MathML-aware article conversion from LATEX. A comparison study.

Heinrich Stamerjohanns, Deyan Ginev, Catalin David, Dimitar Misev, Vladimir Zamdzhiev, Michael Kohlhase

Computer Science, Jacobs University Bremen (first initial).(last name)@jacobs-university.de

July 9, 2009

The retro-born-digital story

- Publishing in Mathematics / theoretical Computer Science / Physics in the last two decades - using TEX / LATEX
- Growing effort to make mathematical publications more adapted to the Web (than PostScript or PDF)
- MathML seems to be the format of choice for rich mathematical content on the web
- Several tools have been developed to convert TEX / LATEX to Web and DML-compatible formats (XML + MathML)

In this paper we try to

- put the choice of converters for DML projects onto a more solid footing
- encourage competition and feature convergence by surveying the LATEX to XML+MathML transformation market and comparing five available systems

Development seems to follow certain patterns:

- use the TEXengine to parse the LATEXsource
- reimplement a complete TEXparser

Different DML projects use different tools for conversion:

- the arxmliv project at Jacobs University uses LaTeXML
- the NUMDAM and CEDRAM projects use Tralics

- A grammar based translator from LATEX to Unicode(utf-8) encoded XML+MathML+metadata
- Semantically seeds a copy of the TEX source
- Uses LATEX during the conversion and parses the resulting (output) semantic DVI file
- MathML is the only XML vocabulary supported by Hermes
- Written in C, uses bison and flex.
- Licenced under GPL, and developed by Romeo Anghelache (http://romeo.roua.org/). It's development was partially supported by Max Planck Institute for Gravitational Physics, EDPSciences and Design Science

Pros

• Easy to install

- Development discontinued as of 2006
- Little documentation available
- \bullet Conversion speed is slow mostly due to the use of $\ensuremath{{\mbox{E}}} T_{\ensuremath{{\mbox{E}}} X}$
- No debugging support
- Needs 4 commands to convert a single file

Tralics

- Translates $\[MT_EX\]$ into a custom XML representation with an outlook for a successive conversion to PDF or HTML.
- The software is readily available online and is deployable both from source or a respective binary for either Linux, Mac OS or Windows.
- Extensive documentation available for the developers, but little for the normal users.
- Tralics uses the T_EX parser to expand the document recursively, until the pages have been constructed. Consequently, the C++ engine constructs the XML document tree and converts the mathematics to MathML.
- The author of Tralics is Jose Grimm (Jose.Grimm@sophia.inria.fr)

Pros

- highly customizable
- supports many output formats

- needs bindings
- difficult to setup for proper use
- \bullet currently low TEX coverage

LaTeXML

- Developed to support *Digital Library of Mathematical Functions* by Bruce Miller (b.miller@nist.gov)
- Written in Perl, tries to emulate $\[Mathbb{P}T_{E}X\]$
- Consists of a TEXemulator, XML emitter and post-processor (latexmlpost)
- LaTeXML processes a T_EXor \(\mathbf{E}\)T_EXdocument and outputs a temporary LTXML document (XML representation of the \(\mathbf{E}\)T_EXcounterparts
- latexmlpost transforms the LTXML file in a .xhtml file containing the desired format
- Available online as source and packages

LaTeXML

Pros

- very detailed manual
- very well supported mathematical elements
- good configuration and debugging support
- actively developed and supported

- needs bindings
- rather slow, bindings and Perl modules need to be reloaded each time

TeX4ht

- Developed by Eitan M. Gurari
- Based on TEXto produce the output
- Actual script written in C
- \bullet Uses the output of $\ensuremath{{\mbox{\sc blue}\ensuremath{\mathsf{E}}}\xspace{{\mbox{\sc blue}\ensuremath{\mathsf{U}}\xspace{{\mbox{\sc blue}\ensuremath{\mathsf{U}}\xspace{{\sc blue}\ensuremath{\mathsf{U}}\xs$
- Supports a multitude of output formats (HTML, XHTML etc.)
- Widely available to the public (website, packaged for various Linux distributions)
- \bullet Since it uses ${\ensuremath{\mathbb E} } T_E\!X,$ it actually supports all the ${\ensuremath{\mathbb E} } T_E\!Xconstructs$

TeX4ht

Pros

- high degree of support for LATEXconstructs, does not require further bindings
- many output formats
- very well documented
- easy to install, easy to use

- highly dependent on LATEX
- lack of debugging support
- speed of conversion
- written in C, but LATEXinvocations last very long

ΤtΜ

- TtM is a <u>TeX to MathML</u> translator that is derived from the HTML translator TtH.
- Works by imitating how <code>LATEX</code> or <code>TEX</code> work, and is not specifically dependent upon any programs being installed on the system.
- Written using the flex language, from which a C executable is produced, so it's extremely fast in default mode.
- Almost all of TEX's and LATEX's mathematics is supported.
- Macro definitions are fully supported, however TtM does not understand T_EX category codes (catcodes).
- TtM is copyright (c) Ian Hutchinson (hutch@psfc.mit.edu)

ΤtΜ

Pros

- portable
- fast
- very well documented
- easy to install, easy to use

- doesn't recognize catcodes
 - thus low success conversion rate in general
- windows version is not free

Other systems

- the BlaTeX, itex2mml, RiTeX, MathMLStudio Lite only convert a subset of TEX/LATEX formulae to MathML, but do not seem to have a document level. They are more directed towards authors of mathematical documents on the web rather than born digital DML efforts.
- The HeVeA, and LaTeX2html, transform LaTeX documents to HTML, but do not seem to generate MathML output.
- ORCA an online service by The University of Western Ontario
- LXir by EDP Sciences under the GPL. Usage instructions are only available in French
- Omega has been discontinued and seems to be merged into LuaTeX.

- Five programs have been studied that transform $T_{E}X/{\mbox{\sc been}} T_{E}X$ sources into XML and can create MathML.
- Systems were compared in three dimensions:
 - Ergonomic factors like documentation, ease of installation
 - Coverage
 - Quality of the resulting documents
- To obtain an objective measure of the latter two, we tested all systems on a set of 1000 articles randomly picked from the arxiv ePrint server.
- The results are summarized in the final table

- Choice: arXiv corpus one of the most comprehensive sources of heterogeneous TEX/ $\ensuremath{\text{E}} X$ documents
- More than **500,000 documents** from various fields (e.g.: Physics, Mathematics, Computer Science etc.)
- Still, running the converters on the whole corpus would take very long (orders of processor-year)
- Choose 1000 random documents from the corpus
- The behavior of the converters can be categorized:
 - **incomplete** the converter did not finish the transformation (fatal error, crash)
 - **complete with errors** the converter finished transforming, but signalled errors
 - **success** the converter finished processing with no problems or only warnings

MathML quality

- Overall methodology: establish a FQC ("Formula Quality test Corpus") based on a small set of non-trivial formulae randomly chosen from the arXiv corpus
- Example:

$$4r^{2} \int_{0}^{\pi/2} \cos^{2} \theta \, d\theta = 4r^{2} \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$
$$= 2r^{2} \theta \Big|_{0}^{\pi/2} + 2r^{2} \int_{0}^{\pi/2} \cos 2\theta \, d\theta$$
$$= \pi r^{2} + 2r^{2} (\sin 2\theta) \Big|_{0}^{\pi/2}$$
$$= \pi r^{2}$$

Figure: An example formula to check the quality of the converters

MathML quality criteria

- XHTML + MathML quality
 - Presentation vs Content MathML
 - formula tree quality
 - CSS usage
- Is the resulting XML valid ?
- Are formulae like $x + y^2$ semantically disambiguated
 - \bullet + is an operator
 - x and y are variables
 - ² means squared

Test case: Eqnarray* environment

$$4r^{2} \int_{0}^{\pi/2} \cos^{2}\theta d\theta = 4r^{2} \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) d\theta$$
$$= 2r^{2} \theta \Big|_{0}^{\pi/2} + 2r^{2} \int_{0}^{\pi/2} \cos 2\theta d\theta$$
$$= \pi r^{2} + 2r^{2} (\sin 2\theta) \Big|_{0}^{\pi/2}$$
$$= \pi r^{2}$$
(a) Hermes

$$4r^{2} \int_{0}^{\pi/2} \cos^{2} \theta \, d\theta = 4r^{2} \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$
$$= 2r^{2} \theta_{0}^{\pi/2} + 2r^{2} \int_{0}^{\pi/2} \cos 2\theta \, d\theta$$
$$= \pi r^{2} + 2r^{2} (\sin 2\theta)_{0}^{\pi/2}$$
$$= \pi r^{2}$$
(b) Tralics

$$4r^{2}\int_{0}^{\pi/2} \cos^{2}\theta d\theta = 4r^{2}\int_{0}^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) d\theta \qquad 4r^{2}\int_{0}^{\pi/2} \cos^{2}\theta d\theta = 4r^{2}\int_{0}^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) d\theta \qquad = 2r^{2}\theta \int_{0}^{\pi/2} + 2r^{2}\int_{0}^{\pi/2} \cos 2\theta d\theta = 4r^{2}\int_{0}^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) d\theta \qquad = 2r^{2}\theta \int_{0}^{\pi/2} + 2r^{2}\int_{0}^{\pi/2} \cos 2\theta d\theta = rr^{2} + 2r^{2}(\sin 2\theta) \int_{0}^{\pi/2} \frac{1}{r^{2}} = rr^{2} \qquad = rr^{2}$$
(c) LaTeXML
(d) tex4ht

$$4r^{2} \int_{0}^{\pi/2} \cos^{2} \theta \ d\theta = 4r^{2} \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \ d\theta$$
$$= 2r^{2} \theta|_{0}^{\pi/2} + 2r^{2} \int_{0}^{\pi/2} \cos 2\theta \ d\theta$$
$$= \pi r^{2} + 2r^{2} (\sin 2\theta) |_{0}^{\pi/2}$$
$$= \pi r^{2}$$
(e) TtM

Test case details

- Representing Eqnarray (requires a table representation in XHTML) solutions:
 - use MathML < *mtable* > : Tralics, tex4ht, TTM
 - use HTML < *table* > : LaTeXML
 - both : Hermes
- Operators and symbols
 - start with the < mo > element (Hermes)
 - add attributes: tex4ht "class" attribute (better rendering), Tralics - "form" attribute (better positioning)
 - LaTeXML "movablelimits" to achieve a deterministic rendering of scripts
- Other (e.g.: Math spaces, integrals, noise)

	mentation rase incomplete errors									y USE
System	Docn	Install	Con	0/0	0/0	0/0	Quali	ંડર્જ્	, 435°	47 ⁴¹ 8
Hermes	-	++	-	65	0	35	_	0	_	_
Tralics	+	++	_	0	98	2	0	+		0
LaTeXML	++	+	+	10	36	54	+	_	+	+
TeX4HT	++	++	0	34	28	38	++	-	++	++
Ttm	++	++	_	27	65	8	0	++	+	_

Figure: Comparison Table for the systems

Conclusion

- Current efforts are independent and isolated
- Grounds for collaboration
 - The different converters introduce different good features
 - Various approaches to MathML symbol generation, most could be integrated together
- Heterogeneously motivated, the different tools have different strengths in terms of:
 - breadth: defined macros
 - depth: quality of conversion
 - usability: user base and documentation
 - performance: online vs offline use case