
PV211: Introduction to Information Retrieval
https://www.fi.muni.cz/~sojka/PV211

IIR 10: XML retrieval
Handout version

Petr Sojka, Hinrich Schütze et al.

Faculty of Informatics, Masaryk University, Brno
Center for Information and Language Processing, University of Munich

2019-05-02

Sojka, IIR Group: PV211: XML retrieval 1 / 1

https://www.fi.muni.cz/~sojka/PV211

Overview

1 Introduction

2 Basic XML concepts

3 Challenges in XML IR

4 Vector space model for XML IR

5 Evaluation of XML IR

6 Math (MathML) retrieval

Sojka, IIR Group: PV211: XML retrieval 2 / 1

IR and relational databases

IR systems are often contrasted with relational databases (RDB).

Traditionally, IR systems retrieve information from
unstructured text (“raw” text without markup).

RDB systems are used for querying relational data: sets of
records that have values for predefined attributes such as
employee number, title and salary.

RDB search unstructured IR

objects records unstructured docs

main data structure table inverted index

model relational model vector space & others

queries SQL free text queries

Some structured data sources containing text are best modeled as
structured documents rather than relational data (Structured
retrieval).

Sojka, IIR Group: PV211: XML retrieval 4 / 1

Structured retrieval

Basic setting: queries are structured or unstructured; documents
are structured.

Applications of structured retrieval

Digital libraries, patent databases, blogs, tagged text with entities
like persons and locations (named entity tagging).

Example

Digital libraries: give me a full-length article on fast Fourier
transforms

Patents: give me patents whose claims mention RSA public
key encryption and that cite US patent 4,405,829

Entity-tagged text: give me articles about sightseeing tours of
the Vatican and the Coliseum

Sojka, IIR Group: PV211: XML retrieval 5 / 1

Why RDB is not suitable in this case

Three main problems
1 An unranked system (DB) would return a potentially large

number of articles that mention the Vatican, the Coliseum
and sightseeing tours without ranking them by relevance to
the query.

2 Difficult for users to precisely state structural
constraints—may not know which structured elements are
supported by the system.
tours AND (COUNTRY: Vatican OR LANDMARK:

Coliseum) ?
tours AND (STATE: Vatican OR BUILDING: Coliseum)
?

3 Users may be completely unfamiliar with structured search
and advanced search interfaces or unwilling to use them.

Solution: adapt ranked retrieval to structured documents to
address these problems.

Sojka, IIR Group: PV211: XML retrieval 6 / 1

Structured Retrieval

RDB search, Unstructured IR, Structured IR

RDB search unstructured retrieval structured retrieval

objects records unstructured docs trees with text at leaves

main data table inverted index ?
structure

model relational model vector space & others ?

queries SQL free text queries ?

Standard for encoding structured documents: Extensible Markup
Language (XML)

structured IR → XML IR

also applicable to other types of markup (HTML, SGML,. . .)

Sojka, IIR Group: PV211: XML retrieval 7 / 1

XML document

Ordered, labeled tree

Each node of the tree is
an XML element, written
with an opening and
closing XML tag (e.g.
<title...>, </title...>)

An element can have one
or more XML attributes
(e.g. number)

Attributes can have
values (e.g. vii)

Attributes can have child
elements (e.g. title,
verse)

<play>
<author>Shakespeare</author>
<title>Macbeth</title>
<act number="I">
<scene number="vii">
<title>Macbeth’s
castle</title>
<verse>Will I with wine
...</verse>
</scene>
</act>
</play>

Sojka, IIR Group: PV211: XML retrieval 9 / 1

XML document

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle

Sojka, IIR Group: PV211: XML retrieval 10 / 1

XML document

The leaf nodes consist of text

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle

Sojka, IIR Group: PV211: XML retrieval 11 / 1

XML document

The internal nodes encode document structure or metadata functions

root element

play

element

author

element

act

element

title

text

Shakespeare

text

Macbeth

attribute

number="I"

element

scene

attribute

number="vii"

element

verse

element

title

text

Will I with ...

text

Macbeth’s castle

Sojka, IIR Group: PV211: XML retrieval 12 / 1

XML basics

XML Document Object Model (XML DOM): standard for
accessing and processing XML documents

The DOM represents elements, attributes and text within
elements as nodes in a tree.
With a DOM API, we can process an XML document by
starting at the root element and then descending down the
tree from parents to children.

XPath: standard for enumerating paths in an XML document
collection.

We will also refer to paths as XML contexts or simply contexts

Schema: puts constraints on the structure of allowable XML
documents. E.g. a schema for Shakespeare’s plays: scenes can
only occur as children of acts.

Two standards for schemas for XML documents are: XML
DTD (document type definition) and XML Schema.

Sojka, IIR Group: PV211: XML retrieval 13 / 1

First challenge: document parts to retrieve

Structured or XML retrieval: users want us to return parts of
documents (i.e., XML elements), not entire documents as IR
systems usually do in unstructured retrieval.

Example

If we query Shakespeare’s plays for Macbeth’s castle, should we
return the scene, the act or the entire play?

In this case, the user is probably looking for the scene.

However, an otherwise unspecified search for Macbeth should
return the play of this name, not a subunit.

Solution: structured document retrieval principle

Sojka, IIR Group: PV211: XML retrieval 15 / 1

Structured document retrieval principle

Structured document retrieval principle

One criterion for selecting the most appropriate part of a
document:

A system should always retrieve the most specific part of
a document answering the query.

Motivates a retrieval strategy that returns the smallest unit
that contains the information sought, but does not go below
this level.

Hard to implement this principle algorithmically. E.g. query:
title:Macbeth can match both the title of the tragedy,
Macbeth, and the title of Act I, Scene vii, Macbeth’s castle.

But in this case, the title of the tragedy (higher node) is
preferred.
Difficult to decide which level of the tree satisfies the query.

Sojka, IIR Group: PV211: XML retrieval 16 / 1

Second challenge: document parts to index

Central notion for indexing and ranking in IR: document unit or
indexing unit.

In unstructured retrieval, usually straightforward: files on your
desktop, email messages, web pages on the web etc.

In structured retrieval, there are four main different
approaches to defining the indexing unit.

1 non-overlapping pseudodocuments
2 top down
3 bottom up
4 all

Sojka, IIR Group: PV211: XML retrieval 17 / 1

XML indexing unit: approach 1

Group nodes into non-overlapping pseudodocuments.

Indexing units: books, chapters, sections, but without overlap.
Disadvantage: pseudodocuments may not make sense to the user
because they are not coherent units.

Sojka, IIR Group: PV211: XML retrieval 18 / 1

XML indexing unit: approach 2

Top down (2-stage process):

1 start with one of the largest elements as the indexing unit,
e.g. the book element in a collection of books

2 then, postprocess search results to find for each book the
subelement that is the best hit.

This two-stage retrieval process often fails to return the best
subelement because the relevance of a whole book is often not a
good predictor of the relevance of small subelements within it.

Sojka, IIR Group: PV211: XML retrieval 19 / 1

XML indexing unit: approach 3

Bottom up:
Instead of retrieving large units and identifying subelements (top
down), we can search all leaves, select the most relevant ones and
then extend them to larger units in postprocessing.
Similar problem as top down: the relevance of a leaf element is

often not a good predictor of the relevance of elements it is
contained in.

Sojka, IIR Group: PV211: XML retrieval 20 / 1

XML indexing unit: approach 4

Index all elements: the least restrictive approach.
Also problematic:

many XML elements are not meaningful search results, e.g.,
an ISBN number.

indexing all elements means that search results will be highly
redundant.

Example

For the query Macbeth’s castle we would return all of the play,
act, scene and title elements on the path between the root node
and Macbeth’s castle. The leaf node would then occur 4 times in
the result set: 1 directly and 3 as part of other elements.

We call elements that are contained within each other nested
elements. Returning redundant nested elements in a list of
returned hits is not very user-friendly.

Sojka, IIR Group: PV211: XML retrieval 21 / 1

Third challenge: nested elements

Because of the redundancy caused by nested elements it is
common to restrict the set of elements eligible for retrieval.
Restriction strategies include:

discard all small elements

discard all element types that users do not look at (working
XML retrieval system logs)

discard all element types that assessors generally do not judge
to be relevant (if relevance assessments are available)

only keep element types that a system designer or librarian
has deemed to be useful search results

In most of these approaches, result sets will still contain nested
elements.

Sojka, IIR Group: PV211: XML retrieval 22 / 1

Third challenge: nested elements

Further techniques:

remove nested elements in a postprocessing step to reduce
redundancy.

collapse several nested elements in the results list and use
highlighting of query terms to draw the user’s attention to
the relevant passages.

Highlighting

Gain 1: enables users to scan medium-sized elements (e.g., a
section); thus, if the section and the paragraph both occur in
the results list, it is sufficient to show the section.

Gain 2: paragraphs are presented in-context (i.e., their
embedding section). This context may be helpful in
interpreting the paragraph.

Sojka, IIR Group: PV211: XML retrieval 23 / 1

Nested elements and term statistics

Further challenge related to nesting: we may need to distinguish
different contexts of a term when we compute term statistics for
ranking, in particular inverse document frequency (idfi).

Example

The term Gates under the node author is unrelated to an
occurrence under a content node like section if used to refer to the
plural of gate. It makes little sense to compute a single document
frequency for Gates in this example.

Solution: compute idf for XML-context term pairs.

sparse data problems (many XML-context pairs occur too
rarely to reliably estimate df)

compromise: consider the parent node x of the term and not
the rest of the path from the root to x to distinguish contexts.

Sojka, IIR Group: PV211: XML retrieval 24 / 1

Main idea: lexicalised subtrees

Aim: to have each dimension of the vector space encode a word
together with its position within the XML tree.
How: Map XML documents to lexicalised subtrees.

Sojka, IIR Group: PV211: XML retrieval 26 / 1

Main idea: lexicalised subtrees

1 Take each text node (leaf) and break it into multiple nodes,
one for each word. E.g. split Bill Gates into Bill and Gates.

2 Define the dimensions of the vector space to be lexicalized
subtrees of documents – subtrees that contain at least one
vocabulary term.

Sojka, IIR Group: PV211: XML retrieval 27 / 1

Lexicalised subtrees

We can now represent queries and documents as vectors in this
space of lexicalized subtrees and compute matches between them,
e.g. using the vector space formalism.

Vector space formalism in unstructured VS. structured IR

The main difference is that the dimensions of vector space in
unstructured retrieval are vocabulary terms whereas they are
lexicalized subtrees in XML retrieval.

Sojka, IIR Group: PV211: XML retrieval 28 / 1

Structural term

There is a tradeoff between the dimensionality of the space and
accuracy of query results.

If we restrict dimensions to vocabulary terms, then we have a
standard vector space retrieval system that will retrieve many
documents that do not match the structure of the query (e.g.,
Gates in the title as opposed to the author element).

If we create a separate dimension for each lexicalized subtree
occurring in the collection, the dimensionality of the space
becomes too large.

Compromise: index all paths that end in a single vocabulary term,
in other words, all XML-context term pairs. We call such an
XML-context term pair a structural term and denote it by 〈c , t〉: a
pair of XML-context c and vocabulary term t.

Sojka, IIR Group: PV211: XML retrieval 29 / 1

Context resemblance

A simple measure of the similarity of a path cq in a query and a
path cd in a document is the following context resemblance
function Cr:

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

(1)

|cq| and |cd | are the number of nodes in the query path and
document path, resp.

cq matches cd iff we can transform cq into cd by inserting
additional nodes.

Sojka, IIR Group: PV211: XML retrieval 30 / 1

Context resemblance example

Gates

book

Gates

author

book

Gates

creator

book

Gates

lastname

Bill

firstname

author

book

q3 q4 d2 d3

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

Cr(cq4 , cd2) = 3/4 = 0.75. The value of Cr(cq, cd) is 1.0 if q
and d are identical.

Sojka, IIR Group: PV211: XML retrieval 31 / 1

Context resemblance exercise

Gates

book

Gates

author

book

Gates

creator

book

Gates

lastname

Bill

firstname

author

book

q3 q4 d2 d3

Cr(cq, cd) =

{

1+|cq |
1+|cd | if cq matches cd

0 if cq does not match cd

Cr(cq4 , cd3) =?
Cr(cq4 , cd3) = 3/5 = 0.6.

Sojka, IIR Group: PV211: XML retrieval 32 / 1

Document similarity measure

The final score for a document is computed as a variant of the
cosine measure, which we call SimNoMerge.
SimNoMerge(q, d) =

∑

ck∈B

∑

cl ∈B

Cr(ck , cl)
∑

t∈V

weight(q, t, ck)
weight(d , t, cl)

√

∑

c∈B,t∈V weight2(d , t, c)

V is the vocabulary of non-structural terms

B is the set of all XML contexts

weight(q, t, c), weight(d , t, c) are the weights of term t in
XML context c in query q and document d , resp. (standard
weighting e.g. idft · wft,d , where idft depends on which
elements we use to compute dft .)

SimNoMerge(q, d) is not a true cosine measure since its value
can be larger than 1.0.

Sojka, IIR Group: PV211: XML retrieval 33 / 1

SimNoMerge algorithm

ScoreDocumentsWithSimNoMerge(q, B, V , N, normalizer)
1 for n← 1 to N
2 do score[n]← 0
3 for each 〈cq, t〉 ∈ q
4 do wq ←Weight(q, t, cq)
5 for each c ∈ B
6 do if Cr(cq, c) > 0
7 then postings ← GetPostings(〈c , t〉)
8 for each posting ∈ postings
9 do x ← Cr(cq, c) ∗ wq ∗ weight(posting)

10 score[docID(posting)]+ = x
11 for n← 1 to N
12 do score[n]← score[n]/normalizer [n]
13 return score

Sojka, IIR Group: PV211: XML retrieval 34 / 1

Initiative for the Evaluation of XML Retrieval (INEX)

INEX: standard benchmark evaluation (yearly) that has produced
test collections (documents, sets of queries, and relevance
judgments).
Based on IEEE journal collection (since 2006 INEX uses the much
larger English Wikipedia as a test collection).
The relevance of documents is judged by human assessors.

INEX 2002 collection statistics

12,107 number of documents
494 MB size
1995–2002 time of publication of articles
1,532 average number of XML nodes per document
6.9 average depth of a node
30 number of CAS topics
30 number of CO topics

Sojka, IIR Group: PV211: XML retrieval 36 / 1

INEX topics

Two types:

1 content-only or CO topics: regular keyword queries as in
unstructured information retrieval

2 content-and-structure or CAS topics: have structural
constraints in addition to keywords

Since CAS queries have both structural and content criteria,
relevance assessments are more complicated than in unstructured
retrieval.

Sojka, IIR Group: PV211: XML retrieval 37 / 1

INEX relevance assessments

INEX 2002 defined component coverage and topical relevance as
orthogonal dimensions of relevance.

Component coverage

Evaluates whether the element retrieved is “structurally” correct, i.e.,
neither too low nor too high in the tree.

We distinguish four cases:

1 Exact coverage (E): The information sought is the main topic of
the component and the component is a meaningful unit of
information.

2 Too small (S): The information sought is the main topic of the
component, but the component is not a meaningful
(self-contained) unit of information.

3 Too large (L): The information sought is present in the
component, but is not the main topic.

4 No coverage (N): The information sought is not a topic of the
component.

Sojka, IIR Group: PV211: XML retrieval 38 / 1

INEX relevance assessments

The topical relevance dimension also has four levels: highly
relevant (3), fairly relevant (2), marginally relevant (1) and
nonrelevant (0).

Combining the relevance dimensions

Components are judged on both dimensions and the judgments are
then combined into a digit-letter code, e.g. 2S is a fairly relevant
component that is too small. In theory, there are 16 combinations
of coverage and relevance, but many cannot occur. For example, a
nonrelevant component cannot have exact coverage, so the
combination 3N is not possible.

Sojka, IIR Group: PV211: XML retrieval 39 / 1

INEX relevance assessments

The relevance-coverage combinations are quantized as follows:

Q(rel , cov) =

1.00 if (rel , cov) = 3E
0.75 if (rel , cov) ∈ {2E, 3L}
0.50 if (rel , cov) ∈ {1E, 2L, 2S}
0.25 if (rel , cov) ∈ {1S, 1L}
0.00 if (rel , cov) = 0N

This evaluation scheme takes account of the fact that binary
relevance judgments, which are standard in unstructured IR, are
not appropriate for XML retrieval. The quantization function Q
does not impose a binary choice relevant/nonrelevant and instead
allows us to grade the component as partially relevant. The
number of relevant components in a retrieved set A of components
can then be computed as:

#(relevant items retrieved) =
∑

c∈A

Q(rel(c), cov(c))

Sojka, IIR Group: PV211: XML retrieval 40 / 1

INEX evaluation measures

As an approximation, the standard definitions of precision and
recall can be applied to this modified definition of relevant items
retrieved, with some subtleties because we sum graded as opposed
to binary relevance assessments.

Drawback

Overlap is not accounted for. Accentuated by the problem of
multiple nested elements occurring in a search result.

Recent INEX focus: develop algorithms and evaluation measures
that return non-redundant results lists and evaluate them properly.

Sojka, IIR Group: PV211: XML retrieval 41 / 1

MIaS: Math Indexer and Searcher

https://mir.fi.muni.cz

Sojka, IIR Group: PV211: XML retrieval 43 / 1

https://mir.fi.muni.cz

Recap

Structured or XML IR: effort to port unstructured (standard)
IR know-how onto a scenario that uses structured (DB-like)
data

Specialised applications (e.g. patents, digital libraries)

A decade old, unsolved problem

http://inex.is.informatik.uniduisburg.de/

Sojka, IIR Group: PV211: XML retrieval 44 / 1

	Introduction
	Basic XML concepts
	Challenges in XML IR
	Vector space model for XML IR
	Evaluation of XML IR
	Math (MathML) retrieval

