to detect possible forgery and malicious modification of a message.
It does not provide secrecy of a message.

Usually a special form of the previous definition is used. The authentication
algorithm transforms the input message m into a pair b = (m, t), where t is
some authentication tag calculated using knowledge of m and k. Note that
the original message is explicitly visible during the transmission and to verify
authenticity of the message it suffices to verify whether it is accompanied by a
correct tag.

4.1 Universal Hashing

The universal hashing is a concept introduced by Wegman and Carter [3] as a
particular (class of) authentication scheme. Let H = {h|h : M → T} be set of
functions. In the context of authentication of messages, M is the set of messages
and T is the set of authentication tags.

We say that a class of (hash) functions H is strongly universal 2 iff ∀m1,m2 ∈
M, m1 6= m2, and ∀t1, t2 ∈ T, t1 6= t2, it holds that the fraction of functions in
H such that h(m1) = t1 and h(m2) = t2 is |H|/|T|2.

This definition intuitively reformulates the security requirements for an au-
thentication algorithm in terms of hash functions. Let us suppose that we
have a strongly universal2 class of hash functions and an authenticated mes-
sage (m1, t1). From the definition it immediately follows that the fraction of
functions fulfilling h(m2) = t2 in the set of functions h ∈ H, h(m1) = t1 is
1/|T| regardless of the values m1, m2, t1, t2. It means that regardless of what
authenticated message (m1, t1) we receive it does not help us to find a second
pair (m2, t2).

4.2 Multiple Messages and Universal Hashing

Strongly universal2 classes of hash functions provide perfect security but are
inefficient from the key usage point of view, i.e. the class of hash functions (and
hence the key) is unnecessarily large comparing to |M| and |T|. By an easy
argument [3] we obtain that the theoretical lower limit of the key length is a
function the probability of forgery (ε) and it turns out that this limit can be
achieved, while the key length is asymptotically independent of the length of
|M| and |T|.

Let H = {h|h : M → T} be a strongly universal2 set of functions. Let us
suppose that we have key formed by kh specifying a hash function from H and by
a sequence k1, . . . , kn such that ∀i = 1 . . . n ki ∈ T. We calculate authentication
tag for each mi, i = 1 . . . n, as ti = hkh

(mi) ⊕ ki, where ⊕ denotes the bitwise
XOR. To create the tag we use each time the same (secret!) hash function and
encrypt its output with one-time pad using independent key for each message.

In the general case each message must contain a unique message ID to ensure
the correspondence between messages and keys6. This system maintains security

6In our case we will use finite cyclically reused message ID of sufficient size guaranteeing

6



[3] of the underlying class of hash functions while the key size asymptotically
approaches log2 |T| per message. This size of the key is also necessary since the
adversary can always randomly choose the authentication tag.

4.3 ε–AXU Classes

The scheme described in the previous subsection achieves asymptotically opti-
mal key usage using strongly universal2 classes of functions, but it turns out
that such solution is far from being optimal from the computational complex-
ity point of view. Instead of strongly universal2 it suffices to use almost XOR
universal classes of hash functions, which are more efficient, and the security of
the scheme described in the previous subsection is not decreased [5].

The class of functions H = {h|h : M → T} is ε–AXU (almost XOR univer-
sal) iff for any m1, m2 ∈ M and any t ∈ T it holds that the fraction of functions
with the property h(m1)⊕ h(m2) = t is at most ε.

Therefore to implement an efficient unconditionally secure message authen-
tication an AXU class of functions is exactly what we need.

5 Evaluation Hash

5.1 Advantages and Disadvantages

The evaluation hash is the main candidate for the hash function used in SEC-
OQC. It has a number of properties making it very suitable for our purposes,
namely:

• It is computationally efficient.

• The length of the message for authentication can vary in a wide range.

• It is possible to start the computation of an authentication tag before the
complete message is available, i.e. only sufficiently long prefix is necessary.

• It has a good key consumption rate.

All these properties will described in more detail through this section.

5.2 Definition and the Length of the Tag

The evaluation hash views input (bit string) of length7 n × l as a polynomial
M(y) of degree at most n over GF (2l). The hash key is a randomly selected

that the corresponding key is already replaced when the key ID is to be reused. Therefore the
correspondence between the key and the message is preserved.

7If the message length is not a multiple of l we can introduce some padding e.g. by ’0’
till the necessary length. Note that in the structure of the message it should be explicitly
readable what was the length of the padding (e.g. by specifying the length of the message),
otherwise possible attacker can freely add or delete ’0’ at the end of the message in the range
of l. In example he can replace x1x2 . . . xl−3 by x1x2 . . . xl−30.

7



element α ∈ GF (2l). The hash value (tag) is h = M(α)α ∈ GF (2l). This family
of hash functions is ε−AXU with ε ≈ n/2l.

In SECOQC we use this hash function in the Wegman-Carter scheme for
authentication of multiple messages as described in Subsection 4.2. Formally
the key will be split into two parts, k(1) and k(2). The key k(1) will be used in
the hashing scheme as described above, i.e. α = k(1). The second part of the
key, k(2), will be used for the one-time pad encryption as described in Subsection
4.2. In the rest of this section we explain how to efficiently compute the value
h.

The length of the tag should be selected as a function of the desired security
ε and maximal length of a message, i.e. n × l. We want to obtain security at
least 2−64 and therefore l ≥ 64. On the other hand, the maximal length of the
message 1 × 64 is clearly insufficient and therefore length of the tag should be
increased. Because of the 32-bit architecture of the computer platform used we
decided to set the length of the tag to 96 bits allowing the maximal length of
the message to be 232 × 296 bits with ε = 232/296 = 2−64.

5.3 General Mathematics

The length of the tag is one of the most important parameters both from security
and pre-computation point of view. Any change of the tag length implies also
change of the pre-computed tables, see below. In this description we show how
to implement evaluation hash efficiently for the tag length l = 64 bits. The
difference in evaluation when a different tag length is selected is minimal and
will be explicitly described when necessary.

As described in Section A, 64 bit string (or l-bit string, in general) will be
viewed as a member of GF (264) (GF (2l)), i.e. Galois field having 264 members.
This field is implemented as polynomials of degree at most 63 over Z2, i.e.
polynomials with coefficients 0 or 1. To learn more about efficient arithmetic in
this field see Section A.

The tag length determines the Galois field and thus also the primitive poly-
nomial that should be used. To keep computation efficient for a general tag
of length l the primitive polynomial should be of the form f(x) = xl + f0(x),
where the degree of f0(x) is small. In the specific case of 64 bit tags it can be
e.g. f(x) = x64 + x4 + x3 + x + 1. To find a reasonable primitive polynomial
of the desired degree I recommend to use google and store the polynomials as a
part of the algorithm.

5.4 Efficient Computation of the Hash Value h(m)

To compute the hash h(m) we have to evaluate the polynomial M(y) for the
value y = α and the resulting number multiply by α. To do this efficiently we
use Horner’s rule. Let

M(y) =
n∑

i=0

miy
i. (1)

8



To evaluate the hash using Horner’s rule we will express h(m) as

h(m) ≡ M(α)α ≡ ((((mnα+mn−1)α+mn−2) . . . )α+m0)α (mod f(x)). (2)

Parentheses here determine the order in which the expression will be evaluated.
Note that all operations we have to use to compute h(m) are multiplication
and addition in GF (2l) since α, mi ∈ GF (2l). In the rest of this subsection we
concentrate on the explanation how to implement these operations efficiently.

As follows from Section A, addition is a bitwise XOR of two bit strings of
length l. When implementing multiplication we will use the fact that we do not
use general multiplication, we use only multiplication by one fixed polynomial
α ∈ GF (2l).

We proceed with l = 64. Let us denote α ≡ a(x) (mod f(x)). First we have
to create two pre-computed tables. The first table allows us to look up the value
of the expression

v(x) ← v(x)x8 mod f(x) (3)

for all polynomials v(x) of the degree less than 64. This table will have 256
entries and due to special form of the polynomial f(x) = x64 + f0(x) each entry
will have only 16 bits. Entries of the table follow from the fact that

(u(x) + w(x)) mod f(x) = u(x) mod f(x) + w(x) mod f(x) (4)

for any two polynomials u(x), w(x) ∈ GF (2)[x]. We can use this fact to express
v(x)a(x) = u(x) + w(x) such that deg u(x) < 64 and w(x) = v(x)a(x) − u(x).
We obtain that u(x) mod f(x) = u(x) and since deg v(x) < 8 it holds that
deg w(x) < 8. Therefore all we have to store in the table are outcomes for
different values of the polynomial w(x). Multiplication by x8 is easy to calculate
since it is only a shift by 8 positions.

The second table allows to look up the value of the expression

v(x) ← v(x)a(x) mod f(x) (5)

for all polynomials v(x) of a degree less than 8. This table will have 256 entries
and each entry will have 64 bits.

We will use these two tables to evaluate the product a(x)b(x) (mod f(x))
for a general b(x) ∈ GF (264). Let us rewrite

b(x) =
7∑

i=0

bi(x)x8i, (6)

where each bi(x) is a polynomial of a degree less that 8. To calculate the
product a(x)b(x) (mod f(x)) we set the polynomial c(x) = 0 and perform the
calculation

for i ← 7 down to 0 do c(x) ← c(x)x8 + bi(x)a(x) mod f(x). (7)

9



Computation when l 6= 64

The difference in case l 6= 64 is that we have to adjust suitably the degree of
polynomials bi(x). The degree of the polynomial specifies tradeoff between the
memory used for the lookup tables and the number of iterations of the cycle
(7).

5.5 Computing the Hash Value with an Incomplete Mes-
sage

In the context of SECOQC it might be useful to start the computation before
a complete message is know, e.g. to improve the allocation of computational
resources. This can be realized with the evaluation hash because of the structure
of the Horner’s rule. It is pretty obvious from Equation 2 that it is sufficient
to have only a prefix of the message to start the computation, i.e. to start
the computation of the Horner’s rule. The computation can continue as soon
as more message blocks (of size l bits) are received. Of course, it cannot be
finished until the complete message is available.

A Arithmetics in GF (2l)

The Galois field GF (2l) is set of all polynomials over Z2 modulo some primitive
polynomial f(x) of degree l. In other words, it is the set of all polynomials of a
degree at most (l − 1) and the choice of a primitive polynomial f(x) influences
only operations (multiplication, to be more specific).

Let a(x), b(x) ∈ GF (2l) be two polynomials

a(x) =
l−1∑

i=0

aix
i

b(x) =
l−1∑

i=0

bix
i

(8)

and let

f(x) =
l∑

i=0

fix
i, (9)

where ai, bi, fi ∈ Z2.
The addition modulo f(x) works as the standard polynomial addition since

it does not change the degree of the polynomial, i.e. a(x) + b(x) (mod f(x)) is
the polynomial

c(x) =
l−1∑

i=0

(ai + bi)xi. (10)

10



In order to perform the multiplication a(x)b(x) (mod f(x)) we first calculate
the polynomial

c(x) =

(
l−1∑

i=0

aix
i

)(
l−1∑

i=0

bix
i

)
. (11)

This is the outcome of the multiplication, but we have to determine the shortest
representant (having the smallest degree) of this remainder class, i.e. we have
to calculate the remainder of c(x) after division by f(x) – a polynomial r(x)
such that

c(x) = d(x)f(x) + r(x) (12)
and deg r(x) < deg f(x). This polynomial r(x) ∈ GF (2l) is the outcome of the
multiplication. For an efficient implementation see e.g.

http://algo.inria.fr/seminars/sem99-00/zimmermann.html

or Donald Knuth’s ’The Art of Computer Programming’. Note that in our case
all non-trivial multiplications are avoided due to the precomputation.

References

[1] J. Black, S. Halevi, H. Krawczyk, T.Krovetz, and P. Rogaway. Umac: Fast
and secure message authentication. In Crypto ’99, pages 216–233, 1999.
LNCS 1666, full version at www.cs.ucdavis.edu/ rogaway/umac/.

[2] R. Canetti. A unified framework for analyzing security of protocols. Elec-
tronic Colloquium on Computational Complexity, Report No. 16, 2001. con-
tinuously updated!

[3] J. L. Carter and M. N. Wegman. New hash functions and their use in
authentication and set equality. Journal of Computer and System Sciences,
22:265–279, 1981.

[4] V. Fak. Repeated use of codes which detect deception. IEEE transactions
on information theory, 25(2):233–234, ??

[5] Hugo Krawczyk. LFSR-based hashing and authentication. In Crypto ’94,
pages 129–139, 1994. LNCS 839.

[6] David A. McGrew and John Viega. Flexible and efficient message authenti-
cation in hardware and software. http://www.zork.org/, 2003.

[7] Wim Nevelsteen and Bart Preneel. Software performance of universal hash
functions. In Eurocrypt ’99, pages 24–41, 1999. LNCS 1592.

[8] C. E. Shannon. A mathematical theory of communication. Bell System
Tech. J., 27:379–423,623–656, 1948.

[9] Victor Shoup. On fast and provably secure message authentication based on
universal hashing. In Crypto ’96, LNCS 1109, 1996. www.shoup.net/papers
(newer version).

11


