
Documenting Python
Fred L. Drake, Jr.

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: fdrake@acm.org

July 6, 1999
Release 1.5.2

rewrite to do ConTEXt
Aleš Blaženka

May 9, 2001

Contents

Index

Back Screen

Search

Back

Next

Quit

1

Contents

1 Abstract . 3

2 Introduction . 4

3 Directory Structure . 6

4 LATEX Primer . 9

5 Document Classes . 11

6 Special Markup Constructs . 12
6.1 Information Units . 13
6.2 Showing Code Examples . 15
6.3 Inline Markup . 16
6.4 Module–specific Markup . 22
6.5 Library–level Markup . 24
6.6 Table Markup . 25
6.7 Reference List Markup . 27
6.8 Index-generating Markup . 28

7 Special Names . 32

8 Processing Tools . 33
8.1 External Tools . 34
8.2 Internal Tools . 36

Contents

Index

Back Screen

Search

Back

Next

Quit

2

9 Future Directions . 38
9.1 Structured Documentation . 39
9.2 Discussion Forums . 40

10 About this document . 41

1 Index . 42

Contents

Index

Back Screen

Search

Back

Next

Quit

3 Abstract

1 Abstract

The Python language documentation has a substantial body of documentation,much
of it contributed by various authors. The markup used for the Python documenta-
tion is based on LATEX and requires a significant set of macros written specifically
for documenting Python. This document describes the macros introduced to sup-
port Python documentation and how they should be used to support a wide range
of output formats.

This document describes the document classes and special markup used in the
Python documentation. Authors may use this guide, in conjunction with the tem-
plate files provided with the distribution, to create or maintain whole documents
or sections.

Contents

Index

Back Screen

Search

Back

Next

Quit

4 Introduction

2 Introduction

Python’s documentation has long been considered to be good for a free program-
ming language. There are a number of reasons for this, the most important being
the early commitment of Python’s creator, Guido van Rossum, to providing docu-
mentation on the language and its libraries, and the continuing involvement of the
user community in providing assistance for creating and maintaining documenta-
tion.

The involvement of the community takes many forms, from authoring to bug re-
ports to just plain complaining when the documentation could be more complete
or easier to use. All of these forms of input from the community have proved useful
during the time I’ve been involved in maintaining the documentation.

This document is aimed at authors and potential authors of documentation for
Python. More specifically, it is for people contributing to the standard documen-
tation and developing additional documents using the same tools as the standard
documents. This guide will be less useful for authors using the Python documen-
tation tools for topics other than Python, and less useful still for authors not using
the tools at all.

The material in this guide is intended to assist authors using the Python documen-
tation tools. It includes information on the source distribution of the standard doc-
umentation, a discussion of the document types, reference material on the markup
defined in the document classes, a list of the external tools needed for processing
documents, and reference material on the tools provided with the documentation

Contents

Index

Back Screen

Search

Back

Next

Quit

5 Introduction

resources. At the end, there is also a section discussing future directions for the
Python documentation and where to turn for more information.

Contents

Index

Back Screen

Search

Back

Next

Quit

6 Directory Structure

3 Directory Structure

The source distribution for the standard Python documentation contains a large
number of directories. While third-party documents do not need to be placed into
this structure or need to be placed within a similar structure, it can be helpful to
know where to look for examples and tools when developing new documents using
the Python documentation tools. This section describes this directory structure.

The documentation sources are usually placed within the Python source distribu-
tion as the top-level directory Doc/, but are not dependent on the Python source
distribution in any way.

The Doc/ directory contains a few files and several subdirectories. The files are
mostly self–explanatory, including a README a Makefile. The directories fall into
three categories:

Document Sources

The LATEX sources for each document are placed in a separate directory.
These directories are given short, three-character names:

Contents

Index

Back Screen

Search

Back

Next

Quit

7 Directory Structure

Directory Document Title

api/ The Python/C API

doc/ Documenting Python

ext/ Extending and Embedding the Python Interpreter

lib/ Python Library Reference

mac/ Macintosh Module Reference

ref/ Python Reference Manual

tut/ Python Tutorial

Table 3.1 three-character names

Format-Specific Output

Most output formats have a directory which contains a Makefile which con-
trols the generation of that format and provides storage for the formatted
documents. The only variations within this category are the Portable Doc-
ument Format (PDF)and PostScript versions are placed in the directories
paper-a4/ and paper-letter/ (this causes all the temporary files created
by LATEX to be kept in the same place for each paper size, where they can
be more easily ignored).

Contents

Index

Back Screen

Search

Back

Next

Quit

8 Directory Structure

Directory Output Formats

html/ HTML output

info/ GNU info output

paper-a4/ PDF and PostScript, A4 paper

paper-letter/ PDF and PostScript, US-Letter paper

Table 3.2 Output formats

Supplemental Files

Some additional directories are used to store supplemental files used for
the various processes. Directories are included for the shared LATEX docu-
ment classes, the LATEX2HTML support, template files for various document
components, and the scripts used to perform various steps in the formatting
processes.

Directory Contents

perl/ Support for LATEX2HTML processing

templates/ Example files for source documents

texinputs/ Style implementation for LATEX

tools/ Custom processing scripts

Table 3.3 Formating processes

Contents

Index

Back Screen

Search

Back

Next

Quit

9 LATEX Primer

4 LATEX Primer

This section is a brief introduction to LATEX concepts and syntax, to provide au-
thors enough information to author documents productively without having to
become “TEXnicians.”

Perhaps the most important concept to keep in mind while marking up Python
documentation is the while TEX is unstructured, LATEX was designed as a layer on
top of TEX which specifically supports structured markup. The Python–specific
markup is intended to extend the structure provided by standard LATEX document
classes to support additional information specific to Python.

LATEXdocuments contain two parts: the preamble and the body. The preamble
is used to specify certain metadata about the document itself, such as the title,
the list of authors, the date, and the class the document belongs to. Additional
information used to control index generation and the use of bibliographic databases
can also be placed in the preamble. For most authors, the preamble can be most
easily created by copying it from an existing document and modifying a few key
pieces of information.

The class of a document is used to place a document within a broad category
of documents and set some fundamental formatting properties. For Python doc-
umentation, two classes are used: the manual class and the howto class. These
classes also define the additional markup used to document Python concepts and
structures. Specific information about these classes is provided in chapter 5 below.
The first thing in the preamble is the declaration of the document’s class.

Contents

Index

Back Screen

Search

Back

Next

Quit

10 LATEX Primer

After the class declaration, a number of macros are used to provide further infor-
mation about the document and setup any additional markup that is needed. No
output is generated from the preamble; it is an error to include free text in the
preamble because it would cause output.

The document body follows the preamble. This contains all the printed compo-
nents of the document marked up structurally.

XXX This section will discuss what the markup looks like, and explain the differ-
ence between an environment and a macro.

Contents

Index

Back Screen

Search

Back

Next

Quit

11 Document Classes

5 Document Classes

Two LATEX document classes are defined specifically for use with the Python doc-
umentation. The manual class is for large documents which are sectioned into
chapters, and the howto class is for smaller documents.

The manual documents are larger and are used for most of the standard docu-
ments. This document class is based on the standard LATEX report class and is
formatted very much like a long technical report. The Python Reference Manual
is a good example of a manual document, and the Python Library Reference is a
large example.

The howto documents are shorter, and don’t have the large structure of the manual
documents. This class is based on the standard LATEX article class and is format-
ted somewhat like the Linux Documentation Project’s “HOWTO” series as done
originally using the LinuxDoc software. The original intent for the document class
was that it serve a similar role as the LDP’s HOWTO series, but the applicability
of the class turns out to be somewhat more broad. This class is used for “how–
to” documents (this document is an example) and for shorter reference manuals
for small, fairly cohesive module libraries. Examples of the later use include the
standard Macintosh Library Modules and Using Kerberos from Python , which
contains reference material for an extension package. These documents are roughly
equivalent to a single chapter from a larger work.

Contents

Index

Back Screen

Search

Back

Next

Quit

12 Special Markup Constructs

6 Special Markup Constructs

6.1 Information Units . 13
6.2 Showing Code Examples . 15
6.3 Inline Markup . 16
6.4 Module–specific Markup . 22
6.5 Library–level Markup . 24
6.6 Table Markup . 25
6.7 Reference List Markup . 27
6.8 Index-generating Markup . 28

The Python document classes define a lot of new environments and macros. This
section contains the reference material for these facilities.

Contents

Index

Back Screen

Search

Back

Next

Quit

13 Special Markup Constructs Information Units

6.1 Information Units

XXX Explain terminology, or come up with something more “lay.”

There are a number of environments used to describe specific features provided
by modules. Each environment requires parameters needed to provide basic in-
formation about what is being described, and the environment content should be
the description. Most of these environments make entries in the general index
(if one is being produced for the document); if no index entry is desired, non-
indexing variants are available for many of these environments. The environments
have names of the form featuredesc, and the non-indexing variants are named
featuredescni. The available variants are explicitly included in the list below.

For each of these environments, the first parameter, name, provides the name by
which the feature is accessed.

Environments which describe features of objects within a module, such as object
methods or data attributes, allow an optional type name parameter. When the
feature is an attribute of class instances, type name only needs to be given if the
class was not the most recently described class in the module; the name value
from the most recent \classdesc is implied. For features of built–in or extension
types, the type name value should always be provided. Another special case in-
cludes methods and members of general “protocols,” such as the formatter and
writer protocols described for the formatter module: these may be documented
without any specific implementation classes, and will always require the type name
parameter to be provided.

\begin{datadesc} {name}

Contents

Index

Back Screen

Search

Back

Next

Quit

14 Special Markup Constructs Information Units

This environment is used to document global data in a module, including
both variables and values used as “defined constants.” Class and object
attributes are not documented using this environment.

\begin{datadescni} {name}

Like \datadesc, but without creating any index entries.

\begin{excdesc} {name}

Describe an exception. This may be either a string exception or a class
exception.

\begin{funcdesc} {name}{parameters}

Describe a module–level function. parameters should not include the paren-
theses used in the call syntax. Object methods are not documented using
this environment. Bound object methods placed in the module namespace
as part of the public interface of the module are documented using this, as
they are equivalent to normal functions for most purposes.

The description should include information about the parameters required
and how they are used (especially whether mutable objects passed as param-
eters are modified), side effects, and possible exceptions. A small example
may be provided.

\begin{funcdescni} {name}{parameters}

Like \funcdesc, but without creating any index entries.

Contents

Index

Back Screen

Search

Back

Next

Quit

15 Special Markup Constructs Showing Code Examples

\begin{classdesc} {name}{constructor parameters}

Describe a class and its constructor. constructor parameters should not
include the self parameter or the parentheses used in the call syntax.

\begin{memberdesc} [type name]{name}

Describe an object data attribute. The description should include infor-
mation about the type of the data to be expected and whether it may be
changed directly.

\begin{memberdescni} [type name]{name}

Like \memberdesc, but without creating any index entries.

\begin{methoddesc} [type name]{name}{parameters}

Describe an object method. parameters should not include the self param-
eter or the parentheses used in the call syntax. The description should
include similar information to that described for \funcdesc.

\begin{methoddescni} [type name]{name}{parameters}

Like \methoddesc, but without creating any index entries.

6.2 Showing Code Examples

Examples of Python source code or interactive sessions are represented as \verbatim
environments. This environment is a standard part of LATEX. It is important to

Contents

Index

Back Screen

Search

Back

Next

Quit

16 Special Markup Constructs Inline Markup

only use spaces for indentation in code examples since TeX drops tabs ins of con-
verting them to spaces.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive sessions.

Within the \verbatim environment, characters special to LATEXdo not need to be
specially marked in any way. The entire example will be presented in a monospaced
font; no attempt at “pretty-printing” is made, as the environment must work for
non-Python code and non-code displays.

The Python Documentation Special Interest Group has discussed a number of
approaches to creating pretty-printed code displays and interactive sessions; see
the Doc-SIG area on the Python Web site for more information on this topic.

6.3 Inline Markup

The macros described in this section are used to mark just about anything in-
teresting in the document text. They may be used in headings (though anything
involving hyperlinks should be avoided there) as well as in the body text.

\bfcode {text}

Like \code, but also makes the font bold-face.

\cdata {name}

The name of a C-language variable.

Contents

Index

Back Screen

Search

Back

Next

Quit

17 Special Markup Constructs Inline Markup

\cfunction {name}

The name of a C-language function. name should include the function name
and the trailing parentheses.

\character {char}

A character when discussing the character rather than a one-byte string
value. The character will be typeset as with \samp.

\class {name}

A class name; a dotted name may be used.

\code {text}

A short code fragment or literal constant value. Typically, it should not
include any spaces since no quotation marks are added.

\constant {name}

The name of a “defined” constant. This may be a C-language #define or
a Python variable that is not intended to be changed.

\ctype {name}

The name of a C typedef or structure. For structures defined without a
typedef, use \ctype {struct struct tag} to make it clear that the struct is
required.

Contents

Index

Back Screen

Search

Back

Next

Quit

18 Special Markup Constructs Inline Markup

\deprecated {version}{what to do}

Declare whatever is being described as being deprecated starting with re-
lease version. The text given as what to do should recommend something
to use instead.

\dfn {term}

Mark the defining instance of term in the text. (No index entries are gen-
erated.)

\e

Produces a backslash. This is convenient in \code and similar macros.

\email {address}

An email address. Note that this is not hyperlinked in any of the possible
output formats.

\emph {text}

Emphasized text; this will be presented in an italic font.

\envvar {name}

An environment variable. Index entries are generated.

\exception {name}

Contents

Index

Back Screen

Search

Back

Next

Quit

19 Special Markup Constructs Inline Markup

The name of an exception. A dotted name may be used.

\file {file or dir}

The name of a file or directory. In the PDF and PostScript outputs, single
quotes and a font change are used to indicate the file name, but no quotes
are used in the HTMLoutput.

\filenq {file or dir}

Like \file, but single quotes are never used. This can be used in conjunc-
tion with tables if a column will only contain file or directory names.

\function {name}

The name of a Python function; dotted names may be used.

\kbd {key sequence}

Mark a sequence of keystrokes. What form key sequence takes may depend
on platform- or application-specific conventions. For example, an xemacs
key sequence may be marked like \kbd{C-x C-f}.

\keyword {name} alternative=e,

The name of a keyword in a programming language.

\makevar {name}

Contents

Index

Back Screen

Search

Back

Next

Quit

20 Special Markup Constructs Inline Markup

The name of a make variable.

\manpage {name}{section}

A reference to a Unix manual page.

\member {name}

The name of a data attribute of an object.

\method {name}

The name of a method of an object. name should include the method name
and the trailing parentheses. A dotted name may be used.

\mimetype {name}

The name of a MIME type.

\module {name}

The name of a module; a dotted name may be used.

\newsgroup {name}

The name of a USENET newsgroup.

\program {name}

Contents

Index

Back Screen

Search

Back

Next

Quit

21 Special Markup Constructs Inline Markup

The name of an executable program. This may differ from the file name
for the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for DOSand Windows programs.

\refmodule [key]{name}

Like \module, but create a hyperlink to the documentation for the named
module. Note that the corresponding \declaremodule must be in the same
document. If the \declaremodule defines a module key different from the
module name, it must also be provided as key to the \refmodule macro.

\regexp {string}

Mark a regular expression.

\rfc {number}

A reference to an Internet Request for Comments. This generates appro-
priate index entries. The text ”RFC number” is generated; in the HTML
output, this text is a hyperlink to an online copy of the specified RFC.

\samp {text}

A short code sample, but possibly longer than would be given using \code.
Since quotation marks are added, spaces are acceptable.

\strong {text}

Strongly emphasized text; this will be presented using a bold font.

Contents

Index

Back Screen

Search

Back

Next

Quit

22 Special Markup Constructs Module–specific Markup

\url {url}

A URL(or URN). The URL will be presented as text. In the HTMLand PDF
formatted versions, the URL will also be a hyperlink. This can be used
when referring to external resources. Note that many characters are special
to LATEXand this macro does not always do the right thing. In particular,
the tilde character (”∼”) is mis-handled; encoding it as a hex-sequence does
work, use ”%7e” in place of the tilde character.

\var {name}

The name of a variable or formal parameter in running text.

\version

The version number for the documentation, as specified using \release in
the preamble.

6.4 Module–specific Markup

The markup described in this section is used to provide information about a module
being documented. A typical use of this markup appears at the top of the section
used to document a module. A typical example might look like this:

\section{\module{spam} ---
Access to the SPAM facility}

Contents

Index

Back Screen

Search

Back

Next

Quit

23 Special Markup Constructs Module–specific Markup

\declaremodule{extension}{spam}
\platform{Unix}
\modulesynopsis{Access to the SPAM facility of \UNIX{}.}
\moduleauthor{Jane Doe}{jane.doe@frobnitz.org}

\declaremodule [key]{type}{name}

Requires two parameters: module type (”standard”, ”builtin”, ”extension”,
or ””), and the module name. An optional parameter should be given as the
basis for the module’s “key” used for linking to or referencing the section.
The “key” should only be given if the module’s name contains any under-
scores, and should be the name with the underscores stripped. Note that
the type parameter must be one of the values listed above or an error will
be printed. For modules which are contained in packages, the fully-qualified
name should be given as name parameter. This should be the first thing
after the \section used to introduce the module.

\platform {specifier}

Specifies the portability of the module. specifier is a comma–separated
list of keys that specify what platforms the module is available on. The
keys are short identifiers; examples that are in use include ”IRIX”, ”Mac”,
”Windows”, and ”Unix”. It is important to use a key which has already
been used when applicable. This is used to provide annotations in the
Module Index and the HTMLand GNU info output.

\modulesynopsis {text}

Contents

Index

Back Screen

Search

Back

Next

Quit

24 Special Markup Constructs Library–level Markup

The text is a short, “one line” description of the module that can be
used as part of the chapter introduction. This is must be placed after
\declaremodule. The synopsis is used in building the contents of the table
inserted as the \localmoduletable. No text is produced at the point of the
markup.

\moduleauthor {name}{email}

This macro is used to encode information about who authored a module.
This is currently not used to generate output, but can be used to help
determine the origin of the module.

6.5 Library–level Markup

This markup is used when describing a selection of modules. For example, the
Macintosh Library Modules document uses this to help provide an overview of the
modules in the collection, and many chapters in the Python Library Reference use
it for the same purpose.

\localmoduletable

If a .syn file exists for the current chapter (or for the entire document in
howto documents), a \synopsistable is created with the contents loaded
from the .syn file.

Contents

Index

Back Screen

Search

Back

Next

Quit

25 Special Markup Constructs Table Markup

6.6 Table Markup

There are three general–purpose table environments defined which should be used
whenever possible. These environments are defined to provide tables of specific
widths and some convenience for formatting. These environments are not meant
to be general replacements for the standard LATEXtable environments, but can
be used for an advantage when the documents are processed using the tools for
Python documentation processing. In particular, the generated HTML looks good!
There is also an advantage for the eventual conversion of the documentation to
SGML (see chapter 9).

Each environment is named \tablecols, where cols is the number of columns in the
table specified in lower-case Roman numerals. Within each of these environments,
an additional macro, \linecols, is defined, where cols matches the cols value of
the corresponding table environment. These are supported for cols values of ii,
iii, and iv. These environments are all built on top of the \tabular environment.

\begin{tableii} {colspec}{col1font}{heading1}{heading2}

Create a two-column table using the LATEXcolumn specifier colspec. The
column specifier should indicate vertical bars between columns as appropri-
ate for the specific table, but should not specify vertical bars on the outside
of the table (that is considered a stylesheet issue). The col1font param-
eter is used as a stylistic treatment of the first column of the table: the
first column is presented as \col1font{column1}. To avoid treating the
first column specially, col1font may be ”textrm”. The column headings are
taken from the values heading1 and heading2.

\lineii {column1}{column2}

Contents

Index

Back Screen

Search

Back

Next

Quit

26 Special Markup Constructs Table Markup

Create a single table row within a \tableii environment. The text for the
first column will be generated by applying the macro named by the col1font
value when the \tableii was opened.

\begin{tableiii} {colspec}{col1font}{heading1}{heading2}{heading3}

Like the \tableii environment, but with a third column. The heading for
the third column is given by heading3.

\lineiii {column1}{column2}{column3}

Like the \lineii macro, but with a third column. The text for the third
column is given by column3.

\begin{tableiv} {colspec}{col1font}{heading1}{heading2}{heading3}{heading4}

Like the \tableiii environment, but with a fourth column. The heading
for the fourth column is given by heading4.

\lineiv {column1}{column2}{column3}{column4}

Like the \lineiii macro, but with a fourth column. The text for the fourth
column is given by column4.

An additional table-like environment is \synopsistable. The table generated by
this environment contains two columns, and each row is defined by an alternate
definition of \modulesynopsis. This environment is not normally use by the user,
but is created by the \localmoduletable macro.

Contents

Index

Back Screen

Search

Back

Next

Quit

27 Special Markup Constructs Reference List Markup

6.7 Reference List Markup

Many sections include a list of references to module documentation or external
documents. These lists are created using the \seealso environment. This envi-
ronment defines some additional macros to support creating reference entries in a
reasonable manner.

\begin{seealso}

This environment creates a “See also:” heading and defines the markup
used to describe individual references.

\seemodule [key]{name}{why}

Refer to another module. why should be a brief explanation of why the
reference may be interesting. The module name is given in name, with the
link key given in key if necessary. In the HTML and PDF conversions, the
module name will be a hyperlink to the referred-to module. Note: The
module must be documented in the same document (the corresponding
\declaremodule is required).

\seetext {text}

Add arbitrary text text to the “See also:” list. This can be used to refer to
off-line materials or on-line materials using the \url macro.

Contents

Index

Back Screen

Search

Back

Next

Quit

28 Special Markup Constructs Index-generating Markup

6.8 Index-generating Markup

Effective index generation for technical documents can be very difficult, especially
for someone familliar with the topic but not the creation of indexes. Much of the
difficulty arises in the area of terminology: including the terms an expert would
use for a concept is not sufficient. Coming up with the terms that a novice would
look up is fairly difficult for an author who, typically, is an expert in the area she
is writing on.

The truly difficult aspects of index generation are not areas with which the doc-
umentation tools can help. However, ease of producing the index once content
decisions are make is within the scope of the tools. Markup is provided which the
processing software is able to use to generate a variety of kinds of index entry with
minimal effort. Additionally, many of the environments described in section 6.1
will generate appropriate entries into the general and module indexes.

The following macro can be used to control the generation of index data, and
should be used in the document preamble:

\makemodindex

This should be used in the document preamble if a “Module Index” is desired
for a document containing reference material on many modules. This causes
a data file libjobname.idx to be created from the \declaremodule macros.
This file can be processed by the makeindex program to generate a file
which can be \input into the document at the desired location of the module
index.

Contents

Index

Back Screen

Search

Back

Next

Quit

29 Special Markup Constructs Index-generating Markup

There are a number of macros that are useful for adding index entries for particular
concepts, many of which are specific to programming languages or even Python.

\bifuncindex {name}

Add an index entry referring to a built-in function named name; parentheses
should not be included after name.

\exindex {exception}

Add a reference to an exception named exception. The exception may be
either string- or class-based.

\kwindex {keyword}

Add a reference to a language keyword (not a keyword parameter in a
function or method call).

\obindex {object type}

Add an index entry for a built-in object type.

\opindex {operator}

Add a reference to an operator, such as ”+”.

\refmodindex [key]{module}

Contents

Index

Back Screen

Search

Back

Next

Quit

30 Special Markup Constructs Index-generating Markup

Add an index entry for module module; if module contains an underscore,
the optional parameter key should be provided as the same string with
underscores removed. An index entry “module (module)” will be generated.
This is intended for use with non-standard modules implemented in Python.

\refexmodindex [key]{module}

As for \refmodindex, but the index entry will be “module (extension mod-
ule).” This is intended for use with non-standard modules not implemented
in Python.

\refbimodindex [key]{module}

As for \refmodindex, but the index entry will be “module (built-in mod-
ule).” This is intended for use with standard modules not implemented in
Python.

\refstmodindex [key]{module}

As for \refmodindex, but the index entry will be “module (standard mod-
ule).” This is intended for use with standard modules implemented in
Python.

\stindex {statement}

Add an index entry for a statement type, such as print or try/finally.

XXX Need better examples of difference from \kwindex.

Contents

Index

Back Screen

Search

Back

Next

Quit

31 Special Markup Constructs Index-generating Markup

Additional macros are provided which are useful for conveniently creating general
index entries which should appear at many places in the index by rotating a list
of words. These are simple macros that simply use \index to build some number
of index entries. Index entries build using these macros contain both primary and
secondary text.

\indexii {word1}{word2}

Build two index entries. This is exactly equivalent to using \index {word1!word2}
and \index {word2!word1}.

\indexiii {word1}{word2}{word3}

Build three index entries. This is exactly equivalent to using \index {word1!word2
word3}, \index {word2!word3, word1}, and \index {word3!word1 word2}.

\indexiv {word1}{word2}{word3}{word4}

Build four index entries. This is exactly equivalent to using \index {word1!word2
word3 word4}, \index {word2!word3 word4, word1}, \index {word3!word4,
word1 word2}, and \index {word4!word1 word2 word3}.

Contents

Index

Back Screen

Search

Back

Next

Quit

32 Special Names

7 Special Names

Many special names are used in the Python documentation, including the names of
operating systems, programming languages, standards bodies, and the like. Many
of these were assigned LATEX macros at some point in the distant past, and these
macros lived on long past their usefulness. In the current markup, these enti-
ties are not assigned any special markup, but the preferred spellings are given
here to aid authors in maintaining the consistency of presentation in the Python
documentation.

POSIX

The name assigned to a particular group of standards. This is always up-
percase.

Python

The name of our favorite programming language is always capitalized.

Contents

Index

Back Screen

Search

Back

Next

Quit

33 Processing Tools

8 Processing Tools

8.1 External Tools . 34
8.2 Internal Tools . 36

Contents

Index

Back Screen

Search

Back

Next

Quit

34 Processing Tools External Tools

8.1 External Tools

Many tools are needed to be able to process the Python documentation if all sup-
ported formats are required. This section lists the tools used and when each is
required. Consult the Doc/README file to see if there are specific version require-
ments for any of these.

dvips

This program is a typical part of TEX installations. It is used to generate
PostScript from the “device independent” .dvi files. It is needed for the
conversion to PostScript.

emacs

Emacs is the kitchen sink of programmers’ editors, and a damn fine kitchen
sink it is. It also comes with some of the processing needed to support the
proper menu structures for Texinfo documents when an info conversion is
desired. This is needed for the info conversion. Using xemacs instead of
FSF emacs may lead to instability in the conversion, but that’s because
nobody seems to maintain the Emacs Texinfo code in a portable manner.

latex

This is a world-class typesetter by Donald Knuth. It is used for the conver-
sion to PostScript, and is needed for the HTMLconversion as well (LATEX2HTML
requires one of the intermediate files it creates).

latex2html

Contents

Index

Back Screen

Search

Back

Next

Quit

35 Processing Tools External Tools

Probably the longest Perl script anyone ever attempted to maintain. This
converts LATEX documents to HTML documents, and does a pretty reasonable
job. It is required for the conversions to HTML and GNU info.

lynx

This is a text-mode Web browser which includes an HTML–to–plain text
conversion. This is used to convert howto documents to text.

make

Just about any version should work for the standard documents, but GNU
make is required for the experimental processes in Doc/tools/sgmlconv/,
at least while they’re experimental.

makeindex

This is a standard program for converting LATEX index data to a formatted
index; it should be included with all LATEX installations. It is needed for
the PDF and PostScript conversions.

makeinfo

GNU makeinfo is used to convert Texinfo documents to GNU info files.
Since Texinfo is used as an intermediate format in the info conversion, this
program is needed in that conversion.

pdflatex

Contents

Index

Back Screen

Search

Back

Next

Quit

36 Processing Tools Internal Tools

pdfTeX is a relatively new variant of TEX, and is used to generate the PDF
version of the manuals. It is typically installed as part of most of the large
TEX distributions. pdflatex is pdfTeX using the LATEX format.

perl

Perl is required for LATEX2HTML and one of the scripts used to post-process
LATEX2HTML output, as well as the HTML–to–Texinfo conversion. This is
required for the HTML and GNU info conversions.

python

Python is used for many of the scripts in the Doc/tools/ directory; it is
required for all conversions. This shouldn’t be a problem if you’re interested
in writing documentation for Python!

8.2 Internal Tools

This section describes the various scripts that are used to implement various stages
of document processing or to orchestrate entire build sequences. Most of these tools
are only useful in the context of building the standard documentation, but some
are more general.

mkhowto

This is the primary script at third-party documents. It contains all the logic
needed to “get it right.” The proper way to use this script is to make a
symbolic link to it or run it in place; the actual script file must be stored

Contents

Index

Back Screen

Search

Back

Next

Quit

37 Processing Tools Internal Tools

as part of the documentation source tree, though it may be used to format
documents outside the tree. Use mkhowto–help for a list of command
line options.

mkhowto can be used for both howto and manual class documents. (For
the later, be sure to get the latest version from the Python CVS repository
rather than the version distributed in the latex-1.5.2.tgz source archive.)

XXX Need more here.

Contents

Index

Back Screen

Search

Back

Next

Quit

38 Future Directions

9 Future Directions

9.1 Structured Documentation . 39
9.2 Discussion Forums . 40

The history of the Python documentation is full of changes, most of which have
been fairly small and evolutionary. There has been a great deal of discussion
about making large changes in the markup languages and tools used to process
the documentation. This section deals with the nature of the changes and what
appears to be the most likely path of future development.

Contents

Index

Back Screen

Search

Back

Next

Quit

39 Future Directions Structured Documentation

9.1 Structured Documentation

Most of the small changes to the LATEX markup have been made with an eye to
divorcing the markup from the presentation, making both a bit more maintainable.
Over the course of 1998, a large number of changes were made with exactly this
in mind; previously, changes had been made but in a less systematic manner and
with more concern for not needing to update the existing content. The result has
been a highly structured and semantically loaded markup language implemented
in LATEX. With almost no basic TEX or LATEX markup in use, however, the markup
syntax is about the only evidence of LATEX in the actual document sources.

One side effect of this is that while we’ve been able to use standard “engines”
for manipulating the documents, such as LATEX and LATEX2HTML, most of the
actual transformations have been created specifically for Python. The LATEX doc-
ument classes and LATEX2HTML support are both complete implementations of
the specific markup designed for these documents.

Combining highly customized markup with the somewhat esoteric systems used to
process the documents leads us to ask some questions: Can we do this more easily?
and, Can we do this better? After a great deal of discussion with the community, we
have determined that actively pursuing modern structured documentation systems
is worth some investment of time.

There appear to be two real contenders in this arena: the Standard General
Markup Language (SGML), and the Extensible Markup Language (XML). Both of
these standards have advantages and disadvantages, and many advantages are
shared.

Contents

Index

Back Screen

Search

Back

Next

Quit

40 Future Directions Discussion Forums

SGML offers advantages which may appeal most to authors, especially those using
ordinary text editors. There are also additional abilities to define content models.
A number of high-quality tools with demonstrated maturity is available, but most
are not free; for those which are, portability issues remain a problem.

The advantages of XML include the availability of a large number of evolving tools.
Unfortunately, many of the associated standards are still evolving, and the tools
will have to follow along. This means that developing a robust tool set that uses
more than the basic XML 1.0 recommendation is not possible in the short term.
The promised availability of a wide variety of high-quality tools which support
some of the most important related standards is not immediate. Many tools are
likely to be free.

XXX Eventual migration to SGML/XML.

9.2 Discussion Forums

Discussion of the future of the Python documentation and related topics takes place
in the Documentation Special Interest Group , or “Doc-SIG.” Information on the
group, including mailing list archives and subscription information, is available at
http://www.python.org/sigs/doc-sig/. The SIG is open to all interested parties.

Comments and bug reports on the standard documents should be sent to python-
docs@python.org. This may include comments about formatting, content, gram-
matical and spelling errors, or this document. You can also send comments on this
document directly to the author at fdrake@acm.org.

Contents

Index

Back Screen

Search

Back

Next

Quit

41 About this document

10 About this document

Documenting Python, July 6, 1999, Release 1.5.2

This document was generated using the LATEX2HTML translator.

LATEX2HTML is Copyright c© 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Com-
puter Based Learning Unit, University of Leeds, and Copyright c© 1997, 1998, Ross
Moore, Mathematics Department, Macquarie University, Sydney.

The application of LATEX2HTML to the Python documentation has been heavi-
ly tailored by Fred L. Drake, Jr. Original navigation icons were contributed by
Christopher Petrilli.

Contents

Index

Back Screen

Search

Back

Next

Quit

42 Index

1 Index

d
Documentation Special Interest Group
16, 40

DOS 21
dvips 34

e
emacs 34

f
featuredesc 13
featuredescni 13

h
history 38
HTML 19, 21, 22, 23, 25, 27, 34, 35, 36

l
latex 34
latex2html 34
lynx 35

m
Macintosh Library Modules 11, 24
make 35
Makefile 6

Makefile 7
makeindex 35
makeinfo 35
manual 11
mkhowto 36
mkhowto–help 37

p
PDF 7
pdflatex 35
perl 36
POSIX 32
PostScript 7
python 32, 36
Python Library Reference 24
Python Reference Manual 11

s
SGML 25, 39, 40

u
URL 22
Using Kerberos from Python 11

Contents

Index

Back Screen

Search

Back

Next

Quit

43 Index

w
Windows 21

x
XML 39, 40

Contents

Index

Back Screen

Search

Back

Next

Quit

